unleashed-firmware/lib/subghz/protocols/secplus_v2.c

831 lines
28 KiB
C
Raw Normal View History

#include "secplus_v2.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/toolbox/manchester_encoder.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
/*
* Help
* https://github.com/argilo/secplus
* https://github.com/merbanan/rtl_433/blob/master/src/devices/secplus_v2.c
*/
#define TAG "SubGhzProtocoSecPlus_v2"
#define SECPLUS_V2_HEADER 0x3C0000000000
#define SECPLUS_V2_HEADER_MASK 0xFFFF3C0000000000
#define SECPLUS_V2_PACKET_1 0x000000000000
#define SECPLUS_V2_PACKET_2 0x010000000000
#define SECPLUS_V2_PACKET_MASK 0x30000000000
static const SubGhzBlockConst subghz_protocol_secplus_v2_const = {
.te_short = 250,
.te_long = 500,
.te_delta = 110,
.min_count_bit_for_found = 62,
};
struct SubGhzProtocolDecoderSecPlus_v2 {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
ManchesterState manchester_saved_state;
uint64_t secplus_packet_1;
};
struct SubGhzProtocolEncoderSecPlus_v2 {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
uint64_t secplus_packet_1;
};
typedef enum {
SecPlus_v2DecoderStepReset = 0,
SecPlus_v2DecoderStepDecoderData,
} SecPlus_v2DecoderStep;
const SubGhzProtocolDecoder subghz_protocol_secplus_v2_decoder = {
.alloc = subghz_protocol_decoder_secplus_v2_alloc,
.free = subghz_protocol_decoder_secplus_v2_free,
.feed = subghz_protocol_decoder_secplus_v2_feed,
.reset = subghz_protocol_decoder_secplus_v2_reset,
.get_hash_data = subghz_protocol_decoder_secplus_v2_get_hash_data,
.serialize = subghz_protocol_decoder_secplus_v2_serialize,
.deserialize = subghz_protocol_decoder_secplus_v2_deserialize,
.get_string = subghz_protocol_decoder_secplus_v2_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_secplus_v2_encoder = {
.alloc = subghz_protocol_encoder_secplus_v2_alloc,
.free = subghz_protocol_encoder_secplus_v2_free,
.deserialize = subghz_protocol_encoder_secplus_v2_deserialize,
.stop = subghz_protocol_encoder_secplus_v2_stop,
.yield = subghz_protocol_encoder_secplus_v2_yield,
};
const SubGhzProtocol subghz_protocol_secplus_v2 = {
.name = SUBGHZ_PROTOCOL_SECPLUS_V2_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_secplus_v2_decoder,
.encoder = &subghz_protocol_secplus_v2_encoder,
};
void* subghz_protocol_encoder_secplus_v2_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderSecPlus_v2* instance = malloc(sizeof(SubGhzProtocolEncoderSecPlus_v2));
instance->base.protocol = &subghz_protocol_secplus_v2;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_runing = false;
return instance;
}
void subghz_protocol_encoder_secplus_v2_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderSecPlus_v2* instance = context;
free(instance->encoder.upload);
free(instance);
}
static bool subghz_protocol_secplus_v2_mix_invet(uint8_t invert, uint16_t p[]) {
// selectively invert buffers
switch(invert) {
case 0x00: // 0b0000 (True, True, False),
p[0] = ~p[0] & 0x03FF;
p[1] = ~p[1] & 0x03FF;
break;
case 0x01: // 0b0001 (False, True, False),
p[1] = ~p[1] & 0x03FF;
break;
case 0x02: // 0b0010 (False, False, True),
p[2] = ~p[2] & 0x03FF;
break;
case 0x04: // 0b0100 (True, True, True),
p[0] = ~p[0] & 0x03FF;
p[1] = ~p[1] & 0x03FF;
p[2] = ~p[2] & 0x03FF;
break;
case 0x05: // 0b0101 (True, False, True),
case 0x0a: // 0b1010 (True, False, True),
p[0] = ~p[0] & 0x03FF;
p[2] = ~p[2] & 0x03FF;
break;
case 0x06: // 0b0110 (False, True, True),
p[1] = ~p[1] & 0x03FF;
p[2] = ~p[2] & 0x03FF;
break;
case 0x08: // 0b1000 (True, False, False),
p[0] = ~p[0] & 0x03FF;
break;
case 0x09: // 0b1001 (False, False, False),
break;
default:
FURI_LOG_E(TAG, "Invert FAIL");
return false;
}
return true;
}
static bool subghz_protocol_secplus_v2_mix_order_decode(uint8_t order, uint16_t p[]) {
