unleashed-firmware/lib/subghz/protocols/oregon2.c

325 lines
12 KiB
C
Raw Normal View History

#include "oregon2.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/flipper_format/flipper_format_i.h>
#include <m-string.h>
#define TAG "SubGhzProtocolOregon2"
static const SubGhzBlockConst oregon2_const = {
.te_long = 1000,
.te_short = 500,
.te_delta = 200,
.min_count_bit_for_found = 32,
};
#define OREGON2_PREAMBLE_BITS 19
#define OREGON2_PREAMBLE_MASK ((1 << (OREGON2_PREAMBLE_BITS + 1)) - 1)
#define OREGON2_SENSOR_ID(d) (((d) >> 16) & 0xFFFF)
#define OREGON2_CHECKSUM_BITS 8
// 15 ones + 0101 (inverted A)
#define OREGON2_PREAMBLE 0b1111111111111110101
// bit indicating the low battery
#define OREGON2_FLAG_BAT_LOW 0x4
struct SubGhzProtocolDecoderOregon2 {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
ManchesterState manchester_state;
bool prev_bit;
bool have_bit;
uint8_t var_bits;
uint32_t var_data;
};
typedef struct SubGhzProtocolDecoderOregon2 SubGhzProtocolDecoderOregon2;
typedef enum {
Oregon2DecoderStepReset = 0,
Oregon2DecoderStepFoundPreamble,
Oregon2DecoderStepVarData,
} Oregon2DecoderStep;
void* subghz_protocol_decoder_oregon2_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderOregon2* instance = malloc(sizeof(SubGhzProtocolDecoderOregon2));
instance->base.protocol = &subghz_protocol_oregon2;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_oregon2_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
free(instance);
}
void subghz_protocol_decoder_oregon2_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
instance->decoder.parser_step = Oregon2DecoderStepReset;
instance->decoder.decode_data = 0UL;
instance->decoder.decode_count_bit = 0;
manchester_advance(
instance->manchester_state, ManchesterEventReset, &instance->manchester_state, NULL);
instance->have_bit = false;
instance->var_data = 0;
instance->var_bits = 0;
}
static ManchesterEvent level_and_duration_to_event(bool level, uint32_t duration) {
bool is_long = false;
if(DURATION_DIFF(duration, oregon2_const.te_long) < oregon2_const.te_delta) {
is_long = true;
} else if(DURATION_DIFF(duration, oregon2_const.te_short) < oregon2_const.te_delta) {
is_long = false;
} else {
return ManchesterEventReset;
}
if(level)
return is_long ? ManchesterEventLongHigh : ManchesterEventShortHigh;
else
return is_long ? ManchesterEventLongLow : ManchesterEventShortLow;
}
// From sensor id code return amount of bits in variable section
static uint8_t oregon2_sensor_id_var_bits(uint16_t sensor_id) {
if(sensor_id == 0xEC40) return 16;
return 0;
}
void subghz_protocol_decoder_oregon2_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
// oregon v2.1 signal is inverted
ManchesterEvent event = level_and_duration_to_event(!level, duration);
bool data;
// low-level bit sequence decoding
if(event == ManchesterEventReset) {
instance->decoder.parser_step = Oregon2DecoderStepReset;
instance->have_bit = false;
instance->decoder.decode_data = 0UL;
instance->decoder.decode_count_bit = 0;
}
if(manchester_advance(instance->manchester_state, event, &instance->manchester_state, &data)) {
if(instance->have_bit) {
if(!instance->prev_bit && data) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
} else if(instance->prev_bit && !data) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else {
subghz_protocol_decoder_oregon2_reset(context);
}
instance->have_bit = false;
} else {
instance->prev_bit = data;
instance->have_bit = true;
}
}
switch(instance->decoder.parser_step) {
case Oregon2DecoderStepReset:
// waiting for fixed oregon2 preamble
if(instance->decoder.decode_count_bit >= OREGON2_PREAMBLE_BITS &&
((instance->decoder.decode_data & OREGON2_PREAMBLE_MASK) == OREGON2_PREAMBLE)) {
instance->decoder.parser_step = Oregon2DecoderStepFoundPreamble;
instance->decoder.decode_count_bit = 0;
instance->decoder.decode_data = 0UL;
}
break;
case Oregon2DecoderStepFoundPreamble:
// waiting for fixed oregon2 data
if(instance->decoder.decode_count_bit == 32) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
instance->decoder.decode_data = 0UL;
instance->decoder.decode_count_bit = 0;
// reverse nibbles in decoded data
instance->generic.data = (instance->generic.data & 0x55555555) << 1 |
(instance->generic.data & 0xAAAAAAAA) >> 1;
instance->generic.data = (instance->generic.data & 0x33333333) << 2 |
(instance->generic.data & 0xCCCCCCCC) >> 2;
instance->var_bits =
oregon2_sensor_id_var_bits(OREGON2_SENSOR_ID(instance->generic.data));
