unleashed-firmware/applications/tests/furi_record_test.c

457 lines
13 KiB
C
Raw Normal View History

#include <stdio.h>
#include <string.h>
#include "flipper.h"
#include "log.h"
/*
TEST: pipe record
1. create pipe record
2. Open/subscribe to it
3. write data
4. check that subscriber get data
5. try to read, get error
6. close record
7. try to write, get error
*/
static uint8_t pipe_record_value = 0;
void pipe_record_cb(const void* value, size_t size) {
// hold value to static var
pipe_record_value = *((uint8_t*)value);
}
bool test_furi_pipe_record(FuriRecordSubscriber* log) {
// 1. create pipe record
if(!furi_create("test/pipe", NULL, 0)) {
fuprintf(log, "cannot create record\n");
return false;
}
// 2. Open/subscribe to it
FuriRecordSubscriber* pipe_record = furi_open(
"test/pipe", false, false, pipe_record_cb, NULL
);
if(pipe_record == NULL) {
fuprintf(log, "cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(pipe_record_value != WRITE_VALUE) {
fuprintf(log, "wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE);
return false;
}
// 5. try to read, get error
uint8_t read_value = 0;
if(furi_read(pipe_record, &read_value, sizeof(uint8_t))) {
fuprintf(log, "reading from pipe record not allowed\n");
return false;
}
// 6. close record
furi_close(pipe_record);
// 7. try to write, get error
if(furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "writing to closed record not allowed\n");
return false;
}
return true;
}
/*
TEST: holding data
1. Create holding record
2. Open/Subscribe on it
3. Write data
4. Check that subscriber get data
5. Read and check data
6. Try to write/read wrong size of data
*/
static uint8_t holding_record_value = 0;
void holding_record_cb(const void* value, size_t size) {
// hold value to static var
holding_record_value = *((uint8_t*)value);
}
bool test_furi_holding_data(FuriRecordSubscriber* log) {
// 1. Create holding record
uint8_t holder = 0;
if(!furi_create("test/holding", (void*)&holder, sizeof(holder))) {
fuprintf(log, "cannot create record\n");
return false;
}
// 2. Open/Subscribe on it
FuriRecordSubscriber* holding_record = furi_open(
"test/holding", false, false, holding_record_cb, NULL
);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(holding_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(holding_record_value != WRITE_VALUE) {
fuprintf(log, "wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE);
return false;
}
// 5. Read and check data
uint8_t read_value = 0;
if(!furi_read(holding_record, &read_value, sizeof(uint8_t))) {
fuprintf(log, "cannot read from record\n");
return false;
}
if(read_value != WRITE_VALUE) {
fuprintf(log, "wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE);
return false;
}
// 6. Try to write/read wrong size of data
if(furi_write(holding_record, &WRITE_VALUE, 100)) {
fuprintf(log, "overflowed write not allowed\n");
return false;
}
if(furi_read(holding_record, &read_value, 100)) {
fuprintf(log, "overflowed read not allowed\n");
return false;
}
return true;
}
/*
TEST: concurrent access
1. Create holding record
2. Open it twice
3. Change value simultaneously in two app and check integrity
*/
// TODO this test broke because mutex in furi is not implemented
typedef struct {
// a and b must be equal
uint8_t a;
uint8_t b;
} ConcurrentValue;
void furi_concurent_app(void* p) {
FuriRecordSubscriber* log = (FuriRecordSubscriber*)p;
FuriRecordSubscriber* holding_record = furi_open(
"test/concurrent", false, false, NULL, NULL
);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
furiac_exit(NULL);
}
for(size_t i = 0; i < 10; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
fuprintf(log, "cannot take record\n");
furi_give(holding_record);
furiac_exit(NULL);
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
delay(2); // this is only for test, do not add delay between take/give in prod!
value->a = a;
value->b = b;
furi_give(holding_record);
}
furiac_exit(NULL);
}
bool test_furi_concurrent_access(FuriRecordSubscriber* log) {
// 1. Create holding record
ConcurrentValue holder = {.a = 0, .b = 0};
if(!furi_create("test/concurrent", (void*)&holder, sizeof(ConcurrentValue))) {
fuprintf(log, "cannot create record\n");
return false;
}
// 2. Open it
FuriRecordSubscriber* holding_record = furi_open(
"test/concurrent", false, false, NULL, NULL
);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
return false;
}
// 3. Create second app for interact with it
FuriApp* second_app = furiac_start(
furi_concurent_app, "furi concurent app", (void*)log
);
// 4. multiply ConcurrentValue::a
for(size_t i = 0; i < 4; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
fuprintf(log, "cannot take record\n");
furi_give(holding_record);
return false;
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
value->a = a;
delay(10); // this is only for test, do not add delay between take/give in prod!
value->b = b;
furi_give(holding_record);
}
delay(20);
if(second_app->handler != NULL) {
fuprintf(log, "second app still alive\n");
return false;
}
if(holder.a != holder.b) {
fuprintf(log, "broken integrity: a=%d, b=%d\n", holder.a, holder.b);
return false;
}
return true;
}
/*
TEST: non-existent data
1. Try to open non-existent record
2. Check for NULL handler
3. Try to write/read, get error
TODO: implement this test
*/
bool test_furi_nonexistent_data(FuriRecordSubscriber* log) {
return true;
}
/*
TEST: mute algorithm
1. Create "parent" application:
1. Create pipe record
2. Open watch handler: no_mute=false, solo=false, subscribe to data.
2. Open handler A: no_mute=false, solo=false, NULL subscriber. Subscribe to state.
Try to write data to A and check subscriber.
