unleashed-firmware/lib/subghz/protocols/came_atomo.c

595 lines
21 KiB
C
Raw Normal View History

#include "came_atomo.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/toolbox/manchester_encoder.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocoCameAtomo"
static const SubGhzBlockConst subghz_protocol_came_atomo_const = {
.te_short = 600,
.te_long = 1200,
.te_delta = 250,
.min_count_bit_for_found = 62,
};
struct SubGhzProtocolDecoderCameAtomo {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
ManchesterState manchester_saved_state;
};
struct SubGhzProtocolEncoderCameAtomo {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
CameAtomoDecoderStepReset = 0,
CameAtomoDecoderStepDecoderData,
} CameAtomoDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_came_atomo_decoder = {
.alloc = subghz_protocol_decoder_came_atomo_alloc,
.free = subghz_protocol_decoder_came_atomo_free,
.feed = subghz_protocol_decoder_came_atomo_feed,
.reset = subghz_protocol_decoder_came_atomo_reset,
.get_hash_data = subghz_protocol_decoder_came_atomo_get_hash_data,
.serialize = subghz_protocol_decoder_came_atomo_serialize,
.deserialize = subghz_protocol_decoder_came_atomo_deserialize,
.get_string = subghz_protocol_decoder_came_atomo_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_came_atomo_encoder = {
.alloc = subghz_protocol_encoder_came_atomo_alloc,
.free = subghz_protocol_encoder_came_atomo_free,
.deserialize = subghz_protocol_encoder_came_atomo_deserialize,
.stop = subghz_protocol_encoder_came_atomo_stop,
.yield = subghz_protocol_encoder_came_atomo_yield,
};
const SubGhzProtocol subghz_protocol_came_atomo = {
.name = SUBGHZ_PROTOCOL_CAME_ATOMO_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_came_atomo_decoder,
.encoder = &subghz_protocol_came_atomo_encoder,
};
static void subghz_protocol_came_atomo_remote_controller(SubGhzBlockGeneric* instance);
void* subghz_protocol_encoder_came_atomo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderCameAtomo* instance = malloc(sizeof(SubGhzProtocolEncoderCameAtomo));
instance->base.protocol = &subghz_protocol_came_atomo;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 1024; //actual size about 760
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
2022-08-17 20:33:41 +00:00
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_came_atomo_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderCameAtomo* instance = context;
free(instance->encoder.upload);
free(instance);
}
static LevelDuration
subghz_protocol_encoder_came_atomo_add_duration_to_upload(ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = subghz_protocol_came_atomo_const.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = subghz_protocol_came_atomo_const.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = subghz_protocol_came_atomo_const.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = subghz_protocol_came_atomo_const.te_short;
data.level = true;
break;
default:
FURI_LOG_E(TAG, "SubGhz: ManchesterEncoderResult is incorrect.");
break;
}
return level_duration_make(data.level, data.duration);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderCameAtomo instance
*/
2022-06-24 10:01:41 +00:00
static void
subghz_protocol_encoder_came_atomo_get_upload(SubGhzProtocolEncoderCameAtomo* instance) {
furi_assert(instance);
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
2022-06-14 16:25:23 +00:00
uint8_t pack[8] = {};
instance->generic.cnt++;
//Send header
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_came_atomo_const.te_long * 15);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_came_atomo_const.te_long * 60);
2022-06-24 10:01:41 +00:00
for(uint8_t i = 0; i < 8; i++) {
