mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-13 05:38:51 +00:00
336d4615f8
At present dm/device.h includes the linux-compatible features. This requires including linux/compat.h which in turn includes a lot of headers. One of these is malloc.h which we thus end up including in every file in U-Boot. Apart from the inefficiency of this, it is problematic for sandbox which needs to use the system malloc() in some files. Move the compatibility features into a separate header file. Signed-off-by: Simon Glass <sjg@chromium.org>
615 lines
18 KiB
C
615 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2014 Freescale Semiconductor
|
|
*/
|
|
|
|
#include <malloc.h>
|
|
#include <asm/arch/clock.h>
|
|
#include "qbman_portal.h"
|
|
|
|
/* QBMan portal management command codes */
|
|
#define QBMAN_MC_ACQUIRE 0x30
|
|
#define QBMAN_WQCHAN_CONFIGURE 0x46
|
|
|
|
/* CINH register offsets */
|
|
#define QBMAN_CINH_SWP_EQAR 0x8c0
|
|
#define QBMAN_CINH_SWP_DCAP 0xac0
|
|
#define QBMAN_CINH_SWP_SDQCR 0xb00
|
|
#define QBMAN_CINH_SWP_RAR 0xcc0
|
|
|
|
/* CENA register offsets */
|
|
#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((uint32_t)(n) << 6))
|
|
#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((uint32_t)(n) << 6))
|
|
#define QBMAN_CENA_SWP_RCR(n) (0x400 + ((uint32_t)(n) << 6))
|
|
#define QBMAN_CENA_SWP_CR 0x600
|
|
#define QBMAN_CENA_SWP_RR(vb) (0x700 + ((uint32_t)(vb) >> 1))
|
|
#define QBMAN_CENA_SWP_VDQCR 0x780
|
|
|
|
/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
|
|
#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)p & 0x1ff) >> 6)
|
|
|
|
/*******************************/
|
|
/* Pre-defined attribute codes */
|
|
/*******************************/
|
|
|
|
struct qb_attr_code code_generic_verb = QB_CODE(0, 0, 7);
|
|
struct qb_attr_code code_generic_rslt = QB_CODE(0, 8, 8);
|
|
|
|
/*************************/
|
|
/* SDQCR attribute codes */
|
|
/*************************/
|
|
|
|
/* we put these here because at least some of them are required by
|
|
* qbman_swp_init() */
|
|
struct qb_attr_code code_sdqcr_dct = QB_CODE(0, 24, 2);
|
|
struct qb_attr_code code_sdqcr_fc = QB_CODE(0, 29, 1);
|
|
struct qb_attr_code code_sdqcr_tok = QB_CODE(0, 16, 8);
|
|
#define CODE_SDQCR_DQSRC(n) QB_CODE(0, n, 1)
|
|
enum qbman_sdqcr_dct {
|
|
qbman_sdqcr_dct_null = 0,
|
|
qbman_sdqcr_dct_prio_ics,
|
|
qbman_sdqcr_dct_active_ics,
|
|
qbman_sdqcr_dct_active
|
|
};
|
|
enum qbman_sdqcr_fc {
|
|
qbman_sdqcr_fc_one = 0,
|
|
qbman_sdqcr_fc_up_to_3 = 1
|
|
};
|
|
|
|
/*********************************/
|
|
/* Portal constructor/destructor */
|
|
/*********************************/
|
|
|
|
/* Software portals should always be in the power-on state when we initialise,
|
|
* due to the CCSR-based portal reset functionality that MC has. */
|
|
struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
|
|
{
|
|
int ret;
|
|
struct qbman_swp *p = malloc(sizeof(struct qbman_swp));
|
|
u32 major = 0, minor = 0;
|
|
|
|
if (!p)
|
|
return NULL;
|
|
p->desc = d;
|
|
#ifdef QBMAN_CHECKING
|
|
