Added NFC plugin; Some parser (#3335)

* Add parser
* Fix microel.c
* Fix NFC parser positive return
* fix mizip
* Fix NFC parser positive return
* Add parse to hi! tag
* fix false positive reading and kdf
* hi formatting
* fix oom in kdf
* nfc app: fix types in hi plugin
* nfc app: fix return in function body in microel plugin

Co-authored-by: gornekich <n.gorbadey@gmail.com>
Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Alessandro Rossi 2024-02-09 09:16:14 +01:00 committed by GitHub
parent 6bc63b7734
commit ebd09a1981
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 738 additions and 0 deletions

View file

@ -29,6 +29,33 @@ App(
sources=["plugins/supported_cards/all_in_one.c"], sources=["plugins/supported_cards/all_in_one.c"],
) )
App(
appid="microel_parser",
apptype=FlipperAppType.PLUGIN,
entry_point="microel_plugin_ep",
targets=["f7"],
requires=["nfc"],
sources=["plugins/supported_cards/microel.c"],
)
App(
appid="mizip_parser",
apptype=FlipperAppType.PLUGIN,
entry_point="mizip_plugin_ep",
targets=["f7"],
requires=["nfc"],
sources=["plugins/supported_cards/mizip.c"],
)
App(
appid="hi_parser",
apptype=FlipperAppType.PLUGIN,
entry_point="hi_plugin_ep",
targets=["f7"],
requires=["nfc"],
sources=["plugins/supported_cards/hi.c"],
)
App( App(
appid="opal_parser", appid="opal_parser",
apptype=FlipperAppType.PLUGIN, apptype=FlipperAppType.PLUGIN,

View file

@ -0,0 +1,226 @@
#include "nfc_supported_card_plugin.h"
#include <flipper_application/flipper_application.h>
#include <nfc/nfc_device.h>
#include <nfc/helpers/nfc_util.h>
#include <nfc/protocols/mf_classic/mf_classic_poller_sync.h>
#include <stdint.h>
#define TAG "HI!"
#define KEY_LENGTH 6
#define HI_KEY_TO_GEN 5
#define UID_LENGTH 7
typedef struct {
uint64_t a;
uint64_t b;
} MfClassicKeyPair;
typedef struct {
MfClassicKeyPair* keys;
uint32_t verify_sector;
} HiCardConfig;
static MfClassicKeyPair hi_1k_keys[] = {
{.a = 0xa0a1a2a3a4a5, .b = 0x30871CF60CF1}, // 000
{.a = 0x000000000000, .b = 0x000000000000}, // 001
{.a = 0x000000000000, .b = 0x000000000000}, // 002
{.a = 0x000000000000, .b = 0x000000000000}, // 003
{.a = 0x000000000000, .b = 0x000000000000}, // 004
{.a = 0x42FFE4C76209, .b = 0x7B30CFD04CBD}, // 005
{.a = 0x01ED8145BDF8, .b = 0x92257F472FCE}, // 006
{.a = 0x7583A07D21A6, .b = 0x51CA6EA8EE26}, // 007
{.a = 0x1E10BF5D6A1D, .b = 0x87B9B9BFABA6}, // 008
{.a = 0xF9DB1B2B21BA, .b = 0x80A781F4134C}, // 009
{.a = 0x7F5283FACB72, .b = 0x73250009D75A}, // 010
{.a = 0xE48E86A03078, .b = 0xCFFBBF08A254}, // 011
{.a = 0x39AB26301F60, .b = 0xC71A6E532C83}, // 012
{.a = 0xAD656C6C639F, .b = 0xFD9819CBD20A}, // 013
{.a = 0xF0E15160DB3E, .b = 0x3F622D515ADD}, // 014
{.a = 0x03F44E033C42, .b = 0x61E897875F46}, // 015
};
//KDF
void hi_generate_key(uint8_t* uid, uint8_t keyA[5][KEY_LENGTH], uint8_t keyB[5][KEY_LENGTH]) {
// Static XOR table for key generation
static const uint8_t xor_table_keyB[4][6] = {
{0x1F, 0xC4, 0x4D, 0x94, 0x6A, 0x31},
{0x12, 0xC1, 0x5C, 0x70, 0xDF, 0x31},
{0x56, 0xF0, 0x13, 0x1B, 0x63, 0xF2},
{0x4E, 0xFA, 0xC2, 0xF8, 0xC9, 0xCC}};
static const uint8_t xor_table_keyA[4][6] = {
{0xB6, 0xE6, 0xAE, 0x72, 0x91, 0x0D},
{0x6D, 0x38, 0x50, 0xFB, 0x42, 0x89},