pack[0] = (instance->generic.data_2 >> 56);
pack[1] = (instance->generic.cnt >> 8);
pack[2] = (instance->generic.cnt & 0xFF);
pack[3] = ((instance->generic.data_2 >> 32) & 0xFF);
pack[4] = ((instance->generic.data_2 >> 24) & 0xFF);
pack[5] = ((instance->generic.data_2 >> 16) & 0xFF);
pack[6] = ((instance->generic.data_2 >> 8) & 0xFF);
pack[7] = (instance->generic.data_2 & 0xFF);
if(pack[0] == 0x7F) {
pack[0] = 0;
} else {
2022-06-24 10:01:41 +00:00
pack[0] += (i + 1);
}
2022-06-24 10:01:41 +00:00
atomo_encrypt(pack);
uint32_t hi = pack[0] << 24 | pack[1] << 16 | pack[2] << 8 | pack[3];
uint32_t lo = pack[4] << 24 | pack[5] << 16 | pack[6] << 8 | pack[7];
instance->generic.data = (uint64_t)hi << 32 | lo;
2022-06-17 14:20:50 +00:00
instance->generic.data ^= 0xFFFFFFFFFFFFFFFF;
instance->generic.data >>= 4;
2022-06-24 10:01:41 +00:00
instance->generic.data &= 0xFFFFFFFFFFFFFFF;
2022-06-17 14:20:50 +00:00
instance->encoder.upload[index++] =
2022-06-24 10:01:41 +00:00
level_duration_make(true, (uint32_t)subghz_protocol_came_atomo_const.te_long);
2022-06-17 14:20:50 +00:00
instance->encoder.upload[index++] =
2022-06-24 10:01:41 +00:00
level_duration_make(false, (uint32_t)subghz_protocol_came_atomo_const.te_short);
2022-06-17 14:20:50 +00:00
for(uint8_t i = (instance->generic.data_count_bit - 2); i > 0; i--) {
2022-06-24 10:01:41 +00:00
if(!manchester_encoder_advance(
&enc_state, !bit_read(instance->generic.data, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_came_atomo_add_duration_to_upload(result);
manchester_encoder_advance(
&enc_state, !bit_read(instance->generic.data, i - 1), &result);
}
2022-06-24 10:01:41 +00:00
instance->encoder.upload[index++] =
subghz_protocol_encoder_came_atomo_add_duration_to_upload(result);
}
2022-06-24 10:01:41 +00:00
instance->encoder.upload[index] =
subghz_protocol_encoder_came_atomo_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
//Send pause
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_came_atomo_const.te_delta * 272);
}
instance->encoder.size_upload = index;
2022-06-14 16:25:23 +00:00
instance->generic.cnt_2++;
2022-06-24 10:01:41 +00:00
pack[0] = (instance->generic.cnt_2);
pack[1] = (instance->generic.cnt >> 8);
pack[2] = (instance->generic.cnt & 0xFF);
pack[3] = ((instance->generic.data_2 >> 32) & 0xFF);
pack[4] = ((instance->generic.data_2 >> 24) & 0xFF);
pack[5] = ((instance->generic.data_2 >> 16) & 0xFF);
pack[6] = ((instance->generic.data_2 >> 8) & 0xFF);
pack[7] = (instance->generic.data_2 & 0xFF);
2022-06-14 16:25:23 +00:00
atomo_encrypt(pack);
uint32_t hi = pack[0] << 24 | pack[1] << 16 | pack[2] << 8 | pack[3];
uint32_t lo = pack[4] << 24 | pack[5] << 16 | pack[6] << 8 | pack[7];
instance->generic.data = (uint64_t)hi << 32 | lo;
2022-06-17 14:20:50 +00:00
2022-06-14 16:25:23 +00:00
instance->generic.data ^= 0xFFFFFFFFFFFFFFFF;
instance->generic.data >>= 4;
2022-06-17 14:20:50 +00:00
instance->generic.data &= 0xFFFFFFFFFFFFFFF;
}
bool subghz_protocol_encoder_came_atomo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderCameAtomo* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_came_atomo_remote_controller(&instance->generic);
subghz_protocol_encoder_came_atomo_get_upload(instance);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
2022-08-17 20:33:41 +00:00
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_came_atomo_stop(void* context) {
SubGhzProtocolEncoderCameAtomo* instance = context;
2022-08-17 20:33:41 +00:00
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_came_atomo_yield(void* context) {
SubGhzProtocolEncoderCameAtomo* instance = context;
2022-08-17 20:33:41 +00:00
