[FL-572][FL-577] Irda receive feature (#282)

* fix "state not acquired error"
* add InterruptTypeComparatorTrigger to interrupt mgr, use interrupt mgr in irda app
* separate init irda timer
* capture events buffer by app
* irda common decoder
* irda nec decoder realization
* finished work with decoder
* fix app path
* fix widget remove on exit
* nec receive, store and send
* init some packets
This commit is contained in:
DrZlo13 2021-01-08 02:28:35 +10:00 committed by GitHub
parent c70ed2f349
commit d65e9b04ce
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 492 additions and 146 deletions

View file

@ -204,6 +204,7 @@ BUILD_IRDA ?= 0
ifeq ($(BUILD_IRDA), 1)
CFLAGS += -DBUILD_IRDA
C_SOURCES += $(wildcard $(APP_DIR)/irda/*.c)
C_SOURCES += $(wildcard $(APP_DIR)/irda/*/*.c)
APP_INPUT = 1
APP_GUI = 1
endif

View file

@ -0,0 +1,146 @@
#include "irda-decoder-nec.h"
#include "string.h"
const uint32_t PREAMBULA_HIGH_MIN = 9000 - 900;
const uint32_t PREAMBULA_HIGH_MAX = 9000 + 900;
const uint32_t PREAMBULA_LOW_MIN = 4500 - 450;
const uint32_t PREAMBULA_LOW_MAX = 4500 + 450;
const uint32_t PREAMBULA_RETRY_LOW_MIN = 2500 - 350;
const uint32_t PREAMBULA_RETRY_LOW_MAX = 2500 + 250;
const uint32_t BIT_HIGH_MIN = 560 - 100;
const uint32_t BIT_HIGH_MAX = 560 + 100;
const uint32_t BIT_LOW_ONE_MIN = 1690 - 200;
const uint32_t BIT_LOW_ONE_MAX = 1690 + 200;
const uint32_t BIT_LOW_ZERO_MIN = 560 - 100;
const uint32_t BIT_LOW_ZERO_MAX = 560 + 100;
#define SET_STATE(_state) \
{ decoder->state = _state; }
#define TIME_FIT(_prefix) ((time > _prefix##_MIN) && (time < _prefix##_MAX))
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
bool save_decoder_nec_data(IrDANecDecoder* decoder, IrDADecoderOutputData* out) {
bool result = false;
if((decoder->data.simple.cmd + decoder->data.simple.cmd_inverse) == 0xFF) {
if(out->data_length < sizeof(IrDANecDataType)) {
out->flags |= IRDA_TOO_SHORT_BUFFER;
}
memcpy(out->data, &decoder->data.data, MIN(sizeof(IrDANecDataType), out->data_length));
result = true;
} else {
reset_decoder_nec(decoder);
}
return result;
}
bool process_decoder_nec(
IrDANecDecoder* decoder,
bool polarity,
uint32_t time,
IrDADecoderOutputData* out) {
bool error = true;
bool result = false;
switch(decoder->state) {
case(WAIT_PREAMBULA_HIGH):
if(polarity) {
if(TIME_FIT(PREAMBULA_HIGH)) {
SET_STATE(WAIT_PREAMBULA_LOW);
}
}
// any values before preambula start is correct
error = false;
break;
case(WAIT_PREAMBULA_LOW):
if(!polarity) {
if(TIME_FIT(PREAMBULA_LOW)) {
// new data, reset storage
reset_decoder_nec(decoder);
SET_STATE(WAIT_BIT_HIGH);
error = false;
} else if(TIME_FIT(PREAMBULA_RETRY_LOW)) {
// wait for data repeat command
SET_STATE(WAIT_RETRY_HIGH);
error = false;
}
}
break;
case(WAIT_RETRY_HIGH):
if(polarity) {
if(TIME_FIT(BIT_HIGH)) {
SET_STATE(WAIT_PREAMBULA_HIGH);
// repeat event
result = save_decoder_nec_data(decoder, out);
out->flags |= IRDA_REPEAT;
error = false;
}
}
break;
case(WAIT_BIT_HIGH):
if(polarity) {
if(TIME_FIT(BIT_HIGH)) {
SET_STATE(WAIT_BIT_LOW);
error = false;
}
}
break;
case(WAIT_BIT_STOP_HIGH):
if(polarity) {
if(TIME_FIT(BIT_HIGH)) {
SET_STATE(WAIT_PREAMBULA_HIGH);
// message end event
result = save_decoder_nec_data(decoder, out);
error = false;
}
}
break;
case(WAIT_BIT_LOW):
if(!polarity) {
int8_t bit = -1;
if(TIME_FIT(BIT_LOW_ZERO)) {
SET_STATE(WAIT_BIT_HIGH);
bit = 0;
error = false;
} else if(TIME_FIT(BIT_LOW_ONE)) {
SET_STATE(WAIT_BIT_HIGH);
bit = 1;
error = false;
}
if(bit != -1) {
decoder->data.data |= (bit << decoder->current_data_index);
decoder->current_data_index++;
if(decoder->current_data_index > 31) {
decoder->current_data_index = 0;
SET_STATE(WAIT_BIT_STOP_HIGH);
}
}
}
break;
}
if(error) reset_decoder_nec(decoder);
return result;
}
void reset_decoder_nec(IrDANecDecoder* decoder) {
decoder->state = WAIT_PREAMBULA_HIGH;
decoder->data.data = 0;
decoder->current_data_index = 0;
}

