unleashed-firmware/applications/lf-rfid/helpers/decoder-emmarine.cpp

173 lines
4.5 KiB
C++
Raw Normal View History

Low frequency RFID app [Read stage] (#385) * App Lfrfid: init * HAL-resources: add external gpios * HAL-pwm: fix frequency calculation * App LFRFID: generic manchester decoder * App LFRFID: em-marine decoder * App iButton: fix dwt timing acquire * App LFRFID: rfid reader * App LFRFID: temporary read keys on read scene * App LFRFID: remove atomic bool init. * App LFRFID: add *.c to build * App LFRFID: unstable HID decoder * App LFRFID: HID-26 reading * HAL OS: disable sleep * App LFRFID: HID-26 reader: remove debug * App LFRFID: static data decoder-analyzer * App LFRFID: very raw Indala decoder * App LFRFID: multiprotocol reader * App LFRFID: more reliable HID decoder * App LFRFID: syntax fix * App LFRFID: simple read scene * Gui: force redraw on screen stream connect * HAL-OS: allow sleep * App LFRFID: notify api, tune view, tune scene * App LFRFID: simple rfid emulator * App LFRFID: more scenes, more reliable EM decoder. * App LFRFID: format fix * App LFRFID: warning fix * Api-hal-resources: add rfid pins, rename external pins * App LFRFID: remove unused emulator * App LFRFID: use new gpio hal api * App accessor: use new ext gpio name * App LFRFID: remove unused emulator * App LFRFID: remove debug gpio * Api-hal-resources: alternate functions init * Api-hal-rfid: new api * Api-hal-ibutton: new api * Api-hal: new headers * App LFRFID: use new api in reader subroutines * App LFRFID: use new api in emulator subroutines * App LFRFID: remove old app * App LFRFID, App iButton: fix memleak * Api-hal-rfid: comments * App LFRFID: pulse joiner helper, it combines pulses of different polarity into one pulse suitable for a timer * App LFRFID: pulse joiner, now can accept only ne pulse * App LFRFID: pulse joiner, fixes * App LFRFID: EM encoder and emulation * App LFRFID: format fixes * App LFRFID: emmarine encoder cleanup * App LFRFID: HID Encoder blank * App LFRFID: Indala Encoder blank
2021-05-04 13:21:16 +00:00
#include "emmarine.h"
#include "decoder-emmarine.h"
#include <furi.h>
#include <api-hal.h>
constexpr uint32_t clocks_in_us = 64;
constexpr uint32_t short_time = 255 * clocks_in_us;
constexpr uint32_t long_time = 510 * clocks_in_us;
constexpr uint32_t jitter_time = 100 * clocks_in_us;
constexpr uint32_t short_time_low = short_time - jitter_time;
constexpr uint32_t short_time_high = short_time + jitter_time;
constexpr uint32_t long_time_low = long_time - jitter_time;
constexpr uint32_t long_time_high = long_time + jitter_time;
void DecoderEMMarine::reset_state() {
ready = false;
readed_data = 0;
manchester_advance(
manchester_saved_state, ManchesterEventReset, &manchester_saved_state, nullptr);
}
void printEM_raw(uint64_t data) {
// header
for(uint8_t i = 0; i < 9; i++) {
printf("%u ", data & (1LLU << 63) ? 1 : 0);
data = data << 1;
}
printf("\r\n");
// nibbles
for(uint8_t r = 0; r < 11; r++) {
printf(" ");
uint8_t value = 0;
for(uint8_t i = 0; i < 5; i++) {
printf("%u ", data & (1LLU << 63) ? 1 : 0);
if(i < 4) value = (value << 1) | (data & (1LLU << 63) ? 1 : 0);
data = data << 1;
}
printf("0x%X", value);
printf("\r\n");
}
}
void printEM_data(uint64_t data) {
printf("EM ");
// header
for(uint8_t i = 0; i < 9; i++) {
data = data << 1;
}
// nibbles
for(uint8_t r = 0; r < EM_ROW_COUNT; r++) {
uint8_t value = 0;
for(uint8_t i = 0; i < 5; i++) {
if(i < 4) value = (value << 1) | (data & (1LLU << 63) ? 1 : 0);
data = data << 1;
}
printf("%X", value);
if(r % 2) printf(" ");
}
printf("\r\n");
}
void copyEM_data(uint64_t data, uint8_t* result, uint8_t result_size) {
furi_assert(result_size >= 5);
uint8_t result_index = 0;
// clean result
memset(result, 0, result_size);
// header
for(uint8_t i = 0; i < 9; i++) {
data = data << 1;
}
// nibbles
uint8_t value = 0;
for(uint8_t r = 0; r < EM_ROW_COUNT; r++) {
uint8_t nibble = 0;
for(uint8_t i = 0; i < 5; i++) {
if(i < 4) nibble = (nibble << 1) | (data & (1LLU << 63) ? 1 : 0);
data = data << 1;
}
value = (value << 4) | nibble;
if(r % 2) {
result[result_index] |= value;
result_index++;
value = 0;
}
}
}
bool DecoderEMMarine::read(uint8_t* data, uint8_t data_size) {
bool result = false;
if(ready) {
result = true;
copyEM_data(readed_data, data, data_size);
ready = false;
}
return result;
}
void DecoderEMMarine::process_front(bool polarity, uint32_t time) {
if(ready) return;
if(time < short_time_low) return;
ManchesterEvent event = ManchesterEventReset;
if(time > short_time_low && time < short_time_high) {
if(polarity) {
event = ManchesterEventShortHigh;
} else {
event = ManchesterEventShortLow;
}
} else if(time > long_time_low && time < long_time_high) {
if(polarity) {
event = ManchesterEventLongHigh;
} else {
event = ManchesterEventLongLow;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok =
manchester_advance(manchester_saved_state, event, &manchester_saved_state, &data);
if(data_ok) {
readed_data = (readed_data << 1) | data;
// header and stop bit
if((readed_data & EM_HEADER_AND_STOP_MASK) != EM_HEADER_AND_STOP_DATA) return;
// row parity
for(uint8_t i = 0; i < EM_ROW_COUNT; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < 5; j++) {
parity_sum += (readed_data >> (EM_FIRST_ROW_POS - i * 5 + j)) & 1;
}
if((parity_sum % 2)) {
return;
}
}
// columns parity
for(uint8_t i = 0; i < 4; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < EM_ROW_COUNT + 1; j++) {
parity_sum += (readed_data >> (EM_COLUMN_POS - i + j * 5)) & 1;
}
if((parity_sum % 2)) {
return;
}
}
// checks ok
ready = true;
}
}
}
DecoderEMMarine::DecoderEMMarine() {
reset_state();
}