uint16_t a = p[0], b = p[1], c = p[2];
// selectively reorder buffers
switch(order) {
case 0x06: // 0b0110 2, 1, 0],
case 0x09: // 0b1001 2, 1, 0],
p[2] = a;
p[1] = b;
p[0] = c;
break;
case 0x08: // 0b1000 1, 2, 0],
case 0x04: // 0b0100 1, 2, 0],
p[1] = a;
p[2] = b;
p[0] = c;
break;
case 0x01: // 0b0001 2, 0, 1],
p[2] = a;
p[0] = b;
p[1] = c;
break;
case 0x00: // 0b0000 0, 2, 1],
p[0] = a;
p[2] = b;
p[1] = c;
break;
case 0x05: // 0b0101 1, 0, 2],
p[1] = a;
p[0] = b;
p[2] = c;
break;
case 0x02: // 0b0010 0, 1, 2],
case 0x0A: // 0b1010 0, 1, 2],
p[0] = a;
p[1] = b;
p[2] = c;
break;
default:
FURI_LOG_E(TAG, "Order FAIL");
return false;
}
return true;
}
static bool subghz_protocol_secplus_v2_mix_order_encode(uint8_t order, uint16_t p[]) {
uint16_t a, b, c;
// selectively reorder buffers
switch(order) {
case 0x06: // 0b0110 2, 1, 0],
case 0x09: // 0b1001 2, 1, 0],
a = p[2];
b = p[1];
c = p[0];
break;
case 0x08: // 0b1000 1, 2, 0],
case 0x04: // 0b0100 1, 2, 0],
a = p[1];
b = p[2];
c = p[0];
break;
case 0x01: // 0b0001 2, 0, 1],
a = p[2];
b = p[0];
c = p[1];
break;
case 0x00: // 0b0000 0, 2, 1],
a = p[0];
b = p[2];
c = p[1];
break;
case 0x05: // 0b0101 1, 0, 2],
a = p[1];
b = p[0];
c = p[2];
break;
case 0x02: // 0b0010 0, 1, 2],
case 0x0A: // 0b1010 0, 1, 2],
a = p[0];
b = p[1];
c = p[2];
break;
default:
FURI_LOG_E(TAG, "Order FAIL");
return false;
}
p[0] = a;
p[1] = b;
p[2] = c;
return true;
}
/**
* Security+ 2.0 half-message decoding
* @param data data
* @param roll_array[] return roll_array part
* @param fixed[] return fixed part
* @return true On success
*/
static bool
subghz_protocol_secplus_v2_decode_half(uint64_t data, uint8_t roll_array[], uint32_t* fixed) {
uint8_t order = (data >> 34) & 0x0f;
uint8_t invert = (data >> 30) & 0x0f;
uint16_t p[3] = {0};
for(int i = 29; i >= 0; i -= 3) {
p[0] = p[0] << 1 | bit_read(data, i);
p[1] = p[1] << 1 | bit_read(data, i - 1);
p[2] = p[2] << 1 | bit_read(data, i - 2);
}
if(!subghz_protocol_secplus_v2_mix_invet(invert, p)) return false;
if(!subghz_protocol_secplus_v2_mix_order_decode(order, p)) return false;
data = order << 4 | invert;
int k = 0;
for(int i = 6; i >= 0; i -= 2) {
roll_array[k++] = (data >> i) & 0x03;
if(roll_array[k] == 3) {
FURI_LOG_E(TAG, "Roll_Array FAIL");
return false;
}
}
for(int i = 8; i >= 0; i -= 2) {
roll_array[k++] = (p[2] >> i) & 0x03;
if(roll_array[k] == 3) {
FURI_LOG_E(TAG, "Roll_Array FAIL");
return false;
}
}
fixed[0] = p[0] << 10 | p[1];
return true;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param packet_1 first part of the message
*/
static void
subghz_protocol_secplus_v2_remote_controller(SubGhzBlockGeneric* instance, uint64_t packet_1) {
uint32_t fixed_1[1];
uint8_t roll_1[9] = {0};
uint32_t fixed_2[1];
uint8_t roll_2[9] = {0};
uint8_t rolling_digits[18] = {0};
if(subghz_protocol_secplus_v2_decode_half(packet_1, roll_1, fixed_1) &&
subghz_protocol_secplus_v2_decode_half(instance->data, roll_2, fixed_2)) {
rolling_digits[0] = roll_2[8];
rolling_digits[1] = roll_1[8];
rolling_digits[2] = roll_2[4];
rolling_digits[3] = roll_2[5];
rolling_digits[4] = roll_2[6];
rolling_digits[5] = roll_2[7];
rolling_digits[6] = roll_1[4];
rolling_digits[7] = roll_1[5];
rolling_digits[8] = roll_1[6];
rolling_digits[9] = roll_1[7];
rolling_digits[10] = roll_2[0];
rolling_digits[11] = roll_2[1];
rolling_digits[12] = roll_2[2];
rolling_digits[13] = roll_2[3];
rolling_digits[14] = roll_1[0];
rolling_digits[15] = roll_1[1];
rolling_digits[16] = roll_1[2];
rolling_digits[17] = roll_1[3];
uint32_t rolling = 0;
for(int i = 0; i < 18; i++) {
rolling = (rolling * 3) + rolling_digits[i];
}
// Max value = 2^28 (268435456)
if(rolling >= 0x10000000) {
FURI_LOG_E(TAG, "Rolling FAIL");