p->mc.check = swp_mc_can_start;
|
|
#endif
|
|
p->mc.valid_bit = QB_VALID_BIT;
|
|
p->sdq = 0;
|
|
qb_attr_code_encode(&code_sdqcr_dct, &p->sdq, qbman_sdqcr_dct_prio_ics);
|
|
qb_attr_code_encode(&code_sdqcr_fc, &p->sdq, qbman_sdqcr_fc_up_to_3);
|
|
qb_attr_code_encode(&code_sdqcr_tok, &p->sdq, 0xbb);
|
|
atomic_set(&p->vdq.busy, 1);
|
|
p->vdq.valid_bit = QB_VALID_BIT;
|
|
p->dqrr.next_idx = 0;
|
|
|
|
qbman_version(&major, &minor);
|
|
if (!major) {
|
|
printf("invalid qbman version\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (major >= 4 && minor >= 1)
|
|
p->dqrr.dqrr_size = QBMAN_VER_4_1_DQRR_SIZE;
|
|
else
|
|
p->dqrr.dqrr_size = QBMAN_VER_4_0_DQRR_SIZE;
|
|
|
|
p->dqrr.valid_bit = QB_VALID_BIT;
|
|
ret = qbman_swp_sys_init(&p->sys, d, p->dqrr.dqrr_size);
|
|
if (ret) {
|
|
free(p);
|
|
printf("qbman_swp_sys_init() failed %d\n", ret);
|
|
return NULL;
|
|
}
|
|
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_SDQCR, p->sdq);
|
|
return p;
|
|
}
|
|
|
|
/***********************/
|
|
/* Management commands */
|
|
/***********************/
|
|
|
|
/*
|
|
* Internal code common to all types of management commands.
|
|
*/
|
|
|
|
void *qbman_swp_mc_start(struct qbman_swp *p)
|
|
{
|
|
void *ret;
|
|
int *return_val;
|
|
#ifdef QBMAN_CHECKING
|
|
BUG_ON(p->mc.check != swp_mc_can_start);
|
|
#endif
|
|
ret = qbman_cena_write_start(&p->sys, QBMAN_CENA_SWP_CR);
|
|
#ifdef QBMAN_CHECKING
|
|
return_val = (int *)ret;
|
|
if (!(*return_val))
|
|
p->mc.check = swp_mc_can_submit;
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb)
|
|
{
|
|
uint32_t *v = cmd;
|
|
#ifdef QBMAN_CHECKING
|
|
BUG_ON(p->mc.check != swp_mc_can_submit);
|
|
#endif
|
|
lwsync();
|
|
/* TBD: "|=" is going to hurt performance. Need to move as many fields
|
|
* out of word zero, and for those that remain, the "OR" needs to occur
|
|
* at the caller side. This debug check helps to catch cases where the
|
|
* caller wants to OR but has forgotten to do so. */
|
|
BUG_ON((*v & cmd_verb) != *v);
|
|
*v = cmd_verb | p->mc.valid_bit;
|
|
qbman_cena_write_complete(&p->sys, QBMAN_CENA_SWP_CR, cmd);
|
|
/* TODO: add prefetch support for GPP */
|
|
#ifdef QBMAN_CHECKING
|
|
p->mc.check = swp_mc_can_poll;
|
|
#endif
|
|
}
|
|
|
|
void *qbman_swp_mc_result(struct qbman_swp *p)
|
|
{
|
|
uint32_t *ret, verb;
|
|
#ifdef QBMAN_CHECKING
|
|
BUG_ON(p->mc.check != swp_mc_can_poll);
|
|
#endif
|
|
ret = qbman_cena_read(&p->sys, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
|
|
/* Remove the valid-bit - command completed iff the rest is non-zero */
|
|
verb = ret[0] & ~QB_VALID_BIT;
|
|
if (!verb)
|
|
return NULL;
|
|
#ifdef QBMAN_CHECKING
|
|
p->mc.check = swp_mc_can_start;
|
|
#endif
|
|
p->mc.valid_bit ^= QB_VALID_BIT;
|
|
return ret;
|
|
}
|
|
|
|
/***********/
|
|
/* Enqueue */
|
|
/***********/
|
|
|
|
/* These should be const, eventually */
|
|
static struct qb_attr_code code_eq_cmd = QB_CODE(0, 0, 2);
|
|
static struct qb_attr_code code_eq_orp_en = QB_CODE(0, 2, 1);
|
|
static struct qb_attr_code code_eq_tgt_id = QB_CODE(2, 0, 24);