{0x1E, 0x5F, 0xC7, 0xED, 0xAA, 0x02},
{0x7E, 0xB9, 0xCA, 0xF1, 0x9C, 0x59}};
// Permutation table for rearranging elements in uid
static const uint8_t xorOrderA[6] = {0, 1, 2, 3, 0, 2};
static const uint8_t xorOrderB[6] = {1, 3, 3, 2, 1, 0};
// Generate key based on uid and XOR table
for(uint8_t j = 1; j < 5; j++) {
for(uint8_t i = 0; i < 6; i++) {
keyA[j][i] = uid[xorOrderA[i]] ^ xor_table_keyA[j - 1][i];
keyB[j][i] = uid[xorOrderB[i]] ^ xor_table_keyB[j - 1][i];
}
}
}
static bool hi_get_card_config(HiCardConfig* config, MfClassicType type) {
bool success = true;
if(type == MfClassicType1k) {
config->verify_sector = 0;
config->keys = hi_1k_keys;
} else {
success = false;
}
return success;
}
static bool hi_verify_type(Nfc* nfc, MfClassicType type) {
bool verified = false;
do {
HiCardConfig cfg = {};
if(!hi_get_card_config(&cfg, type)) break;
const uint8_t block_num = mf_classic_get_first_block_num_of_sector(cfg.verify_sector);
FURI_LOG_D(TAG, "Verifying sector %li", cfg.verify_sector);
MfClassicKey key = {0};
nfc_util_num2bytes(cfg.keys[cfg.verify_sector].b, COUNT_OF(key.data), key.data);
MfClassicAuthContext auth_context;
MfClassicError error =
mf_classic_poller_sync_auth(nfc, block_num, &key, MfClassicKeyTypeB, &auth_context);
if(error != MfClassicErrorNone) {
FURI_LOG_D(
TAG, "Failed to read block %u: %d, this is not a HI card", block_num, error);
break;
}
FURI_LOG_D(TAG, "Found a HI Card");
verified = true;
} while(false);
return verified;
}
static bool hi_verify(Nfc* nfc) {
return hi_verify_type(nfc, MfClassicType1k);
}
static bool hi_read(Nfc* nfc, NfcDevice* device) {
FURI_LOG_D(TAG, "Entering HI KDF");
furi_assert(nfc);
furi_assert(device);
bool is_read = false;
MfClassicData* data = mf_classic_alloc();
nfc_device_copy_data(device, NfcProtocolMfClassic, data);
do {
MfClassicType type = MfClassicType1k;
MfClassicError error = mf_classic_poller_sync_detect_type(nfc, &type);
if(error != MfClassicErrorNone) break;
HiCardConfig cfg = {};
if(!hi_get_card_config(&cfg, data->type)) break;
uint8_t uid[UID_LENGTH];
memcpy(uid, data->iso14443_3a_data->uid, UID_LENGTH);
uint8_t keyA[HI_KEY_TO_GEN][KEY_LENGTH];
uint8_t keyB[HI_KEY_TO_GEN][KEY_LENGTH];
hi_generate_key(uid, keyA, keyB);
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
if(cfg.keys[i].a == 0x000000000000 && cfg.keys[i].b == 0x000000000000) {
cfg.keys[i].a = nfc_util_bytes2num(keyA[i], KEY_LENGTH);
cfg.keys[i].b = nfc_util_bytes2num(keyB[i], KEY_LENGTH);
}
}
MfClassicDeviceKeys keys = {};
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
nfc_util_num2bytes(cfg.keys[i].a, sizeof(MfClassicKey), keys.key_a[i].data);
FURI_BIT_SET(keys.key_a_mask, i);
nfc_util_num2bytes(cfg.keys[i].b, sizeof(MfClassicKey), keys.key_b[i].data);
FURI_BIT_SET(keys.key_b_mask, i);
}
error = mf_classic_poller_sync_read(nfc, &keys, data);
if(error != MfClassicErrorNone) {
FURI_LOG_W(TAG, "Failed to read data");
break;
}
nfc_device_set_data(device, NfcProtocolMfClassic, data);
is_read = mf_classic_is_card_read(data);
} while(false);
mf_classic_free(data);
return is_read;
}
static bool hi_parse(const NfcDevice* device, FuriString* parsed_data) {
furi_assert(device);
furi_assert(parsed_data);