View file

@ -0,0 +1,39 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "irda-decoder-types.h"
typedef enum {
WAIT_PREAMBULA_HIGH,
WAIT_PREAMBULA_LOW,
WAIT_RETRY_HIGH,
WAIT_BIT_HIGH,
WAIT_BIT_LOW,
WAIT_BIT_STOP_HIGH,
} IrDANecDecoderState;
typedef struct {
uint8_t addr2;
uint8_t addr1;
uint8_t cmd_inverse;
uint8_t cmd;
} IrDANecData;
typedef uint32_t IrDANecDataType;
typedef struct {
union {
IrDANecData simple;
IrDANecDataType data;
} data;
uint8_t current_data_index;
IrDANecDecoderState state;
} IrDANecDecoder;
bool process_decoder_nec(
IrDANecDecoder* decoder,
bool polarity,
uint32_t time,
IrDADecoderOutputData* out);
void reset_decoder_nec(IrDANecDecoder* decoder);

View file

@ -0,0 +1,12 @@
#pragma once
#include <stdint.h>
typedef enum { IRDA_UNKNOWN, IRDA_NEC, IRDA_SAMSUNG } IrDAProtocolType;
typedef enum { IRDA_REPEAT = (1 << 0), IRDA_TOO_SHORT_BUFFER = (1 << 1) } IrDAProtocolFlags;
typedef struct {
IrDAProtocolType protocol;
uint8_t flags;
uint8_t* data; /** < ponter to output data, filled by app */
uint32_t data_length; /** < output data length, filled by app */
} IrDADecoderOutputData;

View file

@ -0,0 +1,41 @@
#include "irda-decoder.h"
IrDADecoder* alloc_decoder(void) {
IrDADecoder* decoder = malloc(sizeof(IrDADecoder));
// init decoders
reset_decoder_nec(&decoder->nec);
return decoder;
}
void free_decoder(IrDADecoder* decoder) {
free(decoder);
}
bool process_decoder(
IrDADecoder* decoder,
bool start_polarity,
uint32_t* timings,
uint32_t timings_length,
IrDADecoderOutputData* out) {
bool result = false;
// zero result
memset(out->data, 0, out->data_length);
out->protocol = IRDA_UNKNOWN;
out->flags = 0;
// process data
for(uint32_t timings_index = 0; timings_index < timings_length; timings_index++) {
if(process_decoder_nec(&decoder->nec, start_polarity, timings[timings_index], out)) {
out->protocol = IRDA_NEC;
result = true;
break;
}
start_polarity = !start_polarity;
}
return result;
}