|
|
/* static struct qb_attr_code code_eq_tag = QB_CODE(3, 0, 32); */
|
|
static struct qb_attr_code code_eq_qd_en = QB_CODE(0, 4, 1);
|
|
static struct qb_attr_code code_eq_qd_bin = QB_CODE(4, 0, 16);
|
|
static struct qb_attr_code code_eq_qd_pri = QB_CODE(4, 16, 4);
|
|
static struct qb_attr_code code_eq_rsp_stash = QB_CODE(5, 16, 1);
|
|
static struct qb_attr_code code_eq_rsp_lo = QB_CODE(6, 0, 32);
|
|
|
|
enum qbman_eq_cmd_e {
|
|
/* No enqueue, primarily for plugging ORP gaps for dropped frames */
|
|
qbman_eq_cmd_empty,
|
|
/* DMA an enqueue response once complete */
|
|
qbman_eq_cmd_respond,
|
|
/* DMA an enqueue response only if the enqueue fails */
|
|
qbman_eq_cmd_respond_reject
|
|
};
|
|
|
|
void qbman_eq_desc_clear(struct qbman_eq_desc *d)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
}
|
|
|
|
void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode(&code_eq_orp_en, cl, 0);
|
|
qb_attr_code_encode(&code_eq_cmd, cl,
|
|
respond_success ? qbman_eq_cmd_respond :
|
|
qbman_eq_cmd_respond_reject);
|
|
}
|
|
|
|
void qbman_eq_desc_set_response(struct qbman_eq_desc *d,
|
|
dma_addr_t storage_phys,
|
|
int stash)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode_64(&code_eq_rsp_lo, (uint64_t *)cl, storage_phys);
|
|
qb_attr_code_encode(&code_eq_rsp_stash, cl, !!stash);
|
|
}
|
|
|
|
|
|
void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, uint32_t qdid,
|
|
uint32_t qd_bin, uint32_t qd_prio)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode(&code_eq_qd_en, cl, 1);
|
|
qb_attr_code_encode(&code_eq_tgt_id, cl, qdid);
|
|
qb_attr_code_encode(&code_eq_qd_bin, cl, qd_bin);
|
|
qb_attr_code_encode(&code_eq_qd_pri, cl, qd_prio);
|
|
}
|
|
|
|
#define EQAR_IDX(eqar) ((eqar) & 0x7)
|
|
#define EQAR_VB(eqar) ((eqar) & 0x80)
|
|
#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
|
|
|
|
int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
|
|
const struct qbman_fd *fd)
|
|
{
|
|
uint32_t *p;
|
|
const uint32_t *cl = qb_cl(d);
|
|
uint32_t eqar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_EQAR);
|
|
debug("EQAR=%08x\n", eqar);
|
|
if (!EQAR_SUCCESS(eqar))
|
|
return -EBUSY;
|
|
p = qbman_cena_write_start(&s->sys,
|
|
QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
|
|
word_copy(&p[1], &cl[1], 7);
|
|
word_copy(&p[8], fd, sizeof(*fd) >> 2);
|
|
lwsync();
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
p[0] = cl[0] | EQAR_VB(eqar);
|
|
qbman_cena_write_complete(&s->sys,
|
|
QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)),
|
|
p);
|
|
return 0;
|
|
}
|
|
|
|
/***************************/
|
|
/* Volatile (pull) dequeue */
|
|
/***************************/
|
|
|
|
/* These should be const, eventually */
|
|
static struct qb_attr_code code_pull_dct = QB_CODE(0, 0, 2);
|
|
static struct qb_attr_code code_pull_dt = QB_CODE(0, 2, 2);
|
|
static struct qb_attr_code code_pull_rls = QB_CODE(0, 4, 1);
|
|
static struct qb_attr_code code_pull_stash = QB_CODE(0, 5, 1);
|
|
static struct qb_attr_code code_pull_numframes = QB_CODE(0, 8, 4);