if(!instance->var_bits) {
// sensor is not supported, stop decoding, but showing the decoded fixed part
instance->decoder.parser_step = Oregon2DecoderStepReset;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
} else {
instance->decoder.parser_step = Oregon2DecoderStepVarData;
}
}
break;
case Oregon2DecoderStepVarData:
// waiting for variable (sensor-specific data)
if(instance->decoder.decode_count_bit == instance->var_bits + OREGON2_CHECKSUM_BITS) {
instance->var_data = instance->decoder.decode_data & 0xFFFFFFFF;
// reverse nibbles in var data
instance->var_data = (instance->var_data & 0x55555555) << 1 |
(instance->var_data & 0xAAAAAAAA) >> 1;
instance->var_data = (instance->var_data & 0x33333333) << 2 |
(instance->var_data & 0xCCCCCCCC) >> 2;
instance->decoder.parser_step = Oregon2DecoderStepReset;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
}
uint8_t subghz_protocol_decoder_oregon2_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_oregon2_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
if(!subghz_block_generic_serialize(&instance->generic, flipper_format, preset)) return false;
uint32_t temp = instance->var_bits;
if(!flipper_format_write_uint32(flipper_format, "VarBits", &temp, 1)) {
FURI_LOG_E(TAG, "Error adding VarBits");
return false;
}
if(!flipper_format_write_hex(
flipper_format,
"VarData",
(const uint8_t*)&instance->var_data,
sizeof(instance->var_data))) {
FURI_LOG_E(TAG, "Error adding VarData");
return false;
}
return true;
}
bool subghz_protocol_decoder_oregon2_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
bool ret = false;
uint32_t temp_data;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(!flipper_format_read_uint32(flipper_format, "VarBits", &temp_data, 1)) {
FURI_LOG_E(TAG, "Missing VarLen");
break;
}
instance->var_bits = (uint8_t)temp_data;
if(!flipper_format_read_hex(
flipper_format,
"VarData",
(uint8_t*)&instance->var_data,
sizeof(instance->var_data))) {
FURI_LOG_E(TAG, "Missing VarData");
break;
}
if(instance->generic.data_count_bit != oregon2_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key: %d", instance->generic.data_count_bit);
break;
}
ret = true;
} while(false);
return ret;
}
// append string of the variable data
static void
oregon2_var_data_append_string(uint16_t sensor_id, uint32_t var_data, string_t output) {
uint32_t val;
if(sensor_id == 0xEC40) {
val = ((var_data >> 4) & 0xF) * 10 + ((var_data >> 8) & 0xF);
string_cat_printf(
output,
"Temp: %s%d.%d C\r\n",
(var_data & 0xF) ? "-" : "+",
val,
(uint32_t)(var_data >> 12) & 0xF);
}
}
static void oregon2_append_check_sum(uint32_t fix_data, uint32_t var_data, string_t output) {
uint8_t sum = fix_data & 0xF;
uint8_t ref_sum = var_data & 0xFF;
var_data >>= 8;
for(uint8_t i = 1; i < 8; i++) {
fix_data >>= 4;
var_data >>= 4;
sum += (fix_data & 0xF) + (var_data & 0xF);
}
// swap calculated sum nibbles
sum = (((sum >> 4) & 0xF) | (sum << 4)) & 0xFF;
if(sum == ref_sum)
string_cat_printf(output, "Sum ok: 0x%hhX", ref_sum);
else
string_cat_printf(output, "Sum err: 0x%hhX vs 0x%hhX", ref_sum, sum);
}
void subghz_protocol_decoder_oregon2_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderOregon2* instance = context;
uint16_t sensor_id = OREGON2_SENSOR_ID(instance->generic.data);
string_cat_printf(
output,
"%s\r\n"
"ID: 0x%04lX, ch: %d%s, rc: 0x%02lX\r\n",
instance->generic.protocol_name,
(uint32_t)sensor_id,
(uint32_t)(instance->generic.data >> 12) & 0xF,
((instance->generic.data & OREGON2_FLAG_BAT_LOW) ? ", low bat" : ""),
(uint32_t)(instance->generic.data >> 4) & 0xFF);
if(instance->var_bits > 0) {
oregon2_var_data_append_string(
sensor_id, instance->var_data >> OREGON2_CHECKSUM_BITS, output);
oregon2_append_check_sum((uint32_t)instance->generic.data, instance->var_data, output);
}
}
const SubGhzProtocolDecoder subghz_protocol_oregon2_decoder = {
.alloc = subghz_protocol_decoder_oregon2_alloc,
.free = subghz_protocol_decoder_oregon2_free,
.feed = subghz_protocol_decoder_oregon2_feed,
.reset = subghz_protocol_decoder_oregon2_reset,
.get_hash_data = subghz_protocol_decoder_oregon2_get_hash_data,
.serialize = subghz_protocol_decoder_oregon2_serialize,
.deserialize = subghz_protocol_decoder_oregon2_deserialize,
.get_string = subghz_protocol_decoder_oregon2_get_string,
};
const SubGhzProtocol subghz_protocol_oregon2 = {
.name = SUBGHZ_PROTOCOL_OREGON2_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save,
.decoder = &subghz_protocol_oregon2_decoder,
};