unleashed-firmware/firmware/targets/f3/ble-glue/hw_timerserver.c

894 lines
26 KiB
C
Raw Normal View History

/**
******************************************************************************
* File Name : hw_timerserver.c
* Description : Hardware timerserver source file for STM32WPAN Middleware.
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "app_common.h"
#include "hw_conf.h"
/* Private typedef -----------------------------------------------------------*/
typedef enum
{
TimerID_Free,
TimerID_Created,
TimerID_Running
}TimerIDStatus_t;
typedef enum
{
SSR_Read_Requested,
SSR_Read_Not_Requested
}RequestReadSSR_t;
typedef enum
{
WakeupTimerValue_Overpassed,
WakeupTimerValue_LargeEnough
}WakeupTimerLimitation_Status_t;
typedef struct
{
HW_TS_pTimerCb_t pTimerCallBack;
uint32_t CounterInit;
uint32_t CountLeft;
TimerIDStatus_t TimerIDStatus;
HW_TS_Mode_t TimerMode;
uint32_t TimerProcessID;
uint8_t PreviousID;
uint8_t NextID;
}TimerContext_t;
/* Private defines -----------------------------------------------------------*/
#define SSR_FORBIDDEN_VALUE 0xFFFFFFFF
#define TIMER_LIST_EMPTY 0xFFFF
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/**
* START of Section TIMERSERVER_CONTEXT
*/
PLACE_IN_SECTION("TIMERSERVER_CONTEXT") static volatile TimerContext_t aTimerContext[CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER];
PLACE_IN_SECTION("TIMERSERVER_CONTEXT") static volatile uint8_t CurrentRunningTimerID;
PLACE_IN_SECTION("TIMERSERVER_CONTEXT") static volatile uint8_t PreviousRunningTimerID;
PLACE_IN_SECTION("TIMERSERVER_CONTEXT") static volatile uint32_t SSRValueOnLastSetup;
PLACE_IN_SECTION("TIMERSERVER_CONTEXT") static volatile WakeupTimerLimitation_Status_t WakeupTimerLimitation;
/**
* END of Section TIMERSERVER_CONTEXT
*/
static RTC_HandleTypeDef *phrtc; /**< RTC handle */
static uint8_t WakeupTimerDivider;
static uint8_t AsynchPrescalerUserConfig;
static uint16_t SynchPrescalerUserConfig;
static volatile uint16_t MaxWakeupTimerSetup;
/* Global variables ----------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void RestartWakeupCounter(uint16_t Value);
static uint16_t ReturnTimeElapsed(void);
static void RescheduleTimerList(void);
static void UnlinkTimer(uint8_t TimerID, RequestReadSSR_t RequestReadSSR);
static void LinkTimerBefore(uint8_t TimerID, uint8_t RefTimerID);
static void LinkTimerAfter(uint8_t TimerID, uint8_t RefTimerID);
static uint16_t linkTimer(uint8_t TimerID);
static uint32_t ReadRtcSsrValue(void);
__weak void HW_TS_RTC_CountUpdated_AppNot(void);
/* Functions Definition ------------------------------------------------------*/
/**
* @brief Read the RTC_SSR value
* As described in the reference manual, the RTC_SSR shall be read twice to ensure
* reliability of the value
* @param None
* @retval SSR value read
*/
static uint32_t ReadRtcSsrValue(void)
{
uint32_t first_read;
uint32_t second_read;
first_read = (uint32_t)(READ_BIT(RTC->SSR, RTC_SSR_SS));
second_read = (uint32_t)(READ_BIT(RTC->SSR, RTC_SSR_SS));
while(first_read != second_read)
{
first_read = second_read;
second_read = (uint32_t)(READ_BIT(RTC->SSR, RTC_SSR_SS));
}
return second_read;
}
/**
* @brief Insert a Timer in the list after the Timer ID specified
* @param TimerID: The ID of the Timer
* @param RefTimerID: The ID of the Timer to be linked after
* @retval None
*/
static void LinkTimerAfter(uint8_t TimerID, uint8_t RefTimerID)
{
uint8_t next_id;
next_id = aTimerContext[RefTimerID].NextID;
if(next_id != CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
aTimerContext[next_id].PreviousID = TimerID;
}
aTimerContext[TimerID].NextID = next_id;