View file

@ -0,0 +1,18 @@
#pragma once
#include "flipper.h"
#include "flipper_v2.h"
#include "irda-decoder-nec.h"
#include "irda-decoder-types.h"
typedef struct {
IrDANecDecoder nec;
} IrDADecoder;
IrDADecoder* alloc_decoder(void);
void free_decoder(IrDADecoder* decoder);
bool process_decoder(
IrDADecoder* decoder,
bool start_polarity,
uint32_t* timings,
uint32_t timings_length,
IrDADecoderOutputData* out);

View file

@ -3,6 +3,7 @@
#include "irda_nec.h"
#include "irda_samsung.h"
#include "irda_protocols.h"
#include "irda-decoder/irda-decoder.h"
typedef enum {
EventTypeTick,
@ -10,20 +11,34 @@ typedef enum {
EventTypeRX,
} EventType;
typedef struct {
bool edge;
uint32_t lasted;
} RXValue;
typedef struct {
union {
InputEvent input;
bool rx_edge;
RXValue rx;
} value;
EventType type;
} AppEvent;
typedef struct {
IrDAProtocolType protocol;
uint32_t address;
uint32_t command;
} IrDAPacket;
#define IRDA_PACKET_COUNT 8
typedef struct {
uint8_t mode_id;
uint16_t carrier_freq;
uint8_t carrier_duty_cycle_id;
uint8_t nec_packet_id;
uint8_t samsung_packet_id;
uint8_t packet_id;
IrDAPacket packets[IRDA_PACKET_COUNT];
} State;
typedef void (*ModeInput)(AppEvent*, State*);
@ -31,47 +46,17 @@ typedef void (*ModeRender)(Canvas*, State*);
void input_carrier(AppEvent* event, State* state);
void render_carrier(Canvas* canvas, State* state);
void input_nec(AppEvent* event, State* state);
void render_nec(Canvas* canvas, State* state);
void render_carrier(Canvas* canvas, State* state);
void input_samsung(AppEvent* event, State* state);
void render_samsung(Canvas* canvas, State* state);
void input_packet(AppEvent* event, State* state);
void render_packet(Canvas* canvas, State* state);
typedef struct {
ModeRender render;
ModeInput input;
} Mode;
typedef struct {
uint8_t addr;
uint8_t data;
} NecPacket;
typedef struct {
uint16_t addr;
uint16_t data;
} SamsungPacket;
const Mode modes[] = {
{.render = render_carrier, .input = input_carrier},
{.render = render_nec, .input = input_nec},
{.render = render_samsung, .input = input_samsung},
};
const NecPacket nec_packets[] = {
{.addr = 0xFF, .data = 0x11},
{.addr = 0xF7, .data = 0x59},
{.addr = 0xFF, .data = 0x01},
{.addr = 0xFF, .data = 0x10},
{.addr = 0xFF, .data = 0x15},
{.addr = 0xFF, .data = 0x25},
{.addr = 0xFF, .data = 0xF0},
};
const SamsungPacket samsung_packets[] = {
{.addr = 0xE0E, .data = 0xF30C},
{.addr = 0xE0E, .data = 0xF40D},
{.addr = 0xE0E, .data = 0xF50E},
{.render = render_packet, .input = input_packet},
};
const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
@ -90,36 +75,6 @@ void render_carrier(Canvas* canvas, State* state) {
}
}
void render_nec(Canvas* canvas, State* state) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str(canvas, 2, 25, "< nec mode >");
canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
{
char buf[24];
sprintf(
buf,
"packet: %02X %02X",
nec_packets[state->nec_packet_id].addr,
nec_packets[state->nec_packet_id].data);
canvas_draw_str(canvas, 2, 50, buf);
}
}
void render_samsung(Canvas* canvas, State* state) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str(canvas, 2, 25, "< samsung32 mode");
canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
{
char buf[24];
sprintf(
buf,
"packet: %02X %02X",
samsung_packets[state->samsung_packet_id].addr,
samsung_packets[state->samsung_packet_id].data);
canvas_draw_str(canvas, 2, 50, buf);
}
}
void input_carrier(AppEvent* event, State* state) {
if(event->value.input.input == InputOk) {
if(event->value.input.state) {
@ -147,76 +102,86 @@ void input_carrier(AppEvent* event, State* state) {
}
}
void input_nec(AppEvent* event, State* state) {
uint8_t packets_count = sizeof(nec_packets) / sizeof(nec_packets[0]);
void render_packet(Canvas* canvas, State* state) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str(canvas, 2, 25, "< packet mode");
canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
{
const char* protocol;
if(event->value.input.input == InputOk) {