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_came_atomo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderCameAtomo* instance = malloc(sizeof(SubGhzProtocolDecoderCameAtomo));
instance->base.protocol = &subghz_protocol_came_atomo;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_came_atomo_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
free(instance);
}
void subghz_protocol_decoder_came_atomo_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
instance->decoder.parser_step = CameAtomoDecoderStepReset;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
void subghz_protocol_decoder_came_atomo_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
ManchesterEvent event = ManchesterEventReset;
switch(instance->decoder.parser_step) {
case CameAtomoDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long * 60) <
subghz_protocol_came_atomo_const.te_delta * 40)) {
//Found header CAME
instance->decoder.parser_step = CameAtomoDecoderStepDecoderData;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
}
break;
case CameAtomoDecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_short) <
subghz_protocol_came_atomo_const.te_delta) {
event = ManchesterEventShortLow;
} else if(
DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long) <
subghz_protocol_came_atomo_const.te_delta) {
event = ManchesterEventLongLow;
} else if(
duration >= ((uint32_t)subghz_protocol_came_atomo_const.te_long * 2 +
subghz_protocol_came_atomo_const.te_delta)) {
if(instance->decoder.decode_count_bit ==
subghz_protocol_came_atomo_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->decoder.parser_step = CameAtomoDecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_short) <
subghz_protocol_came_atomo_const.te_delta) {
event = ManchesterEventShortHigh;
} else if(
DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long) <
subghz_protocol_came_atomo_const.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->decoder.parser_step = CameAtomoDecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->decoder.decode_data = (instance->decoder.decode_data << 1) | !data;
instance->decoder.decode_count_bit++;
}
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param file_name Full path to rainbow table the file
*/
2022-06-24 10:01:41 +00:00
static void subghz_protocol_came_atomo_remote_controller(SubGhzBlockGeneric* instance) {
/*
* ***SkorP ver.***
* 0x1fafef3ed0f7d9ef
* 0x185fcc1531ee86e7
* 0x184fa96912c567ff
* 0x187f8a42f3dc38f7
* 0x186f63915492a5cd
* 0x181f40bab58bfac5
* 0x180f25c696a01bdd
* 0x183f06ed77b944d5
* 0x182ef661d83d21a9
* 0x18ded54a39247ea1
* 0x18ceb0361a0f9fb9
* 0x18fe931dfb16c0b1
* 0x18ee7ace5c585d8b
* ........
* transmission consists of 99 parcels with increasing counter while holding down the button
* with each new press, the counter in the encrypted part increases
*
* 0x1FAFF13ED0F7D9EF
* 0x1FAFF11ED0F7D9EF
* 0x1FAFF10ED0F7D9EF
* 0x1FAFF0FED0F7D9EF
* 0x1FAFF0EED0F7D9EF
* 0x1FAFF0DED0F7D9EF
* 0x1FAFF0CED0F7D9EF
* 0x1FAFF0BED0F7D9EF
* 0x1FAFF0AED0F7D9EF
*
* where 0x1FAF - parcel counter, 0хF0A - button press counter,
* 0xED0F7D9E - serial number, 0хF - key
* 0x1FAF parcel counter - 1 in the parcel queue ^ 0x185F = 0x07F0
* 0x185f ^ 0x185F = 0x0000
* 0x184f ^ 0x185F = 0x0010
* 0x187f ^ 0x185F = 0x0020
* .....
* 0x182e ^ 0x185F = 0x0071
* 0x18de ^ 0x185F = 0x0081
* .....
* 0x1e43 ^ 0x185F = 0x061C
* where the last nibble is incremented every 8 samples
*
* Decode
*
* 0x1cf6931dfb16c0b1 => 0x1cf6
* 0x1cf6 ^ 0x185F = 0x04A9
* 0x04A9 => 0x04A = 74 (dec)
* 74+1 % 32(atomo_magic_xor) = 11
* GET atomo_magic_xor[11] = 0xXXXXXXXXXXXXXXXX
* 0x931dfb16c0b1 ^ 0xXXXXXXXXXXXXXXXX = 0xEF3ED0F7D9EF
* 0xEF3 ED0F7D9E F => 0xEF3 - CNT, 0xED0F7D9E - SN, 0xF - key