aTimerContext[TimerID].PreviousID = RefTimerID ;
aTimerContext[RefTimerID].NextID = TimerID;
return;
}
/**
* @brief Insert a Timer in the list before the ID specified
* @param TimerID: The ID of the Timer
* @param RefTimerID: The ID of the Timer to be linked before
* @retval None
*/
static void LinkTimerBefore(uint8_t TimerID, uint8_t RefTimerID)
{
uint8_t previous_id;
if(RefTimerID != CurrentRunningTimerID)
{
previous_id = aTimerContext[RefTimerID].PreviousID;
aTimerContext[previous_id].NextID = TimerID;
aTimerContext[TimerID].NextID = RefTimerID;
aTimerContext[TimerID].PreviousID = previous_id ;
aTimerContext[RefTimerID].PreviousID = TimerID;
}
else
{
aTimerContext[TimerID].NextID = RefTimerID;
aTimerContext[RefTimerID].PreviousID = TimerID;
}
return;
}
/**
* @brief Insert a Timer in the list
* @param TimerID: The ID of the Timer
* @retval None
*/
static uint16_t linkTimer(uint8_t TimerID)
{
uint32_t time_left;
uint16_t time_elapsed;
uint8_t timer_id_lookup;
uint8_t next_id;
if(CurrentRunningTimerID == CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
/**
* No timer in the list
*/
PreviousRunningTimerID = CurrentRunningTimerID;
CurrentRunningTimerID = TimerID;
aTimerContext[TimerID].NextID = CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER;
SSRValueOnLastSetup = SSR_FORBIDDEN_VALUE;
time_elapsed = 0;
}
else
{
time_elapsed = ReturnTimeElapsed();
/**
* update count of the timer to be linked
*/
aTimerContext[TimerID].CountLeft += time_elapsed;
time_left = aTimerContext[TimerID].CountLeft;
/**
* Search for index where the new timer shall be linked
*/
if(aTimerContext[CurrentRunningTimerID].CountLeft <= time_left)
{
/**
* Search for the ID after the first one
*/
timer_id_lookup = CurrentRunningTimerID;
next_id = aTimerContext[timer_id_lookup].NextID;
while((next_id != CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER) && (aTimerContext[next_id].CountLeft <= time_left))
{
timer_id_lookup = aTimerContext[timer_id_lookup].NextID;
next_id = aTimerContext[timer_id_lookup].NextID;
}
/**
* Link after the ID
*/
LinkTimerAfter(TimerID, timer_id_lookup);
}
else
{
/**
* Link before the first ID
*/
LinkTimerBefore(TimerID, CurrentRunningTimerID);
PreviousRunningTimerID = CurrentRunningTimerID;
CurrentRunningTimerID = TimerID;
}
}
return time_elapsed;
}
/**
* @brief Remove a Timer from the list
* @param TimerID: The ID of the Timer
* @param RequestReadSSR: Request to read the SSR register or not
* @retval None
*/
static void UnlinkTimer(uint8_t TimerID, RequestReadSSR_t RequestReadSSR)
{
uint8_t previous_id;
uint8_t next_id;
if(TimerID == CurrentRunningTimerID)
{
PreviousRunningTimerID = CurrentRunningTimerID;
CurrentRunningTimerID = aTimerContext[TimerID].NextID;
}
else
{
previous_id = aTimerContext[TimerID].PreviousID;
next_id = aTimerContext[TimerID].NextID;
aTimerContext[previous_id].NextID = aTimerContext[TimerID].NextID;
if(next_id != CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
aTimerContext[next_id].PreviousID = aTimerContext[TimerID].PreviousID;
}
}
/**
* Timer is out of the list
*/
aTimerContext[TimerID].TimerIDStatus = TimerID_Created;
if((CurrentRunningTimerID == CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER) && (RequestReadSSR == SSR_Read_Requested))
{
SSRValueOnLastSetup = SSR_FORBIDDEN_VALUE;
}
return;
}
/**
* @brief Return the number of ticks counted by the wakeuptimer since it has been started
* @note The API is reading the SSR register to get how many ticks have been counted
* since the time the timer has been started
* @param None
* @retval Time expired in Ticks
*/
static uint16_t ReturnTimeElapsed(void)
{
uint32_t return_value;