const MfClassicData* data = nfc_device_get_data(device, NfcProtocolMfClassic);
bool parsed = false;
do {
// Verify card type
HiCardConfig cfg = {};
if(!hi_get_card_config(&cfg, data->type)) break;
// Verify key
MfClassicSectorTrailer* sec_tr =
mf_classic_get_sector_trailer_by_sector(data, cfg.verify_sector);
uint64_t key = nfc_util_bytes2num(sec_tr->key_b.data, 6);
if(key != cfg.keys[cfg.verify_sector].b) return false;
//Get UID
uint8_t uid[UID_LENGTH];
memcpy(uid, data->iso14443_3a_data->uid, UID_LENGTH);
//parse data
furi_string_cat_printf(parsed_data, "\e#HI! Card\n");
furi_string_cat_printf(parsed_data, "UID:");
for(size_t i = 0; i < UID_LENGTH; i++) {
furi_string_cat_printf(parsed_data, " %02X", uid[i]);
}
furi_string_cat_printf(parsed_data, "\n");
parsed = true;
} while(false);
return parsed;
}
/* Actual implementation of app<>plugin interface */
static const NfcSupportedCardsPlugin hi_plugin = {
.protocol = NfcProtocolMfClassic,
.verify = hi_verify,
.read = hi_read,
.parse = hi_parse,
};
/* Plugin descriptor to comply with basic plugin specification */
static const FlipperAppPluginDescriptor hi_plugin_descriptor = {
.appid = NFC_SUPPORTED_CARD_PLUGIN_APP_ID,
.ep_api_version = NFC_SUPPORTED_CARD_PLUGIN_API_VERSION,
.entry_point = &hi_plugin,
};
/* Plugin entry point - must return a pointer to const descriptor */
const FlipperAppPluginDescriptor* hi_plugin_ep() {
return &hi_plugin_descriptor;
}

View file

@ -0,0 +1,228 @@
#include "nfc_supported_card_plugin.h"
#include <flipper_application/flipper_application.h>
#include <nfc/nfc_device.h>
#include <nfc/helpers/nfc_util.h>
#include <nfc/protocols/mf_classic/mf_classic_poller_sync.h>
#include <stdint.h>
#define TAG "Microel"
#define KEY_LENGTH 6
#define UID_LENGTH 4
typedef struct {
uint64_t a;
uint64_t b;
} MfClassicKeyPair;
static MfClassicKeyPair microel_1k_keys[] = {
{.a = 0x000000000000, .b = 0x000000000000}, // 000
{.a = 0x000000000000, .b = 0x000000000000}, // 001
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 002
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 003
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 004
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 005
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 006
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 007
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 008
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 009
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 010
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 011
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 012
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 013
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 014
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 015
};
const uint8_t verify_sector = 1;
void calculateSumHex(const uint8_t* uid, size_t uidSize, uint8_t sumHex[]) {
const uint8_t xorKey[] = {0x01, 0x92, 0xA7, 0x75, 0x2B, 0xF9};
int sum = 0;
for(size_t i = 0; i < uidSize; i++) {
sum += uid[i];
}
int sumTwoDigits = sum % 256;
if(sumTwoDigits % 2 == 1) {
sumTwoDigits += 2;
}
for(size_t i = 0; i < sizeof(xorKey); i++) {
sumHex[i] = sumTwoDigits ^ xorKey[i];
}
}
void generateKeyA(const uint8_t* uid, uint8_t uidSize, uint8_t keyA[]) {
