u-boot/drivers/mtd/spi/spi_flash.c
Jagannadha Sutradharudu Teki fd35ca5c20 sf: Fix code cleanup
- line over 80 characters.
- CHECK: Alignment should match open parenthesis

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2013-08-06 23:58:43 +05:30

613 lines
14 KiB
C

/*
* SPI flash interface
*
* Copyright (C) 2008 Atmel Corporation
* Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
*
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <spi_flash.h>
#include <watchdog.h>
#include "spi_flash_internal.h"
DECLARE_GLOBAL_DATA_PTR;
static void spi_flash_addr(u32 addr, u8 *cmd)
{
/* cmd[0] is actual command */
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr >> 0;
}
static int spi_flash_read_write(struct spi_slave *spi,
const u8 *cmd, size_t cmd_len,
const u8 *data_out, u8 *data_in,
size_t data_len)
{
unsigned long flags = SPI_XFER_BEGIN;
int ret;
if (data_len == 0)
flags |= SPI_XFER_END;
ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags);
if (ret) {
debug("SF: Failed to send command (%zu bytes): %d\n",
cmd_len, ret);
} else if (data_len != 0) {
ret = spi_xfer(spi, data_len * 8, data_out, data_in,
SPI_XFER_END);
if (ret)
debug("SF: Failed to transfer %zu bytes of data: %d\n",
data_len, ret);
}
return ret;
}
int spi_flash_cmd(struct spi_slave *spi, u8 cmd, void *response, size_t len)
{
return spi_flash_cmd_read(spi, &cmd, 1, response, len);
}
int spi_flash_cmd_read(struct spi_slave *spi, const u8 *cmd,
size_t cmd_len, void *data, size_t data_len)
{
return spi_flash_read_write(spi, cmd, cmd_len, NULL, data, data_len);
}
int spi_flash_cmd_write(struct spi_slave *spi, const u8 *cmd, size_t cmd_len,
const void *data, size_t data_len)
{
return spi_flash_read_write(spi, cmd, cmd_len, data, NULL, data_len);
}
int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout)
{
struct spi_slave *spi = flash->spi;
unsigned long timebase;
int ret;
u8 status;
u8 check_status = 0x0;
u8 poll_bit = STATUS_WIP;
u8 cmd = flash->poll_cmd;
if (cmd == CMD_FLAG_STATUS) {
poll_bit = STATUS_PEC;
check_status = poll_bit;
}
ret = spi_xfer(spi, 8, &cmd, NULL, SPI_XFER_BEGIN);
if (ret) {
debug("SF: fail to read %s status register\n",
cmd == CMD_READ_STATUS ? "read" : "flag");
return ret;
}
timebase = get_timer(0);
do {
WATCHDOG_RESET();
ret = spi_xfer(spi, 8, NULL, &status, 0);
if (ret)
return -1;
if ((status & poll_bit) == check_status)
break;
} while (get_timer(timebase) < timeout);
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_END);
if ((status & poll_bit) == check_status)
return 0;
/* Timed out */
debug("SF: time out!\n");
return -1;
}
int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, const void *buf, size_t buf_len)
{
struct spi_slave *spi = flash->spi;
unsigned long timeout = SPI_FLASH_PROG_TIMEOUT;
int ret;
if (buf == NULL)
timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_write_enable(flash);
if (ret < 0) {
debug("SF: enabling write failed\n");
return ret;
}
ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len);
if (ret < 0) {
debug("SF: write cmd failed\n");
return ret;
}
ret = spi_flash_cmd_wait_ready(flash, timeout);
if (ret < 0) {
debug("SF: write %s timed out\n",
timeout == SPI_FLASH_PROG_TIMEOUT ?