|
|
static struct qb_attr_code code_pull_token = QB_CODE(0, 16, 8);
|
|
static struct qb_attr_code code_pull_dqsource = QB_CODE(1, 0, 24);
|
|
static struct qb_attr_code code_pull_rsp_lo = QB_CODE(2, 0, 32);
|
|
|
|
enum qb_pull_dt_e {
|
|
qb_pull_dt_channel,
|
|
qb_pull_dt_workqueue,
|
|
qb_pull_dt_framequeue
|
|
};
|
|
|
|
void qbman_pull_desc_clear(struct qbman_pull_desc *d)
|
|
{
|
|
memset(d, 0, sizeof(*d));
|
|
}
|
|
|
|
void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
|
|
struct ldpaa_dq *storage,
|
|
dma_addr_t storage_phys,
|
|
int stash)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
/* Squiggle the pointer 'storage' into the extra 2 words of the
|
|
* descriptor (which aren't copied to the hw command) */
|
|
*(void **)&cl[4] = storage;
|
|
if (!storage) {
|
|
qb_attr_code_encode(&code_pull_rls, cl, 0);
|
|
return;
|
|
}
|
|
qb_attr_code_encode(&code_pull_rls, cl, 1);
|
|
qb_attr_code_encode(&code_pull_stash, cl, !!stash);
|
|
qb_attr_code_encode_64(&code_pull_rsp_lo, (uint64_t *)cl, storage_phys);
|
|
}
|
|
|
|
void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, uint8_t numframes)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
BUG_ON(!numframes || (numframes > 16));
|
|
qb_attr_code_encode(&code_pull_numframes, cl,
|
|
(uint32_t)(numframes - 1));
|
|
}
|
|
|
|
void qbman_pull_desc_set_token(struct qbman_pull_desc *d, uint8_t token)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode(&code_pull_token, cl, token);
|
|
}
|
|
|
|
void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, uint32_t fqid)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode(&code_pull_dct, cl, 1);
|
|
qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_framequeue);
|
|
qb_attr_code_encode(&code_pull_dqsource, cl, fqid);
|
|
}
|
|
|
|
int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
|
|
{
|
|
uint32_t *p;
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
if (!atomic_dec_and_test(&s->vdq.busy)) {
|
|
atomic_inc(&s->vdq.busy);
|
|
return -EBUSY;
|
|
}
|
|
s->vdq.storage = *(void **)&cl[4];
|
|
s->vdq.token = qb_attr_code_decode(&code_pull_token, cl);
|
|
p = qbman_cena_write_start(&s->sys, QBMAN_CENA_SWP_VDQCR);
|
|
word_copy(&p[1], &cl[1], 3);
|
|
lwsync();
|
|
/* Set the verb byte, have to substitute in the valid-bit */
|
|
p[0] = cl[0] | s->vdq.valid_bit;
|
|
s->vdq.valid_bit ^= QB_VALID_BIT;
|
|
qbman_cena_write_complete(&s->sys, QBMAN_CENA_SWP_VDQCR, p);
|
|
return 0;
|
|
}
|
|
|
|
/****************/
|
|
/* Polling DQRR */
|
|
/****************/
|
|
|
|
static struct qb_attr_code code_dqrr_verb = QB_CODE(0, 0, 8);
|
|
static struct qb_attr_code code_dqrr_response = QB_CODE(0, 0, 7);
|
|
static struct qb_attr_code code_dqrr_stat = QB_CODE(0, 8, 8);
|
|
|
|
#define QBMAN_DQRR_RESPONSE_DQ 0x60
|
|
#define QBMAN_DQRR_RESPONSE_FQRN 0x21
|
|
#define QBMAN_DQRR_RESPONSE_FQRNI 0x22
|
|
#define QBMAN_DQRR_RESPONSE_FQPN 0x24
|
|
#define QBMAN_DQRR_RESPONSE_FQDAN 0x25
|
|
#define QBMAN_DQRR_RESPONSE_CDAN 0x26
|
|
#define QBMAN_DQRR_RESPONSE_CSCN_MEM 0x27
|
|