uint8_t sumHex[6];
calculateSumHex(uid, uidSize, sumHex);
uint8_t firstCharacter = (sumHex[0] >> 4) & 0xF;
if(firstCharacter == 0x2 || firstCharacter == 0x3 || firstCharacter == 0xA ||
firstCharacter == 0xB) {
// XOR WITH 0x40
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = 0x40 ^ sumHex[i];
}
} else if(
firstCharacter == 0x6 || firstCharacter == 0x7 || firstCharacter == 0xE ||
firstCharacter == 0xF) {
// XOR WITH 0xC0
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = 0xC0 ^ sumHex[i];
}
} else {
//Key a is the same as sumHex
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = sumHex[i];
}
}
}
void generateKeyB(uint8_t keyA[], size_t keyASize, uint8_t keyB[]) {
for(size_t i = 0; i < keyASize; i++) {
keyB[i] = 0xFF ^ keyA[i];
}
}
static bool microel_read(Nfc* nfc, NfcDevice* device) {
FURI_LOG_D(TAG, "Entering Microel KDF");
furi_assert(nfc);
furi_assert(device);
bool is_read = false;
MfClassicData* data = mf_classic_alloc();
nfc_device_copy_data(device, NfcProtocolMfClassic, data);
do {
MfClassicType type = MfClassicType1k;
MfClassicError error = mf_classic_poller_sync_detect_type(nfc, &type);
if(error != MfClassicErrorNone) break;
//Get UID and check if it is 4 bytes
size_t uid_len;
const uint8_t* uid = mf_classic_get_uid(data, &uid_len);
FURI_LOG_D(TAG, "UID identified: %02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3]);
if(uid_len != UID_LENGTH) break;
// Generate keys
uint8_t keyA[KEY_LENGTH];
uint8_t keyB[KEY_LENGTH];
generateKeyA(uid, UID_LENGTH, keyA);
generateKeyB(keyA, KEY_LENGTH, keyB);
// Check key 0a to verify if it is a microel card
MfClassicKey key = {0};
nfc_util_num2bytes(nfc_util_bytes2num(keyA, KEY_LENGTH), COUNT_OF(key.data), key.data);
const uint8_t block_num = mf_classic_get_first_block_num_of_sector(0); // This is 0
MfClassicAuthContext auth_context;
error =
mf_classic_poller_sync_auth(nfc, block_num, &key, MfClassicKeyTypeA, &auth_context);
if(error != MfClassicErrorNone) {
break;
}
// Save keys generated to stucture
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
if(microel_1k_keys[i].a == 0x000000000000) {
microel_1k_keys[i].a = nfc_util_bytes2num(keyA, KEY_LENGTH);
}
if(microel_1k_keys[i].b == 0x000000000000) {
microel_1k_keys[i].b = nfc_util_bytes2num(keyB, KEY_LENGTH);
}
}
MfClassicDeviceKeys keys = {};
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
nfc_util_num2bytes(microel_1k_keys[i].a, sizeof(MfClassicKey), keys.key_a[i].data);
FURI_BIT_SET(keys.key_a_mask, i);
nfc_util_num2bytes(microel_1k_keys[i].b, sizeof(MfClassicKey), keys.key_b[i].data);
FURI_BIT_SET(keys.key_b_mask, i);
}
error = mf_classic_poller_sync_read(nfc, &keys, data);
if(error != MfClassicErrorNone) {
FURI_LOG_W(TAG, "Failed to read data");
break;
}
nfc_device_set_data(device, NfcProtocolMfClassic, data);
is_read = mf_classic_is_card_read(data);
} while(false);
mf_classic_free(data);
return is_read;
}
static bool microel_parse(const NfcDevice* device, FuriString* parsed_data) {
furi_assert(device);
furi_assert(parsed_data);
const MfClassicData* data = nfc_device_get_data(device, NfcProtocolMfClassic);
bool parsed = false;
do {
//Get UID
size_t uid_len;
const uint8_t* uid = mf_classic_get_uid(data, &uid_len);
