unleashed-firmware/lib/digital_signal/digital_sequence.c

382 lines
14 KiB
C
Raw Normal View History

#include "digital_sequence.h"
#include "digital_signal_i.h"
#include <furi.h>
#include <furi_hal_bus.h>
#include <stm32wbxx_ll_dma.h>
#include <stm32wbxx_ll_tim.h>
/**
* To enable debug output on an additional pin, set DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN to the required
* GpioPin variable. It can be passed at compile time via the --extra-define fbt switch.
* NOTE: This pin must be on the same GPIO port as the main pin.
*
* Example:
* ./fbt --extra-define=DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN=gpio_ext_pb3
*/
#define TAG "DigitalSequence"
/* Special value used to indicate the end of DMA ring buffer. */
#define DIGITAL_SEQUENCE_TIMER_MAX 0xFFFFFFFFUL
/* Time to wait in loops before returning */
#define DIGITAL_SEQUENCE_LOCK_WAIT_MS 10UL
#define DIGITAL_SEQUENCE_LOCK_WAIT_TICKS (DIGITAL_SEQUENCE_LOCK_WAIT_MS * 1000 * 64)
#define DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE 2
/* Maximum capacity of the DMA ring buffer. */
#define DIGITAL_SEQUENCE_RING_BUFFER_SIZE 128
#define DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE 2
/* Maximum amount of registered signals. */
#define DIGITAL_SEQUENCE_BANK_SIZE 32
typedef enum {
DigitalSequenceStateIdle,
DigitalSequenceStateActive,
} DigitalSequenceState;
typedef struct {
uint32_t data[DIGITAL_SEQUENCE_RING_BUFFER_SIZE];
uint32_t write_pos;
uint32_t read_pos;
} DigitalSequenceRingBuffer;
typedef uint32_t DigitalSequenceGpioBuffer[DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE];
typedef const DigitalSignal* DigitalSequenceSignalBank[DIGITAL_SEQUENCE_BANK_SIZE];
struct DigitalSequence {
const GpioPin* gpio;
uint32_t size;
uint32_t max_size;
uint8_t* data;
LL_DMA_InitTypeDef dma_config_gpio;
LL_DMA_InitTypeDef dma_config_timer;
DigitalSequenceGpioBuffer gpio_buf;
DigitalSequenceRingBuffer timer_buf;
DigitalSequenceSignalBank signals;
DigitalSequenceState state;
};
DigitalSequence* digital_sequence_alloc(uint32_t size, const GpioPin* gpio) {
furi_assert(size);
furi_assert(gpio);
DigitalSequence* sequence = malloc(sizeof(DigitalSequence));
sequence->gpio = gpio;
sequence->max_size = size;
sequence->data = malloc(sequence->max_size);
sequence->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t)&gpio->port->BSRR;
sequence->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)sequence->gpio_buf;
sequence->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
sequence->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
sequence->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
sequence->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
sequence->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
sequence->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
sequence->dma_config_gpio.NbData = DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE;
sequence->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
sequence->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
sequence->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t)&TIM2->ARR;
sequence->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)sequence->timer_buf.data;
sequence->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
sequence->dma_config_timer.Mode = LL_DMA_MODE_CIRCULAR;
sequence->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
sequence->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
sequence->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
sequence->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
sequence->dma_config_timer.NbData = DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
sequence->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
sequence->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
return sequence;
}
void digital_sequence_free(DigitalSequence* sequence) {
