unleashed-firmware/lib/subghz/protocols/princeton_for_testing.c

289 lines
9.3 KiB
C
Raw Normal View History

#include "princeton_for_testing.h"
#include "furi_hal.h"
#include "../blocks/math.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define SUBGHZ_PT_SHORT 300
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
#define SUBGHZ_PT_COUNT_KEY_433 9
#define SUBGHZ_PT_TIMEOUT_433 900
#define SUBGHZ_PT_COUNT_KEY_868 9
#define SUBGHZ_PT_TIMEOUT_868 14000
#define TAG "SubGhzProtocolPrinceton"
struct SubGhzEncoderPrinceton {
uint32_t key;
uint16_t te;
size_t repeat;
size_t front;
size_t count_key;
size_t count_key_package;
uint32_t time_high;
uint32_t time_low;
uint32_t timeout;
uint32_t time_stop;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
SubGhzEncoderPrinceton* subghz_encoder_princeton_for_testing_alloc() {
SubGhzEncoderPrinceton* instance = malloc(sizeof(SubGhzEncoderPrinceton));
return instance;
}
void subghz_encoder_princeton_for_testing_free(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_encoder_princeton_for_testing_stop(
SubGhzEncoderPrinceton* instance,
uint32_t time_stop) {
instance->time_stop = time_stop;
}
void subghz_encoder_princeton_for_testing_set(
SubGhzEncoderPrinceton* instance,
uint32_t key,
size_t repeat,
uint32_t frequency) {
furi_assert(instance);
instance->te = SUBGHZ_PT_SHORT;
instance->key = key;
instance->repeat = repeat + 1;
instance->front = 48;
instance->time_high = 0;
instance->time_low = 0;
if(frequency < 700000000) {
instance->count_key_package = SUBGHZ_PT_COUNT_KEY_433;
instance->timeout = SUBGHZ_PT_TIMEOUT_433;
} else {
instance->count_key_package = SUBGHZ_PT_COUNT_KEY_868;
instance->timeout = SUBGHZ_PT_TIMEOUT_868;
}
instance->count_key = instance->count_key_package + 3;
if((furi_get_tick() - instance->time_stop) < instance->timeout) {
instance->time_stop = (instance->timeout - (furi_get_tick() - instance->time_stop)) * 1000;
} else {
instance->time_stop = 0;
}
}
size_t subghz_encoder_princeton_for_testing_get_repeat_left(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
return instance->repeat;
}
void subghz_encoder_princeton_for_testing_print_log(void* context) {
SubGhzEncoderPrinceton* instance = context;
float duty_cycle =
((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
FURI_LOG_I(
TAG "Encoder",
"Radio tx_time=%luus ON=%luus, OFF=%luus, DutyCycle=%lu,%lu%%",
instance->time_high + instance->time_low,
instance->time_high,
instance->time_low,
(uint32_t)duty_cycle,
(uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100UL));
}
LevelDuration subghz_encoder_princeton_for_testing_yield(void* context) {
SubGhzEncoderPrinceton* instance = context;
if(instance->repeat == 0) {
subghz_encoder_princeton_for_testing_print_log(instance);
return level_duration_reset();
}
size_t bit = instance->front / 2;
bool level = !(instance->front % 2);
LevelDuration ret;
if(bit < 24) {
uint8_t byte = bit / 8;
uint8_t bit_in_byte = bit % 8;
bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
if(value) {
ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
if(level)
instance->time_high += instance->te * 3;
else
instance->time_low += instance->te;
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 3);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 3;
}
} else {
if(instance->time_stop) {
ret = level_duration_make(level, level ? instance->te : instance->time_stop);
if(level)
instance->time_high += instance->te;
else {
instance->time_low += instance->time_stop;
instance->time_stop = 0;
instance->front = 47;
}
} else {
if(--instance->count_key != 0) {
ret = level_duration_make(level, level ? instance->te : instance->te * 30);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 30;
} else {
instance->count_key = instance->count_key_package + 2;
instance->front = 48;
ret = level_duration_make(level, level ? instance->te : instance->timeout * 1000);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->timeout * 1000;
}
}
}
instance->front++;
if(instance->front == 50) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
struct SubGhzDecoderPrinceton {
const char* name;
uint16_t te_long;
uint16_t te_short;
uint16_t te_delta;
uint8_t code_count_bit;
uint8_t code_last_count_bit;
uint64_t code_found;
uint64_t code_last_found;
uint8_t code_min_count_bit_for_found;
uint8_t btn;
uint32_t te_last;
uint32_t serial;
uint32_t parser_step;
uint16_t cnt;
uint32_t te;
SubGhzDecoderPrincetonCallback callback;
void* context;
};
SubGhzDecoderPrinceton* subghz_decoder_princeton_for_testing_alloc(void) {
SubGhzDecoderPrinceton* instance = malloc(sizeof(SubGhzDecoderPrinceton));
instance->te = SUBGHZ_PT_SHORT;
instance->name = "Princeton";
instance->code_min_count_bit_for_found = 24;
instance->te_short = 400;
instance->te_long = 1200;
instance->te_delta = 250;
return instance;
}
void subghz_decoder_princeton_for_testing_free(SubGhzDecoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_decoder_princeton_for_testing_set_callback(
SubGhzDecoderPrinceton* instance,
SubGhzDecoderPrincetonCallback callback,
void* context) {
instance->callback = callback;
instance->context = context;
}
void subghz_decoder_princeton_for_testing_reset(SubGhzDecoderPrinceton* instance) {
instance->parser_step = PrincetonDecoderStepReset;
}
static void
subghz_decoder_princeton_for_testing_add_bit(SubGhzDecoderPrinceton* instance, uint8_t bit) {
instance->code_found = instance->code_found << 1 | bit;
instance->code_count_bit++;
}
void subghz_decoder_princeton_for_testing_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration) {
switch(instance->parser_step) {
case PrincetonDecoderStepReset:
if((!level) &&
(DURATION_DIFF(duration, instance->te_short * 36) < instance->te_delta * 36)) {
//Found Preambula
instance->parser_step = PrincetonDecoderStepSaveDuration;
instance->code_found = 0;
instance->code_count_bit = 0;
instance->te = 0;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->te_last = duration;
instance->te += duration;
instance->parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)instance->te_short * 10 + instance->te_delta)) {
instance->parser_step = PrincetonDecoderStepSaveDuration;
if(instance->code_count_bit == instance->code_min_count_bit_for_found) {
instance->te /= (instance->code_count_bit * 4 + 1);
instance->code_last_found = instance->code_found;
instance->code_last_count_bit = instance->code_count_bit;
instance->serial = instance->code_found >> 4;
instance->btn = (uint8_t)instance->code_found & 0x00000F;
if(instance->callback) instance->callback(instance, instance->context);
}
instance->code_found = 0;
instance->code_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->te_last, instance->te_short) < instance->te_delta) &&
(DURATION_DIFF(duration, instance->te_long) < instance->te_delta * 3)) {
subghz_decoder_princeton_for_testing_add_bit(instance, 0);
instance->parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->te_last, instance->te_long) < instance->te_delta * 3) &&
(DURATION_DIFF(duration, instance->te_short) < instance->te_delta)) {
subghz_decoder_princeton_for_testing_add_bit(instance, 1);
instance->parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->parser_step = PrincetonDecoderStepReset;
}
} else {
instance->parser_step = PrincetonDecoderStepReset;
}
break;
}
}