if(uid_len != UID_LENGTH) break;
// Generate key from uid
uint8_t keyA[KEY_LENGTH];
generateKeyA(uid, UID_LENGTH, keyA);
// Verify key
MfClassicSectorTrailer* sec_tr =
mf_classic_get_sector_trailer_by_sector(data, verify_sector);
uint64_t key = nfc_util_bytes2num(sec_tr->key_a.data, 6);
uint64_t key_for_check_from_array = nfc_util_bytes2num(keyA, KEY_LENGTH);
if(key != key_for_check_from_array) break;
//Get credit in block number 8
const uint8_t* temp_ptr = data->block[4].data;
uint16_t balance = (temp_ptr[6] << 8) | (temp_ptr[5]);
uint16_t previus_balance = (data->block[5].data[6] << 8) | (data->block[5].data[5]);
furi_string_cat_printf(parsed_data, "\e#Microel Card\n");
furi_string_cat_printf(parsed_data, "UID:");
for(size_t i = 0; i < UID_LENGTH; i++) {
furi_string_cat_printf(parsed_data, " %02X", uid[i]);
}
furi_string_cat_printf(
parsed_data, "\nCurrent Credit: %d.%02d E \n", balance / 100, balance % 100);
furi_string_cat_printf(
parsed_data,
"Previus Credit: %d.%02d E \n",
previus_balance / 100,
previus_balance % 100);
parsed = true;
} while(false);
return parsed;
}
/* Actual implementation of app<>plugin interface */
static const NfcSupportedCardsPlugin microel_plugin = {
.protocol = NfcProtocolMfClassic,
.verify =
NULL, // the verification I need is based on verifying the keys generated via uid and try to authenticate not like on mizip that there is default b0 but added verify in read function
.read = microel_read,
.parse = microel_parse,
};
/* Plugin descriptor to comply with basic plugin specification */
static const FlipperAppPluginDescriptor microel_plugin_descriptor = {
.appid = NFC_SUPPORTED_CARD_PLUGIN_APP_ID,
.ep_api_version = NFC_SUPPORTED_CARD_PLUGIN_API_VERSION,
.entry_point = &microel_plugin,
};
/* Plugin entry point - must return a pointer to const descriptor */
const FlipperAppPluginDescriptor* microel_plugin_ep() {
return &microel_plugin_descriptor;
}

View file

@ -0,0 +1,257 @@
#include "nfc_supported_card_plugin.h"
#include <flipper_application/flipper_application.h>
#include <nfc/nfc_device.h>
#include <nfc/helpers/nfc_util.h>
#include <nfc/protocols/mf_classic/mf_classic_poller_sync.h>
#include <stdint.h>
#define TAG "MiZIP"
#define KEY_LENGTH 6
#define MIZIP_KEY_TO_GEN 5
#define UID_LENGTH 4
typedef struct {
uint64_t a;
uint64_t b;
} MfClassicKeyPair;
typedef struct {
MfClassicKeyPair* keys;
uint32_t verify_sector;
} MizipCardConfig;
static MfClassicKeyPair mizip_1k_keys[] = {
{.a = 0xa0a1a2a3a4a5, .b = 0xb4c132439eef}, // 000
{.a = 0x000000000000, .b = 0x000000000000}, // 001
{.a = 0x000000000000, .b = 0x000000000000}, // 002
{.a = 0x000000000000, .b = 0x000000000000}, // 003
{.a = 0x000000000000, .b = 0x000000000000}, // 004
{.a = 0x0222179AB995, .b = 0x13321774F9B5}, // 005
{.a = 0xB25CBD76A7B4, .b = 0x7571359B4274}, // 006
{.a = 0xDA857B4907CC, .b = 0xD26B856175F7}, // 007
{.a = 0x16D85830C443, .b = 0x8F790871A21E}, // 008
{.a = 0x88BD5098FC82, .b = 0xFCD0D77745E4}, // 009
{.a = 0x983349449D78, .b = 0xEA2631FBDEDD}, // 010
{.a = 0xC599F962F3D9, .b = 0x949B70C14845}, // 011
{.a = 0x72E668846BE8, .b = 0x45490B5AD707}, // 012
{.a = 0xBCA105E5685E, .b = 0x248DAF9D674D}, // 013