#define QBMAN_DQRR_RESPONSE_CGCU 0x28
|
|
#define QBMAN_DQRR_RESPONSE_BPSCN 0x29
|
|
#define QBMAN_DQRR_RESPONSE_CSCN_WQ 0x2a
|
|
|
|
|
|
/* NULL return if there are no unconsumed DQRR entries. Returns a DQRR entry
|
|
* only once, so repeated calls can return a sequence of DQRR entries, without
|
|
* requiring they be consumed immediately or in any particular order. */
|
|
const struct ldpaa_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
|
|
{
|
|
uint32_t verb;
|
|
uint32_t response_verb;
|
|
uint32_t flags;
|
|
const struct ldpaa_dq *dq;
|
|
const uint32_t *p;
|
|
|
|
dq = qbman_cena_read(&s->sys, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
|
|
p = qb_cl(dq);
|
|
verb = qb_attr_code_decode(&code_dqrr_verb, p);
|
|
|
|
/* If the valid-bit isn't of the expected polarity, nothing there. Note,
|
|
* in the DQRR reset bug workaround, we shouldn't need to skip these
|
|
* check, because we've already determined that a new entry is available
|
|
* and we've invalidated the cacheline before reading it, so the
|
|
* valid-bit behaviour is repaired and should tell us what we already
|
|
* knew from reading PI.
|
|
*/
|
|
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
|
|
qbman_cena_invalidate_prefetch(&s->sys,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
|
|
return NULL;
|
|
}
|
|
/* There's something there. Move "next_idx" attention to the next ring
|
|
* entry (and prefetch it) before returning what we found. */
|
|
s->dqrr.next_idx++;
|
|
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1;/* Wrap around at dqrr_size */
|
|
/* TODO: it's possible to do all this without conditionals, optimise it
|
|
* later. */
|
|
if (!s->dqrr.next_idx)
|
|
s->dqrr.valid_bit ^= QB_VALID_BIT;
|
|
|
|
/* If this is the final response to a volatile dequeue command
|
|
indicate that the vdq is no longer busy */
|
|
flags = ldpaa_dq_flags(dq);
|
|
response_verb = qb_attr_code_decode(&code_dqrr_response, &verb);
|
|
if ((response_verb == QBMAN_DQRR_RESPONSE_DQ) &&
|
|
(flags & LDPAA_DQ_STAT_VOLATILE) &&
|
|
(flags & LDPAA_DQ_STAT_EXPIRED))
|
|
atomic_inc(&s->vdq.busy);
|
|
|
|
qbman_cena_invalidate_prefetch(&s->sys,
|
|
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
|
|
return dq;
|
|
}
|
|
|
|
/* Consume DQRR entries previously returned from qbman_swp_dqrr_next(). */
|
|
void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct ldpaa_dq *dq)
|
|
{
|
|
qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
|
|
}
|
|
|
|
/*********************************/
|
|
/* Polling user-provided storage */
|
|
/*********************************/
|
|
|
|
void qbman_dq_entry_set_oldtoken(struct ldpaa_dq *dq,
|
|
unsigned int num_entries,
|
|
uint8_t oldtoken)
|
|
{
|
|
memset(dq, oldtoken, num_entries * sizeof(*dq));
|
|
}
|
|
|
|
int qbman_dq_entry_has_newtoken(struct qbman_swp *s,
|
|
const struct ldpaa_dq *dq,
|
|
uint8_t newtoken)
|
|
{
|
|
/* To avoid converting the little-endian DQ entry to host-endian prior
|
|
* to us knowing whether there is a valid entry or not (and run the
|
|