furi_assert(sequence);
free(sequence->data);
free(sequence);
}
void digital_sequence_register_signal(
DigitalSequence* sequence,
uint8_t signal_index,
const DigitalSignal* signal) {
furi_assert(sequence);
furi_assert(signal);
furi_assert(signal_index < DIGITAL_SEQUENCE_BANK_SIZE);
sequence->signals[signal_index] = signal;
}
void digital_sequence_add_signal(DigitalSequence* sequence, uint8_t signal_index) {
furi_assert(sequence);
furi_assert(signal_index < DIGITAL_SEQUENCE_BANK_SIZE);
furi_assert(sequence->size < sequence->max_size);
sequence->data[sequence->size++] = signal_index;
}
static inline void digital_sequence_start_dma(DigitalSequence* sequence) {
furi_assert(sequence);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &sequence->dma_config_gpio);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &sequence->dma_config_timer);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
}
static inline void digital_sequence_stop_dma() {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
LL_DMA_ClearFlag_TC1(DMA1);
LL_DMA_ClearFlag_TC2(DMA1);
}
static inline void digital_sequence_start_timer() {
furi_hal_bus_enable(FuriHalBusTIM2);
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetPrescaler(TIM2, 0);
LL_TIM_SetAutoReload(TIM2, DIGITAL_SEQUENCE_TIMER_MAX);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
LL_TIM_EnableUpdateEvent(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_GenerateEvent_UPDATE(TIM2);
}
static void digital_sequence_stop_timer() {
LL_TIM_DisableCounter(TIM2);
LL_TIM_DisableUpdateEvent(TIM2);
LL_TIM_DisableDMAReq_UPDATE(TIM2);
furi_hal_bus_disable(FuriHalBusTIM2);
}
static inline void digital_sequence_init_gpio_buffer(
DigitalSequence* sequence,
const DigitalSignal* first_signal) {
const uint32_t bit_set = sequence->gpio->pin << GPIO_BSRR_BS0_Pos
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
| DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << GPIO_BSRR_BS0_Pos
#endif
;
const uint32_t bit_reset = sequence->gpio->pin << GPIO_BSRR_BR0_Pos
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
| DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << GPIO_BSRR_BR0_Pos
#endif
;
if(first_signal->start_level) {
sequence->gpio_buf[0] = bit_set;
sequence->gpio_buf[1] = bit_reset;
} else {
sequence->gpio_buf[0] = bit_reset;
sequence->gpio_buf[1] = bit_set;
}
}
static inline void digital_sequence_finish(DigitalSequence* sequence) {
if(sequence->state == DigitalSequenceStateActive) {
const uint32_t prev_timer = DWT->CYCCNT;
do {
/* Special value has been loaded into the timer, signaling the end of transmission. */
if(TIM2->ARR == DIGITAL_SEQUENCE_TIMER_MAX) {
break;
}
if(DWT->CYCCNT - prev_timer > DIGITAL_SEQUENCE_LOCK_WAIT_TICKS) {
DigitalSequenceRingBuffer* dma_buffer = &sequence->timer_buf;
dma_buffer->read_pos = DIGITAL_SEQUENCE_RING_BUFFER_SIZE -
LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
FURI_LOG_D(
TAG,
"[SEQ] hung %lu ms in finish (ARR 0x%08lx, read %lu, write %lu)",
DIGITAL_SEQUENCE_LOCK_WAIT_MS,
TIM2->ARR,
dma_buffer->read_pos,
dma_buffer->write_pos);
break;
}
} while(true);
}
digital_sequence_stop_timer();
digital_sequence_stop_dma();
}
static inline void digital_sequence_enqueue_period(DigitalSequence* sequence, uint32_t length) {
DigitalSequenceRingBuffer* dma_buffer = &sequence->timer_buf;
if(sequence->state == DigitalSequenceStateActive) {
const uint32_t prev_timer = DWT->CYCCNT;
do {
dma_buffer->read_pos =
DIGITAL_SEQUENCE_RING_BUFFER_SIZE - LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
const uint32_t size_free = (DIGITAL_SEQUENCE_RING_BUFFER_SIZE + dma_buffer->read_pos -
dma_buffer->write_pos) %
DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
if(size_free > DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE) {
break;
}
if(DWT->CYCCNT - prev_timer > DIGITAL_SEQUENCE_LOCK_WAIT_TICKS) {
FURI_LOG_D(
TAG,