3. Open handler B: no_mute=true, solo=true, NULL subscriber.
Check A state cb get FlipperRecordStateMute.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data.
TODO: test 3 not pass beacuse state callback not implemented
4. Open hadler C: no_mute=false, solo=true, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data.
5. Open handler D: no_mute=false, solo=false, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data. (not muted because D open without solo)
Try to write data to D and check that subscriber get data.
6. Close C, close B.
Check A state cb get FlipperRecordStateUnmute
Try to write data to A and check that subscriber get data. (unmuted)
Try to write data to D and check that subscriber get data.
TODO: test 6 not pass beacuse cleanup is not implemented
TODO: test 6 not pass because mute algorithm is unfinished.
7. Exit "parent application"
Check A state cb get FlipperRecordStateDeleted
TODO: test 7 not pass beacuse cleanup is not implemented
*/
static uint8_t mute_last_value = 0;
static FlipperRecordState mute_last_state = 255;
void mute_record_cb(const void* value, size_t size) {
// hold value to static var
mute_last_value = *((uint8_t*)value);
}
void mute_record_state_cb(FlipperRecordState state) {
mute_last_state = state;
}
void furi_mute_parent_app(void* p) {
FuriRecordSubscriber* log = (FuriRecordSubscriber*)p;
// 1. Create pipe record
if(!furi_create("test/mute", NULL, 0)) {
fuprintf(log, "cannot create record\n");
furiac_exit(NULL);
}
// 2. Open watch handler: solo=false, no_mute=false, subscribe to data
FuriRecordSubscriber* watch_handler = furi_open(
"test/mute", false, false, mute_record_cb, NULL
);
if(watch_handler == NULL) {
fuprintf(log, "cannot open watch handler\n");
furiac_exit(NULL);
}
while(1) {
// TODO we don't have thread sleep
delay(100000);
}
}
bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// 1. Create "parent" application:
FuriApp* parent_app = furiac_start(
furi_mute_parent_app, "parent app", (void*)log
);
delay(2); // wait creating record
// 2. Open handler A: solo=false, no_mute=false, NULL subscriber. Subscribe to state.
FuriRecordSubscriber* handler_a = furi_open(
"test/mute", false, false, NULL, mute_record_state_cb
);
if(handler_a == NULL) {
fuprintf(log, "cannot open handler A\n");
return false;
}
uint8_t test_counter = 1;
// Try to write data to A and check subscriber
if(!furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "write to A failed\n");
return false;
}
if(mute_last_value != test_counter) {
fuprintf(log, "value A mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 3. Open handler B: solo=true, no_mute=true, NULL subscriber.
FuriRecordSubscriber* handler_b = furi_open(
"test/mute", true, true, NULL, NULL
);
if(handler_b == NULL) {
fuprintf(log, "cannot open handler B\n");
return false;
}
// Check A state cb get FlipperRecordStateMute.
if(mute_last_state != FlipperRecordStateMute) {
fuprintf(log, "A state is not FlipperRecordStateMute: %d\n", mute_last_state);
return false;
}
test_counter = 2;
// Try to write data to A and check that subscriber get no data. (muted)
if(furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "A not muted\n");
return false;
}
if(mute_last_value == test_counter) {
fuprintf(log, "value A must be muted\n");
return false;
}
test_counter = 3;
// Try to write data to B and check that subscriber get data.
if(!furi_write(handler_b, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "write to B failed\n");
return false;
}
if(mute_last_value != test_counter) {
fuprintf(log, "value B mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 4. Open hadler C: solo=true, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_c = furi_open(
"test/mute", true, false, NULL, NULL
);
if(handler_c == NULL) {
fuprintf(log, "cannot open handler C\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data.
// 5. Open handler D: solo=false, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_d = furi_open(
"test/mute", false, false, NULL, NULL
);
if(handler_d == NULL) {
fuprintf(log, "cannot open handler D\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data. (not muted because D open without solo)
// TODO: Try to write data to D and check that subscriber get data.
// 6. Close C, close B.
// TODO: Check A state cb get FlipperRecordStateUnmute
// TODO: Try to write data to A and check that subscriber get data. (unmuted)
// TODO: Try to write data to D and check that subscriber get data.
// 7. Exit "parent application"
if(!furiac_kill(parent_app)) {
fuprintf(log, "kill parent_app fail\n");
return false;
}
// TODO: Check A state cb get FlipperRecordStateDeleted
return true;
}