{.a = 0x4F6FE072D1FD, .b = 0x4250A05575FA}, // 014
{.a = 0x56438ABE8152, .b = 0x59A45912B311}, // 015
};
static MfClassicKeyPair mizip_mini_keys[] = {
{.a = 0xa0a1a2a3a4a5, .b = 0xb4c132439eef}, // 000
{.a = 0x000000000000, .b = 0x000000000000}, // 001
{.a = 0x000000000000, .b = 0x000000000000}, // 002
{.a = 0x000000000000, .b = 0x000000000000}, // 003
{.a = 0x000000000000, .b = 0x000000000000}, // 004
};
//KDF
void mizip_generate_key(uint8_t* uid, uint8_t keyA[5][KEY_LENGTH], uint8_t keyB[5][KEY_LENGTH]) {
// Static XOR table for key generation
static const uint8_t xor_table_keyA[4][6] = {
{0x09, 0x12, 0x5A, 0x25, 0x89, 0xE5},
{0xAB, 0x75, 0xC9, 0x37, 0x92, 0x2F},
{0xE2, 0x72, 0x41, 0xAF, 0x2C, 0x09},
{0x31, 0x7A, 0xB7, 0x2F, 0x44, 0x90}};
static const uint8_t xor_table_keyB[4][6] = {
{0xF1, 0x2C, 0x84, 0x53, 0xD8, 0x21},
{0x73, 0xE7, 0x99, 0xFE, 0x32, 0x41},
{0xAA, 0x4D, 0x13, 0x76, 0x56, 0xAE},
{0xB0, 0x13, 0x27, 0x27, 0x2D, 0xFD}};
// Permutation table for rearranging elements in uid
static const uint8_t xorOrderA[6] = {0, 1, 2, 3, 0, 1};
static const uint8_t xorOrderB[6] = {2, 3, 0, 1, 2, 3};
// Generate key based on uid and XOR table
for(uint8_t j = 1; j < 5; j++) {
for(uint8_t i = 0; i < 6; i++) {
keyA[j][i] = uid[xorOrderA[i]] ^ xor_table_keyA[j - 1][i];
keyB[j][i] = uid[xorOrderB[i]] ^ xor_table_keyB[j - 1][i];
}
}
}
static bool mizip_get_card_config(MizipCardConfig* config, MfClassicType type) {
bool success = true;
if(type == MfClassicType1k) {
config->verify_sector = 0;
config->keys = mizip_1k_keys;
} else if(type == MfClassicTypeMini) {
config->verify_sector = 0;
config->keys = mizip_mini_keys;
} else {
success = false;
}
return success;
}
static bool mizip_verify_type(Nfc* nfc, MfClassicType type) {
bool verified = false;
do {
MizipCardConfig cfg = {};
if(!mizip_get_card_config(&cfg, type)) break;
const uint8_t block_num = mf_classic_get_first_block_num_of_sector(cfg.verify_sector);
FURI_LOG_D(TAG, "Verifying sector %li", cfg.verify_sector);
MfClassicKey key = {0};
nfc_util_num2bytes(cfg.keys[cfg.verify_sector].b, COUNT_OF(key.data), key.data);
MfClassicAuthContext auth_context;
MfClassicError error =
mf_classic_poller_sync_auth(nfc, block_num, &key, MfClassicKeyTypeB, &auth_context);
if(error != MfClassicErrorNone) {
FURI_LOG_D(
TAG, "Failed to read block %u: %d, this is not a MiZIP card", block_num, error);
break;
}
FURI_LOG_D(TAG, "Found a MiZIP Card");
verified = true;
} while(false);
return verified;
}
static bool mizip_verify(Nfc* nfc) {
return mizip_verify_type(nfc, MfClassicType1k) || mizip_verify_type(nfc, MfClassicTypeMini);
}
static bool mizip_read(Nfc* nfc, NfcDevice* device) {
FURI_LOG_D(TAG, "Entering MiZIP KDF");
furi_assert(nfc);
furi_assert(device);
bool is_read = false;
MfClassicData* data = mf_classic_alloc();
nfc_device_copy_data(device, NfcProtocolMfClassic, data);
do {
MfClassicType type = MfClassicTypeMini;
MfClassicError error = mf_classic_poller_sync_detect_type(nfc, &type);
if(error != MfClassicErrorNone) break;
//temp fix but fix mf_classic_poller_sync_detect_type because view type mfclassic1k and not verify mfmini
data->type = MfClassicTypeMini;
MizipCardConfig cfg = {};
if(!mizip_get_card_config(&cfg, data->type)) break;