* risk of corrupting the incoming hardware LE write), we detect in
|
|
* hardware endianness rather than host. This means we need a different
|
|
* "code" depending on whether we are BE or LE in software, which is
|
|
* where DQRR_TOK_OFFSET comes in... */
|
|
static struct qb_attr_code code_dqrr_tok_detect =
|
|
QB_CODE(0, DQRR_TOK_OFFSET, 8);
|
|
/* The user trying to poll for a result treats "dq" as const. It is
|
|
* however the same address that was provided to us non-const in the
|
|
* first place, for directing hardware DMA to. So we can cast away the
|
|
* const because it is mutable from our perspective. */
|
|
uint32_t *p = qb_cl((struct ldpaa_dq *)dq);
|
|
uint32_t token;
|
|
|
|
token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
|
|
if (token != newtoken)
|
|
return 0;
|
|
|
|
/* Only now do we convert from hardware to host endianness. Also, as we
|
|
* are returning success, the user has promised not to call us again, so
|
|
* there's no risk of us converting the endianness twice... */
|
|
make_le32_n(p, 16);
|
|
|
|
/* VDQCR "no longer busy" hook - not quite the same as DQRR, because the
|
|
* fact "VDQCR" shows busy doesn't mean that the result we're looking at
|
|
* is from the same command. Eg. we may be looking at our 10th dequeue
|
|
* result from our first VDQCR command, yet the second dequeue command
|
|
* could have been kicked off already, after seeing the 1st result. Ie.
|
|
* the result we're looking at is not necessarily proof that we can
|
|
* reset "busy". We instead base the decision on whether the current
|
|
* result is sitting at the first 'storage' location of the busy
|
|
* command. */
|
|
if (s->vdq.storage == dq) {
|
|
s->vdq.storage = NULL;
|
|
atomic_inc(&s->vdq.busy);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/********************************/
|
|
/* Categorising dequeue entries */
|
|
/********************************/
|
|
|
|
static inline int __qbman_dq_entry_is_x(const struct ldpaa_dq *dq, uint32_t x)
|
|
{
|
|
const uint32_t *p = qb_cl(dq);
|
|
uint32_t response_verb = qb_attr_code_decode(&code_dqrr_response, p);
|
|
|
|
return response_verb == x;
|
|
}
|
|
|
|
int qbman_dq_entry_is_DQ(const struct ldpaa_dq *dq)
|
|
{
|
|
return __qbman_dq_entry_is_x(dq, QBMAN_DQRR_RESPONSE_DQ);
|
|
}
|
|
|
|
/*********************************/
|
|
/* Parsing frame dequeue results */
|
|
/*********************************/
|
|
|
|
/* These APIs assume qbman_dq_entry_is_DQ() is TRUE */
|
|
|
|
uint32_t ldpaa_dq_flags(const struct ldpaa_dq *dq)
|
|
{
|
|
const uint32_t *p = qb_cl(dq);
|
|
|
|
return qb_attr_code_decode(&code_dqrr_stat, p);
|
|
}
|
|
|
|
const struct dpaa_fd *ldpaa_dq_fd(const struct ldpaa_dq *dq)
|
|
{
|
|
const uint32_t *p = qb_cl(dq);
|
|
|
|
return (const struct dpaa_fd *)&p[8];
|
|
}
|
|
|
|
/******************/
|
|
/* Buffer release */
|
|
/******************/
|
|
|
|
/* These should be const, eventually */
|
|
/* static struct qb_attr_code code_release_num = QB_CODE(0, 0, 3); */
|
|
static struct qb_attr_code code_release_set_me = QB_CODE(0, 5, 1);
