unleashed-firmware/applications/plugins/weather_station/protocols/infactory.c

287 lines
12 KiB
C
Raw Normal View History

#include "infactory.h"
#define TAG "WSProtocolInfactory"
/*
* Help
* https://github.com/merbanan/rtl_433/blob/master/src/devices/infactory.c
*
* Analysis using Genuino (see http://gitlab.com/hp-uno, e.g. uno_log_433):
* Observed On-Off-Key (OOK) data pattern:
* preamble syncPrefix data...(40 bit) syncPostfix
* HHLL HHLL HHLL HHLL HLLLLLLLLLLLLLLLL (HLLLL HLLLLLLLL HLLLL HLLLLLLLL ....) HLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
* Breakdown:
* - four preamble pairs '1'/'0' each with a length of ca. 1000us
* - syncPre, syncPost, data0, data1 have a '1' start pulse of ca. 500us
* - syncPre pulse before dataPtr has a '0' pulse length of ca. 8000us
* - data0 (0-bits) have then a '0' pulse length of ca. 2000us
* - data1 (1-bits) have then a '0' pulse length of ca. 4000us
* - syncPost after dataPtr has a '0' pulse length of ca. 16000us
* This analysis is the reason for the new r_device definitions below.
* NB: pulse_slicer_ppm does not use .gap_limit if .tolerance is set.
*
* Outdoor sensor, transmits temperature and humidity data
* - inFactory NC-3982-913/NX-5817-902, Pearl (for FWS-686 station)
* - nor-tec 73383 (weather station + sensor), Schou Company AS, Denmark
* - DAY 73365 (weather station + sensor), Schou Company AS, Denmark
* Known brand names: inFactory, nor-tec, GreenBlue, DAY. Manufacturer in China.
* Transmissions includes an id. Every 60 seconds the sensor transmits 6 packets:
* 0000 1111 | 0011 0000 | 0101 1100 | 1110 0111 | 0110 0001
* iiii iiii | cccc ub?? | tttt tttt | tttt hhhh | hhhh ??nn
* - i: identification; changes on battery switch
* - c: CRC-4; CCITT checksum, see below for computation specifics
* - u: unknown; (sometimes set at power-on, but not always)
* - b: battery low; flag to indicate low battery voltage
* - h: Humidity; BCD-encoded, each nibble is one digit, 'A0' means 100%rH
* - t: Temperature; in °F as binary number with one decimal place + 90 °F offset
* - n: Channel; Channel number 1 - 3
*
*/
static const SubGhzBlockConst ws_protocol_infactory_const = {
.te_short = 500,
.te_long = 2000,
.te_delta = 150,
.min_count_bit_for_found = 40,
};
struct WSProtocolDecoderInfactory {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
WSBlockGeneric generic;
uint16_t header_count;
};
struct WSProtocolEncoderInfactory {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
WSBlockGeneric generic;
};
typedef enum {
InfactoryDecoderStepReset = 0,
InfactoryDecoderStepCheckPreambule,
InfactoryDecoderStepSaveDuration,
InfactoryDecoderStepCheckDuration,
} InfactoryDecoderStep;
const SubGhzProtocolDecoder ws_protocol_infactory_decoder = {
.alloc = ws_protocol_decoder_infactory_alloc,
.free = ws_protocol_decoder_infactory_free,
.feed = ws_protocol_decoder_infactory_feed,
.reset = ws_protocol_decoder_infactory_reset,
.get_hash_data = ws_protocol_decoder_infactory_get_hash_data,
.serialize = ws_protocol_decoder_infactory_serialize,
.deserialize = ws_protocol_decoder_infactory_deserialize,
.get_string = ws_protocol_decoder_infactory_get_string,
};
const SubGhzProtocolEncoder ws_protocol_infactory_encoder = {
.alloc = NULL,
.free = NULL,
.deserialize = NULL,
.stop = NULL,
.yield = NULL,
};
const SubGhzProtocol ws_protocol_infactory = {
.name = WS_PROTOCOL_INFACTORY_NAME,
.type = SubGhzProtocolWeatherStation,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_868 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable,
.decoder = &ws_protocol_infactory_decoder,
.encoder = &ws_protocol_infactory_encoder,
};
void* ws_protocol_decoder_infactory_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
WSProtocolDecoderInfactory* instance = malloc(sizeof(WSProtocolDecoderInfactory));
instance->base.protocol = &ws_protocol_infactory;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void ws_protocol_decoder_infactory_free(void* context) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
free(instance);
}
void ws_protocol_decoder_infactory_reset(void* context) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
instance->decoder.parser_step = InfactoryDecoderStepReset;
}
static bool ws_protocol_infactory_check_crc(WSProtocolDecoderInfactory* instance) {
uint8_t msg[] = {
instance->decoder.decode_data >> 32,
(((instance->decoder.decode_data >> 24) & 0x0F) | (instance->decoder.decode_data & 0x0F)
<< 4),
instance->decoder.decode_data >> 16,