"program" : "page erase");
return ret;
}
spi_release_bus(spi);
return ret;
}
int spi_flash_cmd_erase(struct spi_flash *flash, u32 offset, size_t len)
{
u32 erase_size;
u8 cmd[4];
int ret = -1;
erase_size = flash->sector_size;
if (offset % erase_size || len % erase_size) {
debug("SF: Erase offset/length not multiple of erase size\n");
return -1;
}
if (erase_size == 4096)
cmd[0] = CMD_ERASE_4K;
else
cmd[0] = CMD_ERASE_64K;
while (len) {
#ifdef CONFIG_SPI_FLASH_BAR
u8 bank_sel;
bank_sel = offset / SPI_FLASH_16MB_BOUN;
ret = spi_flash_cmd_bankaddr_write(flash, bank_sel);
if (ret) {
debug("SF: fail to set bank%d\n", bank_sel);
return ret;
}
#endif
spi_flash_addr(offset, cmd);
debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
cmd[2], cmd[3], offset);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
if (ret < 0) {
debug("SF: erase failed\n");
break;
}
offset += erase_size;
len -= erase_size;
}
return ret;
}
int spi_flash_cmd_write_multi(struct spi_flash *flash, u32 offset,
size_t len, const void *buf)
{
unsigned long byte_addr, page_size;
size_t chunk_len, actual;
u8 cmd[4];
int ret = -1;
page_size = flash->page_size;
cmd[0] = CMD_PAGE_PROGRAM;
for (actual = 0; actual < len; actual += chunk_len) {
#ifdef CONFIG_SPI_FLASH_BAR
u8 bank_sel;
bank_sel = offset / SPI_FLASH_16MB_BOUN;
ret = spi_flash_cmd_bankaddr_write(flash, bank_sel);
if (ret) {
debug("SF: fail to set bank%d\n", bank_sel);
return ret;
}
#endif
byte_addr = offset % page_size;
chunk_len = min(len - actual, page_size - byte_addr);
if (flash->spi->max_write_size)
chunk_len = min(chunk_len, flash->spi->max_write_size);
spi_flash_addr(offset, cmd);
debug("PP: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd),
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: write failed\n");
break;
}
offset += chunk_len;
}
return ret;
}
int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, void *data, size_t data_len)
{
struct spi_slave *spi = flash->spi;
int ret;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len);
if (ret < 0) {
debug("SF: read cmd failed\n");
return ret;
}
spi_release_bus(spi);
return ret;
}
int spi_flash_cmd_read_fast(struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
u8 cmd[5], bank_sel = 0;
u32 remain_len, read_len;
int ret = -1;
/* Handle memory-mapped SPI */
if (flash->memory_map) {
memcpy(data, flash->memory_map + offset, len);
return 0;
}
cmd[0] = CMD_READ_ARRAY_FAST;
cmd[4] = 0x00;
while (len) {
#ifdef CONFIG_SPI_FLASH_BAR
bank_sel = offset / SPI_FLASH_16MB_BOUN;
ret = spi_flash_cmd_bankaddr_write(flash, bank_sel);
if (ret) {
debug("SF: fail to set bank%d\n", bank_sel);
return ret;
}
#endif
remain_len = (SPI_FLASH_16MB_BOUN * (bank_sel + 1) - offset);
if (len < remain_len)
read_len = len;
else
read_len = remain_len;
spi_flash_addr(offset, cmd);
ret = spi_flash_read_common(flash, cmd, sizeof(cmd),
data, read_len);
if (ret < 0) {
debug("SF: read failed\n");
break;
}
offset += read_len;
len -= read_len;
data += read_len;
}
return ret;
}