instance->cnt = 0;
instance->btn = 0;
instance->serial = 0;
} else {
instance->cnt = subghz_protocol_blocks_reverse_key(rolling, 28);
instance->btn = fixed_1[0] >> 12;
instance->serial = fixed_1[0] << 20 | fixed_2[0];
}
} else {
instance->cnt = 0;
instance->btn = 0;
instance->serial = 0;
}
}
/**
* Security+ 2.0 half-message encoding
* @param roll_array[] roll_array part
* @param fixed[] fixed part
* @return return data
*/
static uint64_t subghz_protocol_secplus_v2_encode_half(uint8_t roll_array[], uint32_t fixed) {
uint64_t data = 0;
uint16_t p[3] = {(fixed >> 10) & 0x3FF, fixed & 0x3FF, 0};
uint8_t order = roll_array[0] << 2 | roll_array[1];
uint8_t invert = roll_array[2] << 2 | roll_array[3];
p[2] = (uint16_t)roll_array[4] << 8 | roll_array[5] << 6 | roll_array[6] << 4 |
roll_array[7] << 2 | roll_array[8];
if(!subghz_protocol_secplus_v2_mix_order_encode(order, p)) return 0;
if(!subghz_protocol_secplus_v2_mix_invet(invert, p)) return 0;
for(int i = 0; i < 10; i++) {
data <<= 3;
data |= bit_read(p[0], 9 - i) << 2 | bit_read(p[1], 9 - i) << 1 | bit_read(p[2], 9 - i);
}
data |= ((uint64_t)order) << 34 | ((uint64_t)invert) << 30;
return data;
}
/**
* Security+ 2.0 message encoding
* @param instance SubGhzProtocolEncoderSecPlus_v2*
*/
static void subghz_protocol_secplus_v2_encode(SubGhzProtocolEncoderSecPlus_v2* instance) {
uint32_t fixed_1[1] = {instance->generic.btn << 12 | instance->generic.serial >> 20};
uint32_t fixed_2[1] = {instance->generic.serial & 0xFFFFF};
uint8_t rolling_digits[18] = {0};
uint8_t roll_1[9] = {0};
uint8_t roll_2[9] = {0};
instance->generic.cnt++;
//ToDo it is not known what value the counter starts
if(instance->generic.cnt > 0xFFFFFFF) instance->generic.cnt = 0xE500000;
uint32_t rolling = subghz_protocol_blocks_reverse_key(instance->generic.cnt, 28);
for(int8_t i = 17; i > -1; i--) {
rolling_digits[i] = rolling % 3;
rolling /= 3;
}
roll_2[8] = rolling_digits[0];
roll_1[8] = rolling_digits[1];
roll_2[4] = rolling_digits[2];
roll_2[5] = rolling_digits[3];
roll_2[6] = rolling_digits[4];
roll_2[7] = rolling_digits[5];
roll_1[4] = rolling_digits[6];
roll_1[5] = rolling_digits[7];
roll_1[6] = rolling_digits[8];
roll_1[7] = rolling_digits[9];
roll_2[0] = rolling_digits[10];
roll_2[1] = rolling_digits[11];
roll_2[2] = rolling_digits[12];
roll_2[3] = rolling_digits[13];
roll_1[0] = rolling_digits[14];
roll_1[1] = rolling_digits[15];
roll_1[2] = rolling_digits[16];
roll_1[3] = rolling_digits[17];
instance->secplus_packet_1 = SECPLUS_V2_HEADER | SECPLUS_V2_PACKET_1 |
subghz_protocol_secplus_v2_encode_half(roll_1, fixed_1[0]);
instance->generic.data = SECPLUS_V2_HEADER | SECPLUS_V2_PACKET_2 |
subghz_protocol_secplus_v2_encode_half(roll_2, fixed_2[0]);
}
static LevelDuration
subghz_protocol_encoder_secplus_v2_add_duration_to_upload(ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = subghz_protocol_secplus_v2_const.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = subghz_protocol_secplus_v2_const.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = subghz_protocol_secplus_v2_const.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = subghz_protocol_secplus_v2_const.te_short;
data.level = true;
break;
default:
furi_crash("SubGhz: ManchesterEncoderResult is incorrect.");
break;
}
return level_duration_make(data.level, data.duration);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderSecPlus_v2 instance
*/
static void
subghz_protocol_encoder_secplus_v2_get_upload(SubGhzProtocolEncoderSecPlus_v2* instance) {
furi_assert(instance);
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
//Send data packet 1
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(!manchester_encoder_advance(