if(event->value.input.state) {
vTaskSuspendAll();
ir_nec_send(
nec_packets[state->nec_packet_id].addr, nec_packets[state->nec_packet_id].data);
xTaskResumeAll();
switch(state->packets[state->packet_id].protocol) {
case IRDA_NEC:
protocol = "NEC";
break;
case IRDA_SAMSUNG:
protocol = "SAMS";
break;
case IRDA_UNKNOWN:
default:
protocol = "UNK";
break;
}
}
if(event->value.input.state && event->value.input.input == InputUp) {
if(state->nec_packet_id < (packets_count - 1)) {
state->nec_packet_id++;
} else {
state->nec_packet_id = 0;
}
}
if(event->value.input.state && event->value.input.input == InputDown) {
if(state->nec_packet_id > 0) {
state->nec_packet_id--;
} else {
state->nec_packet_id = packets_count - 1;
}
char buf[24];
sprintf(
buf,
"P[%d]: %s 0x%X 0x%X",
state->packet_id,
protocol,
state->packets[state->packet_id].address,
state->packets[state->packet_id].command);
canvas_draw_str(canvas, 2, 50, buf);
}
}
void input_samsung(AppEvent* event, State* state) {
uint8_t packets_count = sizeof(samsung_packets) / sizeof(samsung_packets[0]);
void input_packet(AppEvent* event, State* state) {
if(event->value.input.input == InputOk) {
if(event->value.input.state) {
vTaskSuspendAll();
ir_samsung_send(
samsung_packets[state->samsung_packet_id].addr,
samsung_packets[state->samsung_packet_id].data);
switch(state->packets[state->packet_id].protocol) {
case IRDA_NEC:
ir_nec_send(
state->packets[state->packet_id].address,
state->packets[state->packet_id].command);
break;
case IRDA_SAMSUNG:
ir_samsung_send(
state->packets[state->packet_id].address,
state->packets[state->packet_id].command);
break;
default:
break;
}
xTaskResumeAll();
}
}
if(event->value.input.state && event->value.input.input == InputUp) {
if(state->samsung_packet_id < (packets_count - 1)) {
state->samsung_packet_id++;
} else {
state->samsung_packet_id = 0;
}
if(event->value.input.state && event->value.input.input == InputDown) {
if(state->packet_id < (IRDA_PACKET_COUNT - 1)) {
state->packet_id++;
};
}
if(event->value.input.state && event->value.input.input == InputDown) {
if(state->samsung_packet_id > 0) {
state->samsung_packet_id--;
} else {
state->samsung_packet_id = packets_count - 1;
}
if(event->value.input.state && event->value.input.input == InputUp) {
if(state->packet_id > 0) {
state->packet_id--;
};
}
}
static void render_callback(Canvas* canvas, void* ctx) {
State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
canvas_clear(canvas);
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str(canvas, 2, 12, "irda test");
if(state != NULL) {
canvas_clear(canvas);
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str(canvas, 2, 12, "irda test");
modes[state->mode_id].render(canvas, state);
modes[state->mode_id].render(canvas, state);
release_mutex((ValueMutex*)ctx, state);
release_mutex((ValueMutex*)ctx, state);
}
}
static void input_callback(InputEvent* input_event, void* ctx) {
@ -228,11 +193,49 @@ static void input_callback(InputEvent* input_event, void* ctx) {
osMessageQueuePut(event_queue, &event, 0, 0);
}
osMessageQueueId_t irda_event_queue;
void irda_timer_capture_callback(void* htim, void* comp_ctx) {
TIM_HandleTypeDef* _htim = (TIM_HandleTypeDef*)htim;
osMessageQueueId_t event_queue = (osMessageQueueId_t)comp_ctx;
if(_htim->Instance == TIM2) {
AppEvent event;
event.type = EventTypeRX;
uint32_t channel;
if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
// falling event
event.value.rx.edge = false;
channel = TIM_CHANNEL_1;
} else if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) {
// rising event
event.value.rx.edge = true;
channel = TIM_CHANNEL_2;
} else {
// not our event
return;
}
event.value.rx.lasted = HAL_TIM_ReadCapturedValue(_htim, channel);
__HAL_TIM_SET_COUNTER(_htim, 0);
osMessageQueuePut(event_queue, &event, 0, 0);
}
}
void init_packet(
State* state,
uint8_t index,
IrDAProtocolType protocol,
uint32_t address,
uint32_t command) {
if(index >= IRDA_PACKET_COUNT) return;