|
|
static struct qb_attr_code code_release_bpid = QB_CODE(0, 16, 16);
|
|
|
|
void qbman_release_desc_clear(struct qbman_release_desc *d)
|
|
{
|
|
uint32_t *cl;
|
|
|
|
memset(d, 0, sizeof(*d));
|
|
cl = qb_cl(d);
|
|
qb_attr_code_encode(&code_release_set_me, cl, 1);
|
|
}
|
|
|
|
void qbman_release_desc_set_bpid(struct qbman_release_desc *d, uint32_t bpid)
|
|
{
|
|
uint32_t *cl = qb_cl(d);
|
|
|
|
qb_attr_code_encode(&code_release_bpid, cl, bpid);
|
|
}
|
|
|
|
#define RAR_IDX(rar) ((rar) & 0x7)
|
|
#define RAR_VB(rar) ((rar) & 0x80)
|
|
#define RAR_SUCCESS(rar) ((rar) & 0x100)
|
|
|
|
int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
|
|
const uint64_t *buffers, unsigned int num_buffers)
|
|
{
|
|
uint32_t *p;
|
|
const uint32_t *cl = qb_cl(d);
|
|
uint32_t rar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_RAR);
|
|
debug("RAR=%08x\n", rar);
|
|
if (!RAR_SUCCESS(rar))
|
|
return -EBUSY;
|
|
BUG_ON(!num_buffers || (num_buffers > 7));
|
|
/* Start the release command */
|
|
p = qbman_cena_write_start(&s->sys,
|
|
QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
|
|
/* Copy the caller's buffer pointers to the command */
|
|
u64_to_le32_copy(&p[2], buffers, num_buffers);
|
|
lwsync();
|
|
/* Set the verb byte, have to substitute in the valid-bit and the number
|
|
* of buffers. */
|
|
p[0] = cl[0] | RAR_VB(rar) | num_buffers;
|
|
qbman_cena_write_complete(&s->sys,
|
|
QBMAN_CENA_SWP_RCR(RAR_IDX(rar)),
|
|
p);
|
|
return 0;
|
|
}
|
|
|
|
/*******************/
|
|
/* Buffer acquires */
|
|
/*******************/
|
|
|
|
/* These should be const, eventually */
|
|
static struct qb_attr_code code_acquire_bpid = QB_CODE(0, 16, 16);
|
|
static struct qb_attr_code code_acquire_num = QB_CODE(1, 0, 3);
|
|
static struct qb_attr_code code_acquire_r_num = QB_CODE(1, 0, 3);
|
|
|
|
int qbman_swp_acquire(struct qbman_swp *s, uint32_t bpid, uint64_t *buffers,
|
|
unsigned int num_buffers)
|
|
{
|
|
uint32_t *p;
|
|
uint32_t verb, rslt, num;
|
|
|
|
BUG_ON(!num_buffers || (num_buffers > 7));
|
|
|
|
/* Start the management command */
|
|
p = qbman_swp_mc_start(s);
|
|
|
|
if (!p)
|
|
return -EBUSY;
|
|
|
|
/* Encode the caller-provided attributes */
|
|
qb_attr_code_encode(&code_acquire_bpid, p, bpid);
|
|
qb_attr_code_encode(&code_acquire_num, p, num_buffers);
|
|
|
|
/* Complete the management command */
|
|
p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_MC_ACQUIRE);
|
|
|
|
/* Decode the outcome */
|
|
verb = qb_attr_code_decode(&code_generic_verb, p);
|
|
rslt = qb_attr_code_decode(&code_generic_rslt, p);
|
|
num = qb_attr_code_decode(&code_acquire_r_num, p);
|
|
BUG_ON(verb != QBMAN_MC_ACQUIRE);
|
|
|
|
/* Determine success or failure */
|
|
if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
|
|
printf("Acquire buffers from BPID 0x%x failed, code=0x%02x\n",
|
|
bpid, rslt);
|
|
return -EIO;
|
|
}
|
|
BUG_ON(num > num_buffers);
|
|
/* Copy the acquired buffers to the caller's array */
|
|
u64_from_le32_copy(buffers, &p[2], num);
|
|
return (int)num;
|
|
}
|