u-boot/arch/arm/mach-imx/mx7/psci-mx7.c
Simon Glass 90526e9fba common: Drop net.h from common header
Move this header out of the common header. Network support is used in
quite a few places but it still does not warrant blanket inclusion.

Note that this net.h header itself has quite a lot in it. It could be
split into the driver-mode support, functions, structures, checksumming,
etc.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 17:33:31 -04:00

690 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*/
#include <cpu_func.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/secure.h>
#include <asm/arch/imx-regs.h>
#include <asm/armv7.h>
#include <asm/gic.h>
#include <linux/bitops.h>
#include <common.h>
#include <fsl_wdog.h>
#define GPC_LPCR_A7_BSC 0x0
#define GPC_LPCR_A7_AD 0x4
#define GPC_SLPCR 0x14
#define GPC_PGC_ACK_SEL_A7 0x24
#define GPC_IMR1_CORE0 0x30
#define GPC_SLOT0_CFG 0xb0
#define GPC_CPU_PGC_SW_PUP_REQ 0xf0
#define GPC_CPU_PGC_SW_PDN_REQ 0xfc
#define GPC_PGC_C0 0x800
#define GPC_PGC_C0 0x800
#define GPC_PGC_C1 0x840
#define GPC_PGC_SCU 0x880
#define BM_LPCR_A7_BSC_CPU_CLK_ON_LPM 0x4000
#define BM_LPCR_A7_BSC_LPM1 0xc
#define BM_LPCR_A7_BSC_LPM0 0x3
#define BP_LPCR_A7_BSC_LPM0 0
#define BM_SLPCR_EN_DSM 0x80000000
#define BM_SLPCR_RBC_EN 0x40000000
#define BM_SLPCR_REG_BYPASS_COUNT 0x3f000000
#define BM_SLPCR_VSTBY 0x4
#define BM_SLPCR_SBYOS 0x2
#define BM_SLPCR_BYPASS_PMIC_READY 0x1
#define BM_LPCR_A7_AD_L2PGE 0x10000
#define BM_LPCR_A7_AD_EN_C1_PUP 0x800
#define BM_LPCR_A7_AD_EN_C0_PUP 0x200
#define BM_LPCR_A7_AD_EN_PLAT_PDN 0x10
#define BM_LPCR_A7_AD_EN_C1_PDN 0x8
#define BM_LPCR_A7_AD_EN_C0_PDN 0x2
#define BM_CPU_PGC_SW_PDN_PUP_REQ_CORE0_A7 0x1
#define BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7 0x2
#define BM_GPC_PGC_ACK_SEL_A7_PD_DUMMY_ACK 0x8000
#define BM_GPC_PGC_ACK_SEL_A7_PU_DUMMY_ACK 0x80000000
#define MAX_SLOT_NUMBER 10
#define A7_LPM_WAIT 0x5
#define A7_LPM_STOP 0xa
#define BM_SYS_COUNTER_CNTCR_FCR1 0x200
#define BM_SYS_COUNTER_CNTCR_FCR0 0x100
#define REG_SET 0x4
#define REG_CLR 0x8
#define ANADIG_ARM_PLL 0x60
#define ANADIG_DDR_PLL 0x70
#define ANADIG_SYS_PLL 0xb0
#define ANADIG_ENET_PLL 0xe0
#define ANADIG_AUDIO_PLL 0xf0
#define ANADIG_VIDEO_PLL 0x130
#define BM_ANATOP_ARM_PLL_OVERRIDE BIT(20)
#define BM_ANATOP_DDR_PLL_OVERRIDE BIT(19)
#define BM_ANATOP_SYS_PLL_OVERRIDE (0x1ff << 17)
#define BM_ANATOP_ENET_PLL_OVERRIDE BIT(13)
#define BM_ANATOP_AUDIO_PLL_OVERRIDE BIT(24)
#define BM_ANATOP_VIDEO_PLL_OVERRIDE BIT(24)
#define DDRC_STAT 0x4
#define DDRC_PWRCTL 0x30
#define DDRC_PSTAT 0x3fc
#define SRC_GPR1_MX7D 0x074
#define SRC_GPR2_MX7D 0x078
#define SRC_A7RCR0 0x004
#define SRC_A7RCR1 0x008
#define BP_SRC_A7RCR0_A7_CORE_RESET0 0
#define BP_SRC_A7RCR1_A7_CORE1_ENABLE 1
#define SNVS_LPCR 0x38
#define BP_SNVS_LPCR_DP_EN 0x20
#define BP_SNVS_LPCR_TOP 0x40
#define CCM_CCGR_SNVS 0x4250
#define CCM_ROOT_WDOG 0xbb80
#define CCM_CCGR_WDOG1 0x49c0
#define MPIDR_AFF0 GENMASK(7, 0)
#define IMX7D_PSCI_NR_CPUS 2
#if IMX7D_PSCI_NR_CPUS > CONFIG_ARMV7_PSCI_NR_CPUS
#error "invalid value for CONFIG_ARMV7_PSCI_NR_CPUS"
#endif
#define imx_cpu_gpr_entry_offset(cpu) \
(SRC_BASE_ADDR + SRC_GPR1_MX7D + cpu * 8)
#define imx_cpu_gpr_para_offset(cpu) \