state->packets[index].protocol = protocol;
state->packets[index].address = address;
state->packets[index].command = command;
}
void irda(void* p) {
osMessageQueueId_t event_queue = osMessageQueueNew(32, sizeof(AppEvent), NULL);
irda_event_queue = event_queue;
State _state;
uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
@ -241,8 +244,20 @@ void irda(void* p) {
_state.carrier_duty_cycle_id = duty_cycles_count - 2;
_state.carrier_freq = 36000;
_state.mode_id = 0;
_state.nec_packet_id = 0;
_state.samsung_packet_id = 0;
_state.packet_id = 0;
for(uint8_t i = 0; i < IRDA_PACKET_COUNT; i++) {
init_packet(&_state, i, IRDA_UNKNOWN, 0, 0);
}
init_packet(&_state, 0, IRDA_NEC, 0xFF00, 0x11);
init_packet(&_state, 1, IRDA_NEC, 0xF708, 0x59);
init_packet(&_state, 2, IRDA_NEC, 0xFF00, 0x10);
init_packet(&_state, 3, IRDA_NEC, 0xFF00, 0x15);
init_packet(&_state, 4, IRDA_NEC, 0xFF00, 0x25);
init_packet(&_state, 5, IRDA_SAMSUNG, 0xE0E, 0xF30C);
init_packet(&_state, 6, IRDA_SAMSUNG, 0xE0E, 0xF40D);
init_packet(&_state, 7, IRDA_SAMSUNG, 0xE0E, 0xF50E);
ValueMutex state_mutex;
if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
@ -265,26 +280,38 @@ void irda(void* p) {
// Red LED
// TODO open record
const GpioPin* led_record = &led_gpio[0];
const GpioPin* red_led_record = &led_gpio[0];
const GpioPin* green_led_record = &led_gpio[1];
// configure pin
gpio_init(led_record, GpioModeOutputOpenDrain);
gpio_init(red_led_record, GpioModeOutputOpenDrain);
gpio_init(green_led_record, GpioModeOutputOpenDrain);
// setup irda rx timer
tim_irda_rx_init();
// add timer capture interrupt
api_interrupt_add(irda_timer_capture_callback, InterruptTypeTimerCapture, event_queue);
IrDADecoder* decoder = alloc_decoder();
AppEvent event;
while(1) {
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 500);
State* state = (State*)acquire_mutex_block(&state_mutex);
if(event_status == osOK) {
if(event.type == EventTypeKey) {
// press events
if(event.value.input.state && event.value.input.input == InputBack) {
printf("[irda] bye!\n");
// TODO remove all widgets create by app
// remove all widgets create by app
widget_enabled_set(widget, false);
gui_remove_widget(gui, widget);
// free decoder
free_decoder(decoder);
// exit
furiac_exit(NULL);
}
@ -302,7 +329,44 @@ void irda(void* p) {
modes[state->mode_id].input(&event, state);
} else if(event.type == EventTypeRX) {
gpio_write(led_record, event.value.rx_edge);
IrDADecoderOutputData out;
const uint8_t out_data_length = 4;
uint8_t out_data[out_data_length];
out.data_length = out_data_length;
out.data = out_data;
gpio_write(red_led_record, event.value.rx.edge);
bool decoded =
process_decoder(decoder, event.value.rx.edge, &event.value.rx.lasted, 1, &out);
if(decoded) {
// save only if we in packet mode
if(state->mode_id == 1) {
if(out.protocol == IRDA_NEC) {
printf("P=NEC ");
printf("A=0x%02X%02X ", out_data[1], out_data[0]);
printf("C=0x%02X ", out_data[2]);
if(out.flags & IRDA_REPEAT) {
printf("R");
}
printf("\r\n");
state->packets[state->packet_id].protocol = IRDA_NEC;
state->packets[state->packet_id].address = out_data[1] << 8 |
out_data[0];
state->packets[state->packet_id].command = out_data[2];
} else {
printf("Unknown protocol\r\n");
}
}
// blink anyway
gpio_write(green_led_record, false);
delay(10);
gpio_write(green_led_record, true);
}
}
} else {
@ -312,23 +376,4 @@ void irda(void* p) {
release_mutex(&state_mutex, state);
widget_update(widget);
}
}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim) {
if(htim->Instance == TIM2) {
if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
// falling event
AppEvent event;
event.type = EventTypeRX;
event.value.rx_edge = false;
osMessageQueuePut(irda_event_queue, &event, 0, 0);
} else if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) {
// rising event
//uint32_t period_in_us = HAL_TIM_ReadCapturedValue();
AppEvent event;
event.type = EventTypeRX;
event.value.rx_edge = true;
osMessageQueuePut(irda_event_queue, &event, 0, 0);
}
}
}

