unleashed-firmware/lib/infrared/encoder_decoder/rc6/infrared_decoder_rc6.c

116 lines
3.8 KiB
C
Raw Normal View History

#include "infrared.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <furi.h>
#include "../infrared_i.h"
#include "../infrared_protocol_defs_i.h"
typedef struct {
InfraredCommonDecoder* common_decoder;
bool toggle;
} InfraredRc6Decoder;
InfraredMessage* infrared_decoder_rc6_check_ready(void* ctx) {
InfraredRc6Decoder* decoder_rc6 = ctx;
return infrared_common_decoder_check_ready(decoder_rc6->common_decoder);
}
bool infrared_decoder_rc6_interpret(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint32_t* data = (void*)&decoder->data[0];
// MSB first
uint8_t address = reverse((uint8_t)(*data >> 5));
uint8_t command = reverse((uint8_t)(*data >> 13));
bool start_bit = *data & 0x01;
bool toggle = !!(*data & 0x10);
uint8_t mode = (*data >> 1) & 0x7;
if((start_bit == 1) && (mode == 0)) {
InfraredMessage* message = &decoder->message;
InfraredRc6Decoder* rc6_decoder = decoder->context;
bool* prev_toggle = &rc6_decoder->toggle;
if((message->address == address) && (message->command == command) &&
(message->protocol == InfraredProtocolRC6)) {
message->repeat = (toggle == *prev_toggle);
} else {
message->repeat = false;
}
*prev_toggle = toggle;
message->command = command;
message->address = address;
message->protocol = InfraredProtocolRC6;
result = true;
}
return result;
}
/*
* RC6 Uses manchester encoding, but it has twice longer
* 4-th bit (toggle bit) time quant, so we need to decode
* it separately and than pass decoding for other bits to
* common manchester decode function.
*/
InfraredStatus infrared_decoder_rc6_decode_manchester(
InfraredCommonDecoder* decoder,
bool level,
uint32_t timing) {
// 4th bit lasts 2x times more
InfraredStatus status = InfraredStatusError;
uint32_t bit = decoder->protocol->timings.bit1_mark;
uint32_t tolerance = decoder->protocol->timings.bit_tolerance;
bool single_timing = MATCH_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_TIMING(timing, 2 * bit, tolerance);
bool triple_timing = MATCH_TIMING(timing, 3 * bit, tolerance);
if(decoder->databit_cnt == 4) {
furi_assert(decoder->switch_detect == true);
if(single_timing ^ triple_timing) {
++decoder->databit_cnt;
decoder->data[0] |= (single_timing ? !level : level) << 4;
status = InfraredStatusOk;
}
} else if(decoder->databit_cnt == 5) {
if(single_timing || triple_timing) {
if(triple_timing) timing = bit;
decoder->switch_detect = false;
status = infrared_common_decode_manchester(decoder, level, timing);
} else if(double_timing) {
status = InfraredStatusOk;
}
} else {
status = infrared_common_decode_manchester(decoder, level, timing);
}
return status;
}
void* infrared_decoder_rc6_alloc(void) {
InfraredRc6Decoder* decoder = malloc(sizeof(InfraredRc6Decoder));
decoder->toggle = false;
decoder->common_decoder = infrared_common_decoder_alloc(&protocol_rc6);
decoder->common_decoder->context = decoder;
return decoder;
}
InfraredMessage* infrared_decoder_rc6_decode(void* decoder, bool level, uint32_t duration) {
InfraredRc6Decoder* decoder_rc6 = decoder;
return infrared_common_decode(decoder_rc6->common_decoder, level, duration);
}
void infrared_decoder_rc6_free(void* decoder) {
InfraredRc6Decoder* decoder_rc6 = decoder;
infrared_common_decoder_free(decoder_rc6->common_decoder);
free(decoder_rc6);
}
void infrared_decoder_rc6_reset(void* decoder) {
InfraredRc6Decoder* decoder_rc6 = decoder;
infrared_common_decoder_reset(decoder_rc6->common_decoder);
}