&enc_state, bit_read(instance->secplus_packet_1, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result);
manchester_encoder_advance(
&enc_state, bit_read(instance->secplus_packet_1, i - 1), &result);
}
instance->encoder.upload[index++] =
subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result);
}
instance->encoder.upload[index] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_secplus_v2_const.te_long * 136);
//Send data packet 2
manchester_encoder_reset(&enc_state);
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(!manchester_encoder_advance(
&enc_state, bit_read(instance->generic.data, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result);
manchester_encoder_advance(
&enc_state, bit_read(instance->generic.data, i - 1), &result);
}
instance->encoder.upload[index++] =
subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result);
}
instance->encoder.upload[index] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_secplus_v2_const.te_long * 136);
instance->encoder.size_upload = index;
}
bool subghz_protocol_encoder_secplus_v2_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderSecPlus_v2* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
if(!flipper_format_read_hex(
flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Secplus_packet_1");
break;
}
for(uint8_t i = 0; i < sizeof(uint64_t); i++) {
instance->secplus_packet_1 = instance->secplus_packet_1 << 8 | key_data[i];
}
subghz_protocol_secplus_v2_remote_controller(
&instance->generic, instance->secplus_packet_1);
subghz_protocol_secplus_v2_encode(instance);
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_secplus_v2_get_upload(instance);
//update data
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(
flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Secplus_packet_1");
break;
}
instance->encoder.is_runing = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_secplus_v2_stop(void* context) {
SubGhzProtocolEncoderSecPlus_v2* instance = context;
instance->encoder.is_runing = false;
}
LevelDuration subghz_protocol_encoder_secplus_v2_yield(void* context) {
SubGhzProtocolEncoderSecPlus_v2* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
instance->encoder.is_runing = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
bool subghz_protocol_secplus_v2_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint32_t cnt,
uint32_t frequency,
FuriHalSubGhzPreset preset) {
furi_assert(context);
SubGhzProtocolEncoderSecPlus_v2* instance = context;
instance->generic.serial = serial;
instance->generic.cnt = cnt;
instance->generic.btn = btn;
instance->generic.data_count_bit =
(uint8_t)subghz_protocol_secplus_v2_const.min_count_bit_for_found;
subghz_protocol_secplus_v2_encode(instance);
bool res =
subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset);
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF;
}
if(res &&
!flipper_format_write_hex(flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Secplus_packet_1");
res = false;
}
return res;
}
void* subghz_protocol_decoder_secplus_v2_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderSecPlus_v2* instance = malloc(sizeof(SubGhzProtocolDecoderSecPlus_v2));
instance->base.protocol = &subghz_protocol_secplus_v2;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_secplus_v2_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
free(instance);
}
void subghz_protocol_decoder_secplus_v2_reset(void* context) {
furi_assert(context);
// SubGhzProtocolDecoderSecPlus_v2* instance = context;
// does not reset the decoder because you need to get 2 parts of the package
}
static bool subghz_protocol_secplus_v2_check_packet(SubGhzProtocolDecoderSecPlus_v2* instance) {
if((instance->decoder.decode_data & SECPLUS_V2_HEADER_MASK) == SECPLUS_V2_HEADER) {