uint32_t wrap_counter;
if(SSRValueOnLastSetup != SSR_FORBIDDEN_VALUE)
{
return_value = ReadRtcSsrValue(); /**< Read SSR register first */
if (SSRValueOnLastSetup >= return_value)
{
return_value = SSRValueOnLastSetup - return_value;
}
else
{
wrap_counter = SynchPrescalerUserConfig - return_value;
return_value = SSRValueOnLastSetup + wrap_counter;
}
/**
* At this stage, ReturnValue holds the number of ticks counted by SSR
* Need to translate in number of ticks counted by the Wakeuptimer
*/
return_value = return_value*AsynchPrescalerUserConfig;
return_value = return_value >> WakeupTimerDivider;
}
else
{
return_value = 0;
}
return (uint16_t)return_value;
}
/**
* @brief Set the wakeup counter
* @note The API is writing the counter value so that the value is decreased by one to cope with the fact
* the interrupt is generated with 1 extra clock cycle (See RefManuel)
* It assumes all condition are met to be allowed to write the wakeup counter
* @param Value: Value to be written in the counter
* @retval None
*/
static void RestartWakeupCounter(uint16_t Value)
{
/**
* The wakeuptimer has been disabled in the calling function to reduce the time to poll the WUTWF
* FLAG when the new value will have to be written
* __HAL_RTC_WAKEUPTIMER_DISABLE(phrtc);
*/
if(Value == 0)
{
SSRValueOnLastSetup = ReadRtcSsrValue();
/**
* Simulate that the Timer expired
*/
HAL_NVIC_SetPendingIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID);
}
else
{
if((Value > 1) ||(WakeupTimerDivider != 1))
{
Value -= 1;
}
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTWF) == RESET);
/**
* make sure to clear the flags after checking the WUTWF.
* It takes 2 RTCCLK between the time the WUTE bit is disabled and the
* time the timer is disabled. The WUTWF bit somehow guarantee the system is stable
* Otherwise, when the timer is periodic with 1 Tick, it may generate an extra interrupt in between
* due to the autoreload feature
*/
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(phrtc, RTC_FLAG_WUTF); /**< Clear flag in RTC module */
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); /**< Clear flag in EXTI module */
HAL_NVIC_ClearPendingIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Clear pending bit in NVIC */
MODIFY_REG(RTC->WUTR, RTC_WUTR_WUT, Value);
/**
* Update the value here after the WUTWF polling that may take some time
*/
SSRValueOnLastSetup = ReadRtcSsrValue();
__HAL_RTC_WAKEUPTIMER_ENABLE(phrtc); /**< Enable the Wakeup Timer */
HW_TS_RTC_CountUpdated_AppNot();
}
return ;
}
/**
* @brief Reschedule the list of timer
* @note 1) Update the count left for each timer in the list
* 2) Setup the wakeuptimer
* @param None
* @retval None
*/
static void RescheduleTimerList(void)
{
uint8_t localTimerID;
uint32_t timecountleft;
uint16_t wakeup_timer_value;
uint16_t time_elapsed;
/**
* The wakeuptimer is disabled now to reduce the time to poll the WUTWF
* FLAG when the new value will have to be written
*/
if((READ_BIT(RTC->CR, RTC_CR_WUTE) == (RTC_CR_WUTE)) == SET)
{
/**
* Wait for the flag to be back to 0 when the wakeup timer is enabled
*/
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTWF) == SET);
}
__HAL_RTC_WAKEUPTIMER_DISABLE(phrtc); /**< Disable the Wakeup Timer */
localTimerID = CurrentRunningTimerID;
/**
* Calculate what will be the value to write in the wakeuptimer
*/
timecountleft = aTimerContext[localTimerID].CountLeft;
/**
* Read how much has been counted
*/
time_elapsed = ReturnTimeElapsed();
if(timecountleft < time_elapsed )
{
/**
* There is no tick left to count
*/
wakeup_timer_value = 0;
WakeupTimerLimitation = WakeupTimerValue_LargeEnough;
}
else
{