uint8_t uid[UID_LENGTH];
memcpy(uid, data->iso14443_3a_data->uid, UID_LENGTH);
uint8_t keyA[MIZIP_KEY_TO_GEN][KEY_LENGTH];
uint8_t keyB[MIZIP_KEY_TO_GEN][KEY_LENGTH];
mizip_generate_key(uid, keyA, keyB);
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
if(cfg.keys[i].a == 0x000000000000 && cfg.keys[i].b == 0x000000000000) {
cfg.keys[i].a = nfc_util_bytes2num(keyA[i], KEY_LENGTH);
cfg.keys[i].b = nfc_util_bytes2num(keyB[i], KEY_LENGTH);
}
}
MfClassicDeviceKeys keys = {};
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
nfc_util_num2bytes(cfg.keys[i].a, sizeof(MfClassicKey), keys.key_a[i].data);
FURI_BIT_SET(keys.key_a_mask, i);
nfc_util_num2bytes(cfg.keys[i].b, sizeof(MfClassicKey), keys.key_b[i].data);
FURI_BIT_SET(keys.key_b_mask, i);
}
error = mf_classic_poller_sync_read(nfc, &keys, data);
if(error != MfClassicErrorNone) {
FURI_LOG_W(TAG, "Failed to read data");
break;
}
nfc_device_set_data(device, NfcProtocolMfClassic, data);
is_read = mf_classic_is_card_read(data);
} while(false);
mf_classic_free(data);
return is_read;
}
static bool mizip_parse(const NfcDevice* device, FuriString* parsed_data) {
furi_assert(device);
furi_assert(parsed_data);
const MfClassicData* data = nfc_device_get_data(device, NfcProtocolMfClassic);
bool parsed = false;
do {
// Verify card type
MizipCardConfig cfg = {};
if(!mizip_get_card_config(&cfg, data->type)) break;
// Verify key
MfClassicSectorTrailer* sec_tr =
mf_classic_get_sector_trailer_by_sector(data, cfg.verify_sector);
uint64_t key = nfc_util_bytes2num(sec_tr->key_b.data, 6);
if(key != cfg.keys[cfg.verify_sector].b) return false;
//Get UID
uint8_t uid[UID_LENGTH];
memcpy(uid, data->iso14443_3a_data->uid, UID_LENGTH);
//Get credit
uint8_t credit_pointer = 0x08;
uint8_t previus_credit_pointer = 0x09;
if(data->block[10].data[0] == 0x55) {
credit_pointer = 0x09;
previus_credit_pointer = 0x08;
}
uint16_t balance = (data->block[credit_pointer].data[2] << 8) |
(data->block[credit_pointer].data[1]);
uint16_t previus_balance = (data->block[previus_credit_pointer].data[2] << 8) |
(data->block[previus_credit_pointer].data[1]);
//parse data
furi_string_cat_printf(parsed_data, "\e#MiZIP Card\n");
furi_string_cat_printf(parsed_data, "UID:");
for(size_t i = 0; i < UID_LENGTH; i++) {
furi_string_cat_printf(parsed_data, " %02X", uid[i]);
}
furi_string_cat_printf(
parsed_data, "\nCurrent Credit: %d.%02d E \n", balance / 100, balance % 100);
furi_string_cat_printf(
parsed_data,
"Previus Credit: %d.%02d E \n",
previus_balance / 100,
previus_balance % 100);
parsed = true;
} while(false);
return parsed;
}
/* Actual implementation of app<>plugin interface */
static const NfcSupportedCardsPlugin mizip_plugin = {
.protocol = NfcProtocolMfClassic,
.verify = mizip_verify,
.read = mizip_read,
.parse = mizip_parse,
};
/* Plugin descriptor to comply with basic plugin specification */
static const FlipperAppPluginDescriptor mizip_plugin_descriptor = {
.appid = NFC_SUPPORTED_CARD_PLUGIN_APP_ID,
.ep_api_version = NFC_SUPPORTED_CARD_PLUGIN_API_VERSION,
.entry_point = &mizip_plugin,
};
/* Plugin entry point - must return a pointer to const descriptor */
const FlipperAppPluginDescriptor* mizip_plugin_ep() {
return &mizip_plugin_descriptor;
}