#include "infrared_signal.h" #include #include #include #include #include #define TAG "InfraredSignal" // Common keys #define INFRARED_SIGNAL_NAME_KEY "name" #define INFRARED_SIGNAL_TYPE_KEY "type" // Type key values #define INFRARED_SIGNAL_TYPE_RAW "raw" #define INFRARED_SIGNAL_TYPE_PARSED "parsed" // Raw signal keys #define INFRARED_SIGNAL_DATA_KEY "data" #define INFRARED_SIGNAL_FREQUENCY_KEY "frequency" #define INFRARED_SIGNAL_DUTY_CYCLE_KEY "duty_cycle" // Parsed signal keys #define INFRARED_SIGNAL_PROTOCOL_KEY "protocol" #define INFRARED_SIGNAL_ADDRESS_KEY "address" #define INFRARED_SIGNAL_COMMAND_KEY "command" struct InfraredSignal { bool is_raw; union { InfraredMessage message; InfraredRawSignal raw; } payload; }; static void infrared_signal_clear_timings(InfraredSignal* signal) { if(signal->is_raw) { free(signal->payload.raw.timings); signal->payload.raw.timings_size = 0; signal->payload.raw.timings = NULL; } } static bool infrared_signal_is_message_valid(const InfraredMessage* message) { if(!infrared_is_protocol_valid(message->protocol)) { FURI_LOG_E(TAG, "Unknown protocol"); return false; } uint32_t address_length = infrared_get_protocol_address_length(message->protocol); uint32_t address_mask = (1UL << address_length) - 1; if(message->address != (message->address & address_mask)) { FURI_LOG_E( TAG, "Address is out of range (mask 0x%08lX): 0x%lX\r\n", address_mask, message->address); return false; } uint32_t command_length = infrared_get_protocol_command_length(message->protocol); uint32_t command_mask = (1UL << command_length) - 1; if(message->command != (message->command & command_mask)) { FURI_LOG_E( TAG, "Command is out of range (mask 0x%08lX): 0x%lX\r\n", command_mask, message->command); return false; } return true; } static bool infrared_signal_is_raw_valid(const InfraredRawSignal* raw) { if((raw->frequency > INFRARED_MAX_FREQUENCY) || (raw->frequency < INFRARED_MIN_FREQUENCY)) { FURI_LOG_E( TAG, "Frequency is out of range (%X - %X): %lX", INFRARED_MIN_FREQUENCY, INFRARED_MAX_FREQUENCY, raw->frequency); return false; } else if((raw->duty_cycle <= 0) || (raw->duty_cycle > 1)) { FURI_LOG_E(TAG, "Duty cycle is out of range (0 - 1): %f", (double)raw->duty_cycle); return false; } else if((raw->timings_size <= 0) || (raw->timings_size > MAX_TIMINGS_AMOUNT)) { FURI_LOG_E( TAG, "Timings amount is out of range (0 - %X): %zX", MAX_TIMINGS_AMOUNT, raw->timings_size); return false; } return true; } static inline bool infrared_signal_save_message(const InfraredMessage* message, FlipperFormat* ff) { const char* protocol_name = infrared_get_protocol_name(message->protocol); return flipper_format_write_string_cstr( ff, INFRARED_SIGNAL_TYPE_KEY, INFRARED_SIGNAL_TYPE_PARSED) && flipper_format_write_string_cstr(ff, INFRARED_SIGNAL_PROTOCOL_KEY, protocol_name) && flipper_format_write_hex( ff, INFRARED_SIGNAL_ADDRESS_KEY, (uint8_t*)&message->address, 4) && flipper_format_write_hex( ff, INFRARED_SIGNAL_COMMAND_KEY, (uint8_t*)&message->command, 4); } static inline bool infrared_signal_save_raw(const InfraredRawSignal* raw, FlipperFormat* ff) { furi_assert(raw->timings_size <= MAX_TIMINGS_AMOUNT); return flipper_format_write_string_cstr( ff, INFRARED_SIGNAL_TYPE_KEY, INFRARED_SIGNAL_TYPE_RAW) && flipper_format_write_uint32(ff, INFRARED_SIGNAL_FREQUENCY_KEY, &raw->frequency, 1) && flipper_format_write_float(ff, INFRARED_SIGNAL_DUTY_CYCLE_KEY, &raw->duty_cycle, 1) && flipper_format_write_uint32( ff, INFRARED_SIGNAL_DATA_KEY, raw->timings, raw->timings_size); } static inline bool infrared_signal_read_message(InfraredSignal* signal, FlipperFormat* ff) { FuriString* buf; buf = furi_string_alloc(); bool success = false; do { if(!flipper_format_read_string(ff, INFRARED_SIGNAL_PROTOCOL_KEY, buf)) break; InfraredMessage message; message.protocol = infrared_get_protocol_by_name(furi_string_get_cstr(buf)); if(!flipper_format_read_hex(ff, INFRARED_SIGNAL_ADDRESS_KEY, (uint8_t*)&message.address, 4)) break; if(!flipper_format_read_hex(ff, INFRARED_SIGNAL_COMMAND_KEY, (uint8_t*)&message.command, 4)) break; if(!infrared_signal_is_message_valid(&message)) break; infrared_signal_set_message(signal, &message); success = true; } while(false); furi_string_free(buf); return success; } static inline bool infrared_signal_read_raw(InfraredSignal* signal, FlipperFormat* ff) { bool success = false; do { uint32_t frequency; if(!flipper_format_read_uint32(ff, INFRARED_SIGNAL_FREQUENCY_KEY, &frequency, 1)) break; float duty_cycle; if(!flipper_format_read_float(ff, INFRARED_SIGNAL_DUTY_CYCLE_KEY, &duty_cycle, 1)) break; uint32_t timings_size; if(!flipper_format_get_value_count(ff, INFRARED_SIGNAL_DATA_KEY, &timings_size)) break; if(timings_size > MAX_TIMINGS_AMOUNT) break; uint32_t* timings = malloc(sizeof(uint32_t) * timings_size); if(!flipper_format_read_uint32(ff, INFRARED_SIGNAL_DATA_KEY, timings, timings_size)) { free(timings); break; } infrared_signal_set_raw_signal(signal, timings, timings_size, frequency, duty_cycle); free(timings); success = true; } while(false); return success; } bool infrared_signal_read_body(InfraredSignal* signal, FlipperFormat* ff) { FuriString* tmp = furi_string_alloc(); bool success = false; do { if(!flipper_format_read_string(ff, INFRARED_SIGNAL_TYPE_KEY, tmp)) break; if(furi_string_equal(tmp, INFRARED_SIGNAL_TYPE_RAW)) { if(!infrared_signal_read_raw(signal, ff)) break; } else if(furi_string_equal(tmp, INFRARED_SIGNAL_TYPE_PARSED)) { if(!infrared_signal_read_message(signal, ff)) break; } else { FURI_LOG_E(TAG, "Unknown signal type: %s", furi_string_get_cstr(tmp)); break; } success = true; } while(false); furi_string_free(tmp); return success; } InfraredSignal* infrared_signal_alloc(void) { InfraredSignal* signal = malloc(sizeof(InfraredSignal)); signal->is_raw = false; signal->payload.message.protocol = InfraredProtocolUnknown; return signal; } void infrared_signal_free(InfraredSignal* signal) { infrared_signal_clear_timings(signal); free(signal); } bool infrared_signal_is_raw(const InfraredSignal* signal) { return signal->is_raw; } bool infrared_signal_is_valid(const InfraredSignal* signal) { return signal->is_raw ? infrared_signal_is_raw_valid(&signal->payload.raw) : infrared_signal_is_message_valid(&signal->payload.message); } void infrared_signal_set_signal(InfraredSignal* signal, const InfraredSignal* other) { if(other->is_raw) { const InfraredRawSignal* raw = &other->payload.raw; infrared_signal_set_raw_signal( signal, raw->timings, raw->timings_size, raw->frequency, raw->duty_cycle); } else { const InfraredMessage* message = &other->payload.message; infrared_signal_set_message(signal, message); } } void infrared_signal_set_raw_signal( InfraredSignal* signal, const uint32_t* timings, size_t timings_size, uint32_t frequency, float duty_cycle) { infrared_signal_clear_timings(signal); signal->is_raw = true; signal->payload.raw.timings_size = timings_size; signal->payload.raw.frequency = frequency; signal->payload.raw.duty_cycle = duty_cycle; signal->payload.raw.timings = malloc(timings_size * sizeof(uint32_t)); memcpy(signal->payload.raw.timings, timings, timings_size * sizeof(uint32_t)); } const InfraredRawSignal* infrared_signal_get_raw_signal(const InfraredSignal* signal) { furi_assert(signal->is_raw); return &signal->payload.raw; } void infrared_signal_set_message(InfraredSignal* signal, const InfraredMessage* message) { infrared_signal_clear_timings(signal); signal->is_raw = false; signal->payload.message = *message; } const InfraredMessage* infrared_signal_get_message(const InfraredSignal* signal) { furi_assert(!signal->is_raw); return &signal->payload.message; } bool infrared_signal_save(const InfraredSignal* signal, FlipperFormat* ff, const char* name) { if(!flipper_format_write_comment_cstr(ff, "") || !flipper_format_write_string_cstr(ff, INFRARED_SIGNAL_NAME_KEY, name)) { return false; } else if(signal->is_raw) { return infrared_signal_save_raw(&signal->payload.raw, ff); } else { return infrared_signal_save_message(&signal->payload.message, ff); } } bool infrared_signal_read(InfraredSignal* signal, FlipperFormat* ff, FuriString* name) { bool success = false; do { if(!infrared_signal_read_name(ff, name)) break; if(!infrared_signal_read_body(signal, ff)) break; success = true; //-V779 } while(false); return success; } bool infrared_signal_read_name(FlipperFormat* ff, FuriString* name) { return flipper_format_read_string(ff, INFRARED_SIGNAL_NAME_KEY, name); } bool infrared_signal_search_by_name_and_read( InfraredSignal* signal, FlipperFormat* ff, const char* name) { bool success = false; FuriString* tmp = furi_string_alloc(); while(infrared_signal_read_name(ff, tmp)) { if(furi_string_equal(tmp, name)) { success = infrared_signal_read_body(signal, ff); break; } } furi_string_free(tmp); return success; } bool infrared_signal_search_by_index_and_read( InfraredSignal* signal, FlipperFormat* ff, size_t index) { bool success = false; FuriString* tmp = furi_string_alloc(); for(uint32_t i = 0; infrared_signal_read_name(ff, tmp); ++i) { if(i == index) { success = infrared_signal_read_body(signal, ff); break; } } furi_string_free(tmp); return success; } void infrared_signal_transmit(const InfraredSignal* signal) { if(signal->is_raw) { const InfraredRawSignal* raw_signal = &signal->payload.raw; infrared_send_raw_ext( raw_signal->timings, raw_signal->timings_size, true, raw_signal->frequency, raw_signal->duty_cycle); } else { const InfraredMessage* message = &signal->payload.message; infrared_send(message, 1); } }