View file

@ -29,14 +29,14 @@ void ir_nec_send_byte(uint8_t data) {
}
}
void ir_nec_send(uint8_t addr, uint8_t data) {
void ir_nec_send(uint16_t addr, uint8_t data) {
// nec protocol is:
// preambula + addr + inverse addr + command + inverse command + bit pulse
//
// oddly enough, my analyzer (https://github.com/ukw100/IRMP) displays the reverse command
// and I dont know if this is my fault or a feature of the analyzer
// TODO: check the dictionary and check with a known remote
uint8_t nec_packet[4] = {addr, ~(uint8_t)addr, ~(uint8_t)data, data};
uint8_t nec_packet[4] = {~(uint8_t)addr, ~(uint8_t)(addr >> 8), ~(uint8_t)data, data};
ir_nec_preambula();
ir_nec_send_byte(nec_packet[0]);
ir_nec_send_byte(nec_packet[1]);

View file

@ -1,4 +1,4 @@
#pragma once
#include "flipper.h"
void ir_nec_send(uint8_t addr, uint8_t data);
void ir_nec_send(uint16_t addr, uint8_t data);

View file

@ -4,7 +4,8 @@
typedef void (*InterruptCallback)(void*, void*);
typedef enum {
InterruptTypeComparatorTrigger = 0,
InterruptTypeComparatorTrigger,
InterruptTypeTimerCapture,
} InterruptType;
typedef struct {

View file

@ -1,7 +1,46 @@
#include "cmsis_os.h"
#include "api-hal-tim.h"
/* setup TIM2 CH1 and CH2 to capture rising and falling events */
void tim_irda_rx_init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
htim2.Instance = TIM2;
htim2.Init.Prescaler = 64 - 1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if(HAL_TIM_Base_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if(HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if(HAL_TIM_IC_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if(HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if(HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK) {
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if(HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
HAL_NVIC_SetPriority(TIM2_IRQn, 5, 0);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);

View file

@ -3,4 +3,8 @@
/* interrupts */
void HAL_COMP_TriggerCallback(COMP_HandleTypeDef* hcomp) {
api_interrupt_call(InterruptTypeComparatorTrigger, hcomp);
}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerCapture, htim);
}