if(timecountleft > (time_elapsed + MaxWakeupTimerSetup))
{
/**
* The number of tick left is greater than the Wakeuptimer maximum value
*/
wakeup_timer_value = MaxWakeupTimerSetup;
WakeupTimerLimitation = WakeupTimerValue_Overpassed;
}
else
{
wakeup_timer_value = timecountleft - time_elapsed;
WakeupTimerLimitation = WakeupTimerValue_LargeEnough;
}
}
/**
* update ticks left to be counted for each timer
*/
while(localTimerID != CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
if (aTimerContext[localTimerID].CountLeft < time_elapsed)
{
aTimerContext[localTimerID].CountLeft = 0;
}
else
{
aTimerContext[localTimerID].CountLeft -= time_elapsed;
}
localTimerID = aTimerContext[localTimerID].NextID;
}
/**
* Write next count
*/
RestartWakeupCounter(wakeup_timer_value);
return ;
}
/* Public functions ----------------------------------------------------------*/
/**
* For all public interface except that may need write access to the RTC, the RTC
* shall be unlock at the beginning and locked at the output
* In order to ease maintainability, the unlock is done at the top and the lock at then end
* in case some new implementation is coming in the future
*/
void HW_TS_RTC_Wakeup_Handler(void)
{
HW_TS_pTimerCb_t ptimer_callback;
uint32_t timer_process_id;
uint8_t local_current_running_timer_id;
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
uint32_t primask_bit;
#endif
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
primask_bit = __get_PRIMASK(); /**< backup PRIMASK bit */
__disable_irq(); /**< Disable all interrupts by setting PRIMASK bit on Cortex*/
#endif
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
/**
* Disable the Wakeup Timer
* This may speed up a bit the processing to wait the timer to be disabled
* The timer is still counting 2 RTCCLK
*/
__HAL_RTC_WAKEUPTIMER_DISABLE(phrtc);
local_current_running_timer_id = CurrentRunningTimerID;
if(aTimerContext[local_current_running_timer_id].TimerIDStatus == TimerID_Running)
{
ptimer_callback = aTimerContext[local_current_running_timer_id].pTimerCallBack;
timer_process_id = aTimerContext[local_current_running_timer_id].TimerProcessID;
/**
* It should be good to check whether the TimeElapsed is greater or not than the tick left to be counted
* However, due to the inaccuracy of the reading of the time elapsed, it may return there is 1 tick
* to be left whereas the count is over
* A more secure implementation has been done with a flag to state whereas the full count has been written
* in the wakeuptimer or not
*/
if(WakeupTimerLimitation != WakeupTimerValue_Overpassed)
{
if(aTimerContext[local_current_running_timer_id].TimerMode == hw_ts_Repeated)
{
UnlinkTimer(local_current_running_timer_id, SSR_Read_Not_Requested);
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
HW_TS_Start(local_current_running_timer_id, aTimerContext[local_current_running_timer_id].CounterInit);
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
}
else
{
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
HW_TS_Stop(local_current_running_timer_id);
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
}
HW_TS_RTC_Int_AppNot(timer_process_id, local_current_running_timer_id, ptimer_callback);
}
else
{
RescheduleTimerList();
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
}
}
else
{
/**
* We should never end up in this case
* However, if due to any bug in the timer server this is the case, the mistake may not impact the user.
* We could just clean the interrupt flag and get out from this unexpected interrupt
*/
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTWF) == RESET);
/**
* make sure to clear the flags after checking the WUTWF.