int spi_flash_cmd_write_status(struct spi_flash *flash, u8 sr)
{
u8 cmd;
int ret;
cmd = CMD_WRITE_STATUS;
ret = spi_flash_write_common(flash, &cmd, 1, &sr, 1);
if (ret < 0) {
debug("SF: fail to write status register\n");
return ret;
}
return 0;
}
#ifdef CONFIG_SPI_FLASH_BAR
int spi_flash_cmd_bankaddr_write(struct spi_flash *flash, u8 bank_sel)
{
u8 cmd;
int ret;
if (flash->bank_curr == bank_sel) {
debug("SF: not require to enable bank%d\n", bank_sel);
return 0;
}
cmd = flash->bank_write_cmd;
ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
if (ret < 0) {
debug("SF: fail to write bank register\n");
return ret;
}
flash->bank_curr = bank_sel;
return 0;
}
int spi_flash_bank_config(struct spi_flash *flash, u8 idcode0)
{
u8 cmd;
u8 curr_bank = 0;
/* discover bank cmds */
switch (idcode0) {
case SPI_FLASH_SPANSION_IDCODE0:
flash->bank_read_cmd = CMD_BANKADDR_BRRD;
flash->bank_write_cmd = CMD_BANKADDR_BRWR;
break;
case SPI_FLASH_STMICRO_IDCODE0:
case SPI_FLASH_WINBOND_IDCODE0:
flash->bank_read_cmd = CMD_EXTNADDR_RDEAR;
flash->bank_write_cmd = CMD_EXTNADDR_WREAR;
break;
default:
printf("SF: Unsupported bank commands %02x\n", idcode0);
return -1;
}
/* read the bank reg - on which bank the flash is in currently */
cmd = flash->bank_read_cmd;
if (flash->size > SPI_FLASH_16MB_BOUN) {
if (spi_flash_read_common(flash, &cmd, 1, &curr_bank, 1)) {
debug("SF: fail to read bank addr register\n");
return -1;
}
flash->bank_curr = curr_bank;
} else {
flash->bank_curr = curr_bank;
}
return 0;
}
#endif
#ifdef CONFIG_OF_CONTROL
int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash)
{
fdt_addr_t addr;
fdt_size_t size;
int node;
/* If there is no node, do nothing */
node = fdtdec_next_compatible(blob, 0, COMPAT_GENERIC_SPI_FLASH);
if (node < 0)
return 0;
addr = fdtdec_get_addr_size(blob, node, "memory-map", &size);
if (addr == FDT_ADDR_T_NONE) {
debug("%s: Cannot decode address\n", __func__);
return 0;
}
if (flash->size != size) {
debug("%s: Memory map must cover entire device\n", __func__);
return -1;
}
flash->memory_map = (void *)addr;
return 0;
}
#endif /* CONFIG_OF_CONTROL */
/*
* The following table holds all device probe functions
*
* shift: number of continuation bytes before the ID
* idcode: the expected IDCODE or 0xff for non JEDEC devices
* probe: the function to call
*
* Non JEDEC devices should be ordered in the table such that
* the probe functions with best detection algorithms come first.
*
* Several matching entries are permitted, they will be tried
* in sequence until a probe function returns non NULL.
*
* IDCODE_CONT_LEN may be redefined if a device needs to declare a
* larger "shift" value. IDCODE_PART_LEN generally shouldn't be
* changed. This is the max number of bytes probe functions may
* examine when looking up part-specific identification info.
*
* Probe functions will be given the idcode buffer starting at their
* manu id byte (the "idcode" in the table below). In other words,
* all of the continuation bytes will be skipped (the "shift" below).
