unleashed-firmware/firmware/targets/f7/furi-hal/furi-hal-flash.c

302 lines
8.6 KiB
C
Raw Normal View History

#include <furi-hal-flash.h>
#include <furi-hal-bt.h>
#include <furi.h>
#include <ble.h>
#include <shci.h>
#include <stm32wbxx.h>
#define FURI_HAL_TAG "FuriHalFlash"
#define FURI_HAL_CRITICAL_MSG "Critical flash operation fail"
#define FURI_HAL_FLASH_READ_BLOCK 8
#define FURI_HAL_FLASH_WRITE_BLOCK 8
#define FURI_HAL_FLASH_PAGE_SIZE 4096
#define FURI_HAL_FLASH_CYCLES_COUNT 10000
/* Free flash space borders, exported by linker */
extern const void __free_flash_start__;
size_t furi_hal_flash_get_base() {
return FLASH_BASE;
}
size_t furi_hal_flash_get_read_block_size() {
return FURI_HAL_FLASH_READ_BLOCK;
}
size_t furi_hal_flash_get_write_block_size() {
return FURI_HAL_FLASH_WRITE_BLOCK;
}
size_t furi_hal_flash_get_page_size() {
return FURI_HAL_FLASH_PAGE_SIZE;
}
size_t furi_hal_flash_get_cycles_count() {
return FURI_HAL_FLASH_CYCLES_COUNT;
}
const void* furi_hal_flash_get_free_start_address() {
return &__free_flash_start__;
}
const void* furi_hal_flash_get_free_end_address() {
uint32_t sfr_reg_val = READ_REG(FLASH->SFR);
uint32_t sfsa = (READ_BIT(sfr_reg_val, FLASH_SFR_SFSA) >> FLASH_SFR_SFSA_Pos);
return (const void *)((sfsa * FLASH_PAGE_SIZE) + FLASH_BASE);
}
size_t furi_hal_flash_get_free_page_start_address() {
size_t start = (size_t)furi_hal_flash_get_free_start_address();
size_t page_start = start - start % FURI_HAL_FLASH_PAGE_SIZE;
if (page_start != start) {
page_start += FURI_HAL_FLASH_PAGE_SIZE;
}
return page_start;
}
size_t furi_hal_flash_get_free_page_count() {
size_t end = (size_t)furi_hal_flash_get_free_end_address();
size_t page_start = (size_t)furi_hal_flash_get_free_page_start_address();
return (end-page_start) / FURI_HAL_FLASH_PAGE_SIZE;
}
static void furi_hal_flash_unlock() {
/* verify Flash is locked */
furi_check(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U);
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* verify Flash is unlock */
furi_check(READ_BIT(FLASH->CR, FLASH_CR_LOCK) == 0U);
}
static void furi_hal_flash_lock(void) {
/* verify Flash is unlocked */
furi_check(READ_BIT(FLASH->CR, FLASH_CR_LOCK) == 0U);
/* Set the LOCK Bit to lock the FLASH Registers access */
/* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
/* verify Flash is locked */
furi_check(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U);
}
static void furi_hal_flash_begin_with_core2(bool erase_flag) {
// Take flash controller ownership
while (HAL_HSEM_FastTake(CFG_HW_FLASH_SEMID) != HAL_OK) {
taskYIELD();
}
// Unlock flash operation
furi_hal_flash_unlock();
// Erase activity notification
if(erase_flag) SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON);
while(true) {
// Wait till flash controller become usable
while(LL_FLASH_IsActiveFlag_OperationSuspended()) {
taskYIELD();
};
// Just a little more love
taskENTER_CRITICAL();
// Actually we already have mutex for it, but specification is specification
if (HAL_HSEM_IsSemTaken(CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID)) {
taskEXIT_CRITICAL();
continue;
}
// Take sempahopre and prevent core2 from anyting funky
if(!HAL_HSEM_IsSemTaken(CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID)) {
if (HAL_HSEM_FastTake(CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID) != HAL_OK) {
taskEXIT_CRITICAL();
continue;
}
}
break;
}
}
static void furi_hal_flash_begin(bool erase_flag) {
// Acquire dangerous ops mutex
furi_hal_bt_lock_core2();
// If Core2 is running use IPC locking
if(furi_hal_bt_is_alive()) {
furi_hal_flash_begin_with_core2(erase_flag);
} else {
furi_hal_flash_unlock();
}
}
static void furi_hal_flash_end_with_core2(bool erase_flag) {
// Funky ops are ok at this point
HAL_HSEM_Release(CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID, 0);
// Task switching is ok
taskEXIT_CRITICAL();
// Doesn't make much sense, does it?