* It takes 2 RTCCLK between the time the WUTE bit is disabled and the
* time the timer is disabled. The WUTWF bit somehow guarantee the system is stable
* Otherwise, when the timer is periodic with 1 Tick, it may generate an extra interrupt in between
* due to the autoreload feature
*/
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(phrtc, RTC_FLAG_WUTF); /**< Clear flag in RTC module */
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); /**< Clear flag in EXTI module */
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE( phrtc );
return;
}
void HW_TS_Init(HW_TS_InitMode_t TimerInitMode, RTC_HandleTypeDef *hrtc)
{
uint8_t loop;
uint32_t localmaxwakeuptimersetup;
/**
* Get RTC handler
*/
phrtc = hrtc;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
/**
* Readout the user config
*/
WakeupTimerDivider = (4 - ((uint32_t)(READ_BIT(RTC->CR, RTC_CR_WUCKSEL))));
AsynchPrescalerUserConfig = (uint8_t)(READ_BIT(RTC->PRER, RTC_PRER_PREDIV_A) >> (uint32_t)POSITION_VAL(RTC_PRER_PREDIV_A)) + 1;
SynchPrescalerUserConfig = (uint16_t)(READ_BIT(RTC->PRER, RTC_PRER_PREDIV_S)) + 1;
/**
* Margin is taken to avoid wrong calculation when the wrap around is there and some
* application interrupts may have delayed the reading
*/
localmaxwakeuptimersetup = ((((SynchPrescalerUserConfig - 1)*AsynchPrescalerUserConfig) - CFG_HW_TS_RTC_HANDLER_MAX_DELAY) >> WakeupTimerDivider);
if(localmaxwakeuptimersetup >= 0xFFFF)
{
MaxWakeupTimerSetup = 0xFFFF;
}
else
{
MaxWakeupTimerSetup = (uint16_t)localmaxwakeuptimersetup;
}
/**
* Configure EXTI module
*/
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
if(TimerInitMode == hw_ts_InitMode_Full)
{
WakeupTimerLimitation = WakeupTimerValue_LargeEnough;
SSRValueOnLastSetup = SSR_FORBIDDEN_VALUE;
/**
* Initialize the timer server
*/
for(loop = 0; loop < CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER; loop++)
{
aTimerContext[loop].TimerIDStatus = TimerID_Free;
}
CurrentRunningTimerID = CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER; /**< Set ID to non valid value */
__HAL_RTC_WAKEUPTIMER_DISABLE(phrtc); /**< Disable the Wakeup Timer */
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(phrtc, RTC_FLAG_WUTF); /**< Clear flag in RTC module */
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); /**< Clear flag in EXTI module */
HAL_NVIC_ClearPendingIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Clear pending bit in NVIC */
__HAL_RTC_WAKEUPTIMER_ENABLE_IT(phrtc, RTC_IT_WUT); /**< Enable interrupt in RTC module */
}
else
{
if(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTF) != RESET)
{
/**
* Simulate that the Timer expired
*/
HAL_NVIC_SetPendingIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID);
}
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE( phrtc );
HAL_NVIC_SetPriority(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID, CFG_HW_TS_NVIC_RTC_WAKEUP_IT_PREEMPTPRIO, CFG_HW_TS_NVIC_RTC_WAKEUP_IT_SUBPRIO); /**< Set NVIC priority */
HAL_NVIC_EnableIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Enable NVIC */
return;
}
HW_TS_ReturnStatus_t HW_TS_Create(uint32_t TimerProcessID, uint8_t *pTimerId, HW_TS_Mode_t TimerMode, HW_TS_pTimerCb_t pftimeout_handler)
{
HW_TS_ReturnStatus_t localreturnstatus;
uint8_t loop = 0;
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
uint32_t primask_bit;
#endif
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
primask_bit = __get_PRIMASK(); /**< backup PRIMASK bit */
__disable_irq(); /**< Disable all interrupts by setting PRIMASK bit on Cortex*/
#endif
while((loop < CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER) && (aTimerContext[loop].TimerIDStatus != TimerID_Free))
{
loop++;
}
if(loop != CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
aTimerContext[loop].TimerIDStatus = TimerID_Created;
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
aTimerContext[loop].TimerProcessID = TimerProcessID;
aTimerContext[loop].TimerMode = TimerMode;
aTimerContext[loop].pTimerCallBack = pftimeout_handler;
*pTimerId = loop;
localreturnstatus = hw_ts_Successful;
}
else
{
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
localreturnstatus = hw_ts_Failed;
}
return(localreturnstatus);
}
void HW_TS_Delete(uint8_t timer_id)
{
HW_TS_Stop(timer_id);
aTimerContext[timer_id].TimerIDStatus = TimerID_Free; /**< release ID */
return;
}
void HW_TS_Stop(uint8_t timer_id)
{
uint8_t localcurrentrunningtimerid;
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
uint32_t primask_bit;
#endif
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
primask_bit = __get_PRIMASK(); /**< backup PRIMASK bit */
__disable_irq(); /**< Disable all interrupts by setting PRIMASK bit on Cortex*/
#endif
HAL_NVIC_DisableIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Disable NVIC */
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
if(aTimerContext[timer_id].TimerIDStatus == TimerID_Running)
{
UnlinkTimer(timer_id, SSR_Read_Requested);
localcurrentrunningtimerid = CurrentRunningTimerID;
if(localcurrentrunningtimerid == CFG_HW_TS_MAX_NBR_CONCURRENT_TIMER)
{
/**
* List is empty
*/
/**
* Disable the timer
*/
if((READ_BIT(RTC->CR, RTC_CR_WUTE) == (RTC_CR_WUTE)) == SET)
{
/**
* Wait for the flag to be back to 0 when the wakeup timer is enabled
*/
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTWF) == SET);
}
__HAL_RTC_WAKEUPTIMER_DISABLE(phrtc); /**< Disable the Wakeup Timer */
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(phrtc, RTC_FLAG_WUTWF) == RESET);
/**
* make sure to clear the flags after checking the WUTWF.