*
* ***Eng1n33r ver. (actual)***
* 0x1FF08D9924984115 - received data
* 0x00F7266DB67BEEA0 - inverted data
* 0x0501FD0000A08300 - decrypted data,
* where: 0x05 - Button hold-cycle counter (8-bit, from 0 to 0x7F)
* 0x01FD - Parcel counter (normal 16-bit counter)
* 0x0000A083 - Serial number (32-bit)
* 0x0 - Button code (4-bit, 0x0 - #1 left-up; 0x2 - #2 right-up; 0x4 - #3 left-down; 0x6 - #4 right-down)
* 0x0 - Last zero nibble
* */
2022-06-17 14:20:50 +00:00
instance->data ^= 0xFFFFFFFFFFFFFFFF;
instance->data <<= 4;
2022-06-24 10:01:41 +00:00
2022-06-04 00:32:21 +00:00
uint8_t pack[8] = {};
2022-06-24 10:01:41 +00:00
pack[0] = (instance->data >> 56);
pack[1] = ((instance->data >> 48) & 0xFF);
pack[2] = ((instance->data >> 40) & 0xFF);
pack[3] = ((instance->data >> 32) & 0xFF);
pack[4] = ((instance->data >> 24) & 0xFF);
pack[5] = ((instance->data >> 16) & 0xFF);
pack[6] = ((instance->data >> 8) & 0xFF);
pack[7] = (instance->data & 0xFF);
2022-06-04 00:32:21 +00:00
atomo_decrypt(pack);
2022-06-17 14:20:50 +00:00
2022-06-04 00:32:21 +00:00
instance->cnt_2 = pack[0];
instance->cnt = (uint16_t)pack[1] << 8 | pack[2];
instance->serial = (uint32_t)(pack[3]) << 24 | pack[4] << 16 | pack[5] << 8 | pack[6];
2022-06-24 10:01:41 +00:00
2022-06-04 11:07:33 +00:00
uint8_t btn_decode = (pack[7] >> 4);
2022-06-24 10:01:41 +00:00
if(btn_decode == 0x0) {
instance->btn = 0x1;
}
if(btn_decode == 0x2) {
instance->btn = 0x2;
}
if(btn_decode == 0x4) {
instance->btn = 0x3;
}
if(btn_decode == 0x6) {
instance->btn = 0x4;
}
uint32_t hi = pack[0] << 24 | pack[1] << 16 | pack[2] << 8 | pack[3];
uint32_t lo = pack[4] << 24 | pack[5] << 16 | pack[6] << 8 | pack[7];
instance->data_2 = (uint64_t)hi << 32 | lo;
}
2022-06-24 10:01:41 +00:00
void atomo_encrypt(uint8_t* buff) {
uint8_t tmpB = (~buff[0] + 1) & 0x7F;
uint8_t bitCnt = 8;
2022-06-24 10:01:41 +00:00
while(bitCnt < 59) {
if((tmpB & 0x18) && (((tmpB / 8) & 3) != 3)) {
tmpB = ((tmpB << 1) & 0xFF) | 1;
} else {
tmpB = (tmpB << 1) & 0xFF;
}
2022-06-24 10:01:41 +00:00
if(tmpB & 0x80) {
buff[bitCnt / 8] ^= (0x80 >> (bitCnt & 7));
}
bitCnt++;
}
2022-06-24 10:01:41 +00:00
buff[0] = (buff[0] ^ 5) & 0x7F;
2022-06-04 00:32:21 +00:00
}
2022-06-24 10:01:41 +00:00
void atomo_decrypt(uint8_t* buff) {
buff[0] = (buff[0] ^ 5) & 0x7F;
uint8_t tmpB = (-buff[0]) & 0x7F;
2022-06-04 00:32:21 +00:00
uint8_t bitCnt = 8;
2022-06-24 10:01:41 +00:00
while(bitCnt < 59) {
if((tmpB & 0x18) && (((tmpB / 8) & 3) != 3)) {
2022-06-04 00:32:21 +00:00
tmpB = ((tmpB << 1) & 0xFF) | 1;
} else {
tmpB = (tmpB << 1) & 0xFF;
}
2022-06-24 10:01:41 +00:00
if(tmpB & 0x80) {
buff[bitCnt / 8] ^= (0x80 >> (bitCnt & 7));
2022-06-04 00:32:21 +00:00
}
bitCnt++;
}
}
uint8_t subghz_protocol_decoder_came_atomo_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_came_atomo_serialize(
void* context,
FlipperFormat* flipper_format,
2022-07-27 12:58:32 +00:00
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_came_atomo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_came_atomo_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_came_atomo_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderCameAtomo* instance = context;
2022-06-24 10:01:41 +00:00
subghz_protocol_came_atomo_remote_controller(&instance->generic);
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %db\r\n"
2022-06-04 00:32:21 +00:00
"Key:0x%08lX%08lX\r\n"
"Sn:0x%08lX Btn:0x%01X\r\n"
2022-10-07 15:32:58 +00:00
"Pcl_Cnt:0x%04lX\r\n"
2022-06-04 00:32:21 +00:00
"Btn_Cnt:0x%02X",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
instance->generic.serial,
instance->generic.btn,
2022-06-04 00:32:21 +00:00
instance->generic.cnt,
instance->generic.cnt_2);
}