if((instance->decoder.decode_data & SECPLUS_V2_PACKET_MASK) == SECPLUS_V2_PACKET_1) {
instance->secplus_packet_1 = instance->decoder.decode_data;
} else if(
((instance->decoder.decode_data & SECPLUS_V2_PACKET_MASK) == SECPLUS_V2_PACKET_2) &&
(instance->secplus_packet_1)) {
return true;
}
}
return false;
}
void subghz_protocol_decoder_secplus_v2_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
ManchesterEvent event = ManchesterEventReset;
switch(instance->decoder.parser_step) {
case SecPlus_v2DecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long * 130) <
subghz_protocol_secplus_v2_const.te_delta * 100)) {
//Found header Security+ 2.0
instance->decoder.parser_step = SecPlus_v2DecoderStepDecoderData;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->secplus_packet_1 = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
}
break;
case SecPlus_v2DecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_short) <
subghz_protocol_secplus_v2_const.te_delta) {
event = ManchesterEventShortLow;
} else if(
DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long) <
subghz_protocol_secplus_v2_const.te_delta) {
event = ManchesterEventLongLow;
} else if(
duration >= (uint32_t)(subghz_protocol_secplus_v2_const.te_long * 2 +
subghz_protocol_secplus_v2_const.te_delta)) {
if(instance->decoder.decode_count_bit >=
subghz_protocol_secplus_v2_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(subghz_protocol_secplus_v2_check_packet(instance)) {
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
instance->decoder.parser_step = SecPlus_v2DecoderStepReset;
}
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->decoder.parser_step = SecPlus_v2DecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_short) <
subghz_protocol_secplus_v2_const.te_delta) {
event = ManchesterEventShortHigh;
} else if(
DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long) <
subghz_protocol_secplus_v2_const.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->decoder.parser_step = SecPlus_v2DecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->decoder.decode_data = (instance->decoder.decode_data << 1) | data;
instance->decoder.decode_count_bit++;
}
}
break;
}
}
uint8_t subghz_protocol_decoder_secplus_v2_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_secplus_v2_serialize(
void* context,
FlipperFormat* flipper_format,
uint32_t frequency,
FuriHalSubGhzPreset preset) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
bool res =
subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset);
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF;
}
if(res &&
!flipper_format_write_hex(flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Secplus_packet_1");
res = false;
}
return res;
}
bool subghz_protocol_decoder_secplus_v2_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
if(!flipper_format_read_hex(
flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Missing Secplus_packet_1");
break;
}
for(uint8_t i = 0; i < sizeof(uint64_t); i++) {
instance->secplus_packet_1 = instance->secplus_packet_1 << 8 | key_data[i];
}
res = true;
} while(false);
return res;
}
void subghz_protocol_decoder_secplus_v2_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderSecPlus_v2* instance = context;
subghz_protocol_secplus_v2_remote_controller(&instance->generic, instance->secplus_packet_1);
string_cat_printf(
output,
"%s %db\r\n"
"Pk1:0x%lX%08lX\r\n"
"Pk2:0x%lX%08lX\r\n"
"Sn:0x%08lX Btn:0x%01X\r\n"
"Cnt:0x%03X\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->secplus_packet_1 >> 32),
(uint32_t)instance->secplus_packet_1,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
instance->generic.serial,
instance->generic.btn,
instance->generic.cnt);
}