* It takes 2 RTCCLK between the time the WUTE bit is disabled and the
* time the timer is disabled. The WUTWF bit somehow guarantee the system is stable
* Otherwise, when the timer is periodic with 1 Tick, it may generate an extra interrupt in between
* due to the autoreload feature
*/
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(phrtc, RTC_FLAG_WUTF); /**< Clear flag in RTC module */
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); /**< Clear flag in EXTI module */
HAL_NVIC_ClearPendingIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Clear pending bit in NVIC */
}
else if(PreviousRunningTimerID != localcurrentrunningtimerid)
{
RescheduleTimerList();
}
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE( phrtc );
HAL_NVIC_EnableIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Enable NVIC */
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
return;
}
void HW_TS_Start(uint8_t timer_id, uint32_t timeout_ticks)
{
uint16_t time_elapsed;
uint8_t localcurrentrunningtimerid;
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
uint32_t primask_bit;
#endif
if(aTimerContext[timer_id].TimerIDStatus == TimerID_Running)
{
HW_TS_Stop( timer_id );
}
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
primask_bit = __get_PRIMASK(); /**< backup PRIMASK bit */
__disable_irq(); /**< Disable all interrupts by setting PRIMASK bit on Cortex*/
#endif
HAL_NVIC_DisableIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Disable NVIC */
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE( phrtc );
aTimerContext[timer_id].TimerIDStatus = TimerID_Running;
aTimerContext[timer_id].CountLeft = timeout_ticks;
aTimerContext[timer_id].CounterInit = timeout_ticks;
time_elapsed = linkTimer(timer_id);
localcurrentrunningtimerid = CurrentRunningTimerID;
if(PreviousRunningTimerID != localcurrentrunningtimerid)
{
RescheduleTimerList();
}
else
{
aTimerContext[timer_id].CountLeft -= time_elapsed;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE( phrtc );
HAL_NVIC_EnableIRQ(CFG_HW_TS_RTC_WAKEUP_HANDLER_ID); /**< Enable NVIC */
#if (CFG_HW_TS_USE_PRIMASK_AS_CRITICAL_SECTION == 1)
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
#endif
return;
}
uint16_t HW_TS_RTC_ReadLeftTicksToCount(void)
{
uint32_t primask_bit;
uint16_t return_value, auro_reload_value, elapsed_time_value;
primask_bit = __get_PRIMASK(); /**< backup PRIMASK bit */
__disable_irq(); /**< Disable all interrupts by setting PRIMASK bit on Cortex*/
if((READ_BIT(RTC->CR, RTC_CR_WUTE) == (RTC_CR_WUTE)) == SET)
{
auro_reload_value = (uint32_t)(READ_BIT(RTC->WUTR, RTC_WUTR_WUT));
elapsed_time_value = ReturnTimeElapsed();
if(auro_reload_value > elapsed_time_value)
{
return_value = auro_reload_value - elapsed_time_value;
}
else
{
return_value = 0;
}
}
else
{
return_value = TIMER_LIST_EMPTY;
}
__set_PRIMASK(primask_bit); /**< Restore PRIMASK bit*/
return (return_value);
}
__weak void HW_TS_RTC_Int_AppNot(uint32_t TimerProcessID, uint8_t TimerID, HW_TS_pTimerCb_t pTimerCallBack)
{
pTimerCallBack();
return;
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/