*/
#define IDCODE_CONT_LEN 0
#define IDCODE_PART_LEN 5
static const struct {
const u8 shift;
const u8 idcode;
struct spi_flash *(*probe) (struct spi_slave *spi, u8 *idcode);
} flashes[] = {
/* Keep it sorted by define name */
#ifdef CONFIG_SPI_FLASH_ATMEL
{ 0, 0x1f, spi_flash_probe_atmel, },
#endif
#ifdef CONFIG_SPI_FLASH_EON
{ 0, 0x1c, spi_flash_probe_eon, },
#endif
#ifdef CONFIG_SPI_FLASH_GIGADEVICE
{ 0, 0xc8, spi_flash_probe_gigadevice, },
#endif
#ifdef CONFIG_SPI_FLASH_MACRONIX
{ 0, 0xc2, spi_flash_probe_macronix, },
#endif
#ifdef CONFIG_SPI_FLASH_SPANSION
{ 0, 0x01, spi_flash_probe_spansion, },
#endif
#ifdef CONFIG_SPI_FLASH_SST
{ 0, 0xbf, spi_flash_probe_sst, },
#endif
#ifdef CONFIG_SPI_FLASH_STMICRO
{ 0, 0x20, spi_flash_probe_stmicro, },
#endif
#ifdef CONFIG_SPI_FLASH_WINBOND
{ 0, 0xef, spi_flash_probe_winbond, },
#endif
#ifdef CONFIG_SPI_FRAM_RAMTRON
{ 6, 0xc2, spi_fram_probe_ramtron, },
# undef IDCODE_CONT_LEN
# define IDCODE_CONT_LEN 6
#endif
/* Keep it sorted by best detection */
#ifdef CONFIG_SPI_FLASH_STMICRO
{ 0, 0xff, spi_flash_probe_stmicro, },
#endif
#ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC
{ 0, 0xff, spi_fram_probe_ramtron, },
#endif
};
#define IDCODE_LEN (IDCODE_CONT_LEN + IDCODE_PART_LEN)
struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int spi_mode)
{
struct spi_slave *spi;
struct spi_flash *flash = NULL;
int ret, i, shift;
u8 idcode[IDCODE_LEN], *idp;
spi = spi_setup_slave(bus, cs, max_hz, spi_mode);
if (!spi) {
printf("SF: Failed to set up slave\n");
return NULL;
}
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: Failed to claim SPI bus: %d\n", ret);
goto err_claim_bus;
}
/* Read the ID codes */
ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode));
if (ret)
goto err_read_id;
#ifdef DEBUG
printf("SF: Got idcodes\n");
print_buffer(0, idcode, 1, sizeof(idcode), 0);
#endif
/* count the number of continuation bytes */
for (shift = 0, idp = idcode;
shift < IDCODE_CONT_LEN && *idp == 0x7f;
++shift, ++idp)
continue;
/* search the table for matches in shift and id */
for (i = 0; i < ARRAY_SIZE(flashes); ++i)
if (flashes[i].shift == shift && flashes[i].idcode == *idp) {
/* we have a match, call probe */
flash = flashes[i].probe(spi, idp);
if (flash)
break;
}
if (!flash) {
printf("SF: Unsupported manufacturer %02x\n", *idp);
goto err_manufacturer_probe;
}
#ifdef CONFIG_SPI_FLASH_BAR
/* Configure the BAR - disover bank cmds and read current bank */
ret = spi_flash_bank_config(flash, *idp);
if (ret < 0)
goto err_manufacturer_probe;
#endif
#ifdef CONFIG_OF_CONTROL
if (spi_flash_decode_fdt(gd->fdt_blob, flash)) {
debug("SF: FDT decode error\n");
goto err_manufacturer_probe;
}
#endif
printf("SF: Detected %s with page size ", flash->name);
print_size(flash->sector_size, ", total ");
print_size(flash->size, "");
if (flash->memory_map)
printf(", mapped at %p", flash->memory_map);
puts("\n");
#ifndef CONFIG_SPI_FLASH_BAR
if (flash->size > SPI_FLASH_16MB_BOUN) {
puts("SF: Warning - Only lower 16MiB accessible,");
puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
}
#endif
spi_release_bus(spi);
return flash;
err_manufacturer_probe:
err_read_id:
spi_release_bus(spi);
err_claim_bus:
spi_free_slave(spi);
return NULL;
}
void *spi_flash_do_alloc(int offset, int size, struct spi_slave *spi,
const char *name)
{
struct spi_flash *flash;
void *ptr;
ptr = malloc(size);
if (!ptr) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
memset(ptr, '\0', size);
flash = (struct spi_flash *)(ptr + offset);
/* Set up some basic fields - caller will sort out sizes */
flash->spi = spi;
flash->name = name;
flash->poll_cmd = CMD_READ_STATUS;
flash->read = spi_flash_cmd_read_fast;
flash->write = spi_flash_cmd_write_multi;
flash->erase = spi_flash_cmd_erase;
return flash;
}
void spi_flash_free(struct spi_flash *flash)
{
spi_free_slave(flash->spi);
free(flash);
}