"[SEQ] hung %lu ms in queue (ARR 0x%08lx, read %lu, write %lu)",
DIGITAL_SEQUENCE_LOCK_WAIT_MS,
TIM2->ARR,
dma_buffer->read_pos,
dma_buffer->write_pos);
break;
}
if(TIM2->ARR == DIGITAL_SEQUENCE_TIMER_MAX) {
FURI_LOG_D(
TAG,
"[SEQ] buffer underrun in queue (ARR 0x%08lx, read %lu, write %lu)",
TIM2->ARR,
dma_buffer->read_pos,
dma_buffer->write_pos);
break;
}
} while(true);
}
dma_buffer->data[dma_buffer->write_pos] = length;
dma_buffer->write_pos += 1;
dma_buffer->write_pos %= DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
dma_buffer->data[dma_buffer->write_pos] = DIGITAL_SEQUENCE_TIMER_MAX;
}
static inline void digital_sequence_timer_buffer_reset(DigitalSequence* sequence) {
sequence->timer_buf.data[0] = DIGITAL_SEQUENCE_TIMER_MAX;
sequence->timer_buf.read_pos = 0;
sequence->timer_buf.write_pos = 0;
}
void digital_sequence_transmit(DigitalSequence* sequence) {
furi_assert(sequence);
furi_assert(sequence->size);
furi_assert(sequence->state == DigitalSequenceStateIdle);
FURI_CRITICAL_ENTER();
furi_hal_gpio_init(sequence->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
furi_hal_gpio_init(
&DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
#endif
const DigitalSignal* signal_current = sequence->signals[sequence->data[0]];
digital_sequence_init_gpio_buffer(sequence, signal_current);
int32_t remainder_ticks = 0;
uint32_t reload_value_carry = 0;
uint32_t next_signal_index = 1;
for(;;) {
const DigitalSignal* signal_next =
(next_signal_index < sequence->size) ?
sequence->signals[sequence->data[next_signal_index++]] :
NULL;
for(uint32_t i = 0; i < signal_current->size; i++) {
const bool is_last_value = (i == signal_current->size - 1);
const uint32_t reload_value = signal_current->data[i] + reload_value_carry;
reload_value_carry = 0;
if(is_last_value) {
if(signal_next != NULL) {
/* Special case: signal boundary. Depending on whether the adjacent levels are equal or not,
* they will be combined to a single one or handled separately. */
const bool end_level = signal_current->start_level ^
((signal_current->size % 2) == 0);
/* If the adjacent levels are equal, carry the current period duration over to the next signal. */
if(end_level == signal_next->start_level) {
reload_value_carry = reload_value;
}
} else {
/** Special case: during the last period of the last signal, hold the output level indefinitely.
* @see digital_signal.h
*
* Setting reload_value_carry to a non-zero value will prevent the respective period from being
* added to the DMA ring buffer. */
reload_value_carry = 1;
}
}
/* A non-zero reload_value_carry means that the level was the same on the both sides of the signal boundary
* and the two respective periods were combined to one. */
if(reload_value_carry == 0) {
digital_sequence_enqueue_period(sequence, reload_value);
}
if(sequence->state == DigitalSequenceStateIdle) {
const bool is_buffer_filled = sequence->timer_buf.write_pos >=
(DIGITAL_SEQUENCE_RING_BUFFER_SIZE -
DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE);
const bool is_end_of_data = (signal_next == NULL) && is_last_value;
if(is_buffer_filled || is_end_of_data) {
digital_sequence_start_dma(sequence);
digital_sequence_start_timer();
sequence->state = DigitalSequenceStateActive;
}
}
}
/* Exit the loop here when no further signals are available */
if(signal_next == NULL) break;
/* Prevent the rounding error from accumulating by distributing it across multiple periods. */
remainder_ticks += signal_current->remainder;
if(remainder_ticks >= DIGITAL_SIGNAL_T_TIM_DIV2) {
remainder_ticks -= DIGITAL_SIGNAL_T_TIM;
reload_value_carry += 1;
}
signal_current = signal_next;
};
digital_sequence_finish(sequence);
digital_sequence_timer_buffer_reset(sequence);
FURI_CRITICAL_EXIT();
sequence->state = DigitalSequenceStateIdle;
}
void digital_sequence_clear(DigitalSequence* sequence) {
furi_assert(sequence);
sequence->size = 0;
}