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) {
taskYIELD();
}
// Erase activity over, core2 can continue
if(erase_flag) SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF);
// Lock flash controller
furi_hal_flash_lock();
// Release flash controller ownership
HAL_HSEM_Release(CFG_HW_FLASH_SEMID, 0);
}
static void furi_hal_flash_end(bool erase_flag) {
// If Core2 is running use IPC locking
if(furi_hal_bt_is_alive()) {
furi_hal_flash_end_with_core2(erase_flag);
} else {
furi_hal_flash_lock();
}
// Release dangerous ops mutex
furi_hal_bt_unlock_core2();
}
static void furi_hal_flush_cache(void) {
/* Flush instruction cache */
if (READ_BIT(FLASH->ACR, FLASH_ACR_ICEN) == FLASH_ACR_ICEN) {
/* Disable instruction cache */
__HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
/* Reset instruction cache */
__HAL_FLASH_INSTRUCTION_CACHE_RESET();
/* Enable instruction cache */
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
}
/* Flush data cache */
if (READ_BIT(FLASH->ACR, FLASH_ACR_DCEN) == FLASH_ACR_DCEN) {
/* Disable data cache */
__HAL_FLASH_DATA_CACHE_DISABLE();
/* Reset data cache */
__HAL_FLASH_DATA_CACHE_RESET();
/* Enable data cache */
__HAL_FLASH_DATA_CACHE_ENABLE();
}
}
HAL_StatusTypeDef furi_hal_flash_wait_last_operation(uint32_t timeout) {
uint32_t error = 0;
uint32_t countdown = 0;
// Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
// Even if the FLASH operation fails, the BUSY flag will be reset and an error
// flag will be set
countdown = timeout;
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) {
if(LL_SYSTICK_IsActiveCounterFlag()) {
countdown--;
}
if (countdown == 0) {
return HAL_TIMEOUT;
}
}
/* Check FLASH operation error flags */
error = FLASH->SR;
/* Check FLASH End of Operation flag */
if ((error & FLASH_FLAG_EOP) != 0U) {
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
/* Now update error variable to only error value */
error &= FLASH_FLAG_SR_ERRORS;
furi_check(error == 0);
/* clear error flags */
__HAL_FLASH_CLEAR_FLAG(error);
/* Wait for control register to be written */
countdown = timeout;
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) {
if(LL_SYSTICK_IsActiveCounterFlag()) {
countdown--;
}
if (countdown == 0) {
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
bool furi_hal_flash_erase(uint8_t page) {
furi_hal_flash_begin(true);
// Ensure that controller state is valid
furi_check(FLASH->SR == 0);
/* Verify that next operation can be proceed */
furi_check(furi_hal_flash_wait_last_operation(FLASH_TIMEOUT_VALUE) == HAL_OK);
/* Select page and start operation */
MODIFY_REG(FLASH->CR, FLASH_CR_PNB, ((page << FLASH_CR_PNB_Pos) | FLASH_CR_PER | FLASH_CR_STRT));
/* Wait for last operation to be completed */
furi_check(furi_hal_flash_wait_last_operation(FLASH_TIMEOUT_VALUE) == HAL_OK);
/* If operation is completed or interrupted, disable the Page Erase Bit */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PER | FLASH_CR_PNB));
/* Flush the caches to be sure of the data consistency */
furi_hal_flush_cache();
furi_hal_flash_end(true);
return true;
}
bool furi_hal_flash_write_dword(size_t address, uint64_t data) {
furi_hal_flash_begin(false);
// Ensure that controller state is valid
furi_check(FLASH->SR == 0);
/* Check the parameters */
furi_check(IS_ADDR_ALIGNED_64BITS(address));
furi_check(IS_FLASH_PROGRAM_ADDRESS(address));
/* Set PG bit */
SET_BIT(FLASH->CR, FLASH_CR_PG);
/* Program first word */
*(uint32_t *)address = (uint32_t)data;
// Barrier to ensure programming is performed in 2 steps, in right order
// (independently of compiler optimization behavior)
__ISB();
/* Program second word */
*(uint32_t *)(address + 4U) = (uint32_t)(data >> 32U);
/* Wait for last operation to be completed */
furi_check(furi_hal_flash_wait_last_operation(FLASH_TIMEOUT_VALUE) == HAL_OK);
/* If the program operation is completed, disable the PG or FSTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
furi_hal_flash_end(false);
return true;
}