instance->decoder.decode_data >> 8,
instance->decoder.decode_data};
uint8_t crc =
subghz_protocol_blocks_crc4(msg, 4, 0x13, 0); // Koopmann 0x9, CCITT-4; FP-4; ITU-T G.704
crc ^= msg[4] >> 4; // last nibble is only XORed
return (crc == ((instance->decoder.decode_data >> 28) & 0x0F));
}
/**
* Analysis of received data
* @param instance Pointer to a WSBlockGeneric* instance
*/
static void ws_protocol_infactory_remote_controller(WSBlockGeneric* instance) {
instance->id = instance->data >> 32;
instance->battery_low = (instance->data >> 26) & 1;
instance->btn = WS_NO_BTN;
instance->temp =
locale_fahrenheit_to_celsius(((float)((instance->data >> 12) & 0x0FFF) - 900.0f) / 10.0f);
instance->humidity =
(((instance->data >> 8) & 0x0F) * 10) + ((instance->data >> 4) & 0x0F); // BCD, 'A0'=100%rH
instance->channel = instance->data & 0x03;
}
void ws_protocol_decoder_infactory_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
switch(instance->decoder.parser_step) {
case InfactoryDecoderStepReset:
if((level) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 2) <
ws_protocol_infactory_const.te_delta * 2)) {
instance->decoder.parser_step = InfactoryDecoderStepCheckPreambule;
instance->decoder.te_last = duration;
instance->header_count = 0;
}
break;
case InfactoryDecoderStepCheckPreambule:
if(level) {
instance->decoder.te_last = duration;
} else {
if((DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short * 2) <
ws_protocol_infactory_const.te_delta * 2) &&
(DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 2) <
ws_protocol_infactory_const.te_delta * 2)) {
//Found preambule
instance->header_count++;
} else if(
(DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) <
ws_protocol_infactory_const.te_delta) &&
(DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 16) <
ws_protocol_infactory_const.te_delta * 8)) {
//Found syncPrefix
if(instance->header_count > 3) {
instance->decoder.parser_step = InfactoryDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
}
} else {
instance->decoder.parser_step = InfactoryDecoderStepReset;
}
}
break;
case InfactoryDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = InfactoryDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = InfactoryDecoderStepReset;
}
break;
case InfactoryDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)ws_protocol_infactory_const.te_short * 30)) {
//Found syncPostfix
if((instance->decoder.decode_count_bit ==
ws_protocol_infactory_const.min_count_bit_for_found) &&
ws_protocol_infactory_check_crc(instance)) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
ws_protocol_infactory_remote_controller(&instance->generic);
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = InfactoryDecoderStepReset;
break;
} else if(
(DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) <
ws_protocol_infactory_const.te_delta) &&
(DURATION_DIFF(duration, ws_protocol_infactory_const.te_long) <
ws_protocol_infactory_const.te_delta * 2)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = InfactoryDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) <
ws_protocol_infactory_const.te_delta) &&
(DURATION_DIFF(duration, ws_protocol_infactory_const.te_long * 2) <
ws_protocol_infactory_const.te_delta * 4)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = InfactoryDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = InfactoryDecoderStepReset;
}
} else {
instance->decoder.parser_step = InfactoryDecoderStepReset;
}
break;
}
}
uint8_t ws_protocol_decoder_infactory_get_hash_data(void* context) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus ws_protocol_decoder_infactory_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
return ws_block_generic_serialize(&instance->generic, flipper_format, preset);
}
SubGhzProtocolStatus
ws_protocol_decoder_infactory_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
return ws_block_generic_deserialize_check_count_bit(
&instance->generic, flipper_format, ws_protocol_infactory_const.min_count_bit_for_found);
}
void ws_protocol_decoder_infactory_get_string(void* context, FuriString* output) {
furi_assert(context);
WSProtocolDecoderInfactory* instance = context;
furi_string_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Sn:0x%lX Ch:%d Bat:%d\r\n"
"Temp:%3.1f C Hum:%d%%",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)(instance->generic.data),
instance->generic.id,
instance->generic.channel,
instance->generic.battery_low,
(double)instance->generic.temp,
instance->generic.humidity);
}