(imx_cpu_gpr_entry_offset(cpu) + 4)
#define IMX_CPU_SYNC_OFF ~0
#define IMX_CPU_SYNC_ON 0
u8 psci_state[IMX7D_PSCI_NR_CPUS] __secure_data = {
PSCI_AFFINITY_LEVEL_ON,
PSCI_AFFINITY_LEVEL_OFF};
enum imx_gpc_slot {
CORE0_A7,
CORE1_A7,
SCU_A7,
FAST_MEGA_MIX,
MIPI_PHY,
PCIE_PHY,
USB_OTG1_PHY,
USB_OTG2_PHY,
USB_HSIC_PHY,
CORE0_M4,
};
enum mxc_cpu_pwr_mode {
RUN,
WAIT,
STOP,
};
extern void psci_system_resume(void);
static inline void psci_set_state(int cpu, u8 state)
{
psci_state[cpu] = state;
dsb();
isb();
}
static inline void imx_gpcv2_set_m_core_pgc(bool enable, u32 offset)
{
writel(enable, GPC_IPS_BASE_ADDR + offset);
}
__secure void imx_gpcv2_set_core_power(int cpu, bool pdn)
{
u32 reg = pdn ? GPC_CPU_PGC_SW_PUP_REQ : GPC_CPU_PGC_SW_PDN_REQ;
u32 pgc = cpu ? GPC_PGC_C1 : GPC_PGC_C0;
u32 pdn_pup_req = cpu ? BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7 :
BM_CPU_PGC_SW_PDN_PUP_REQ_CORE0_A7;
u32 val;
imx_gpcv2_set_m_core_pgc(true, pgc);
val = readl(GPC_IPS_BASE_ADDR + reg);
val |= pdn_pup_req;
writel(val, GPC_IPS_BASE_ADDR + reg);
while ((readl(GPC_IPS_BASE_ADDR + reg) & pdn_pup_req) != 0)
;
imx_gpcv2_set_m_core_pgc(false, pgc);
}
__secure void imx_enable_cpu_ca7(int cpu, bool enable)
{
u32 mask, val;
mask = 1 << (BP_SRC_A7RCR1_A7_CORE1_ENABLE + cpu - 1);
val = readl(SRC_BASE_ADDR + SRC_A7RCR1);
val = enable ? val | mask : val & ~mask;
writel(val, SRC_BASE_ADDR + SRC_A7RCR1);
}
__secure void psci_arch_cpu_entry(void)
{
u32 cpu = psci_get_cpu_id();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON);
}
__secure s32 psci_cpu_on(u32 __always_unused function_id, u32 mpidr, u32 ep,
u32 context_id)
{
u32 cpu = mpidr & MPIDR_AFF0;
if (mpidr & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= IMX7D_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON)
return ARM_PSCI_RET_ALREADY_ON;
if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON_PENDING)
return ARM_PSCI_RET_ON_PENDING;
psci_save(cpu, ep, context_id);
writel((u32)psci_cpu_entry, imx_cpu_gpr_entry_offset(cpu));
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON_PENDING);
imx_gpcv2_set_core_power(cpu, true);
imx_enable_cpu_ca7(cpu, true);
return ARM_PSCI_RET_SUCCESS;
}
__secure s32 psci_cpu_off(void)
{
int cpu;
cpu = psci_get_cpu_id();
psci_cpu_off_common();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_OFF);
imx_enable_cpu_ca7(cpu, false);
imx_gpcv2_set_core_power(cpu, false);
/*
* We use the cpu jumping argument register to sync with
* psci_affinity_info() which is running on cpu0 to kill the cpu.
*/
writel(IMX_CPU_SYNC_OFF, imx_cpu_gpr_para_offset(cpu));
while (1)
wfi();
}
__secure void psci_system_reset(void)
{
struct wdog_regs *wdog = (struct wdog_regs *)WDOG1_BASE_ADDR;
/* make sure WDOG1 clock is enabled */
writel(0x1 << 28, CCM_BASE_ADDR + CCM_ROOT_WDOG);
writel(0x3, CCM_BASE_ADDR + CCM_CCGR_WDOG1);
writew(WCR_WDE, &wdog->wcr);
while (1)
wfi();
}
__secure void psci_system_off(void)
{
u32 val;
/* make sure SNVS clock is enabled */
writel(0x3, CCM_BASE_ADDR + CCM_CCGR_SNVS);
val = readl(SNVS_BASE_ADDR + SNVS_LPCR);
val |= BP_SNVS_LPCR_DP_EN | BP_SNVS_LPCR_TOP;
writel(val, SNVS_BASE_ADDR + SNVS_LPCR);
while (1)
wfi();
}
__secure u32 psci_version(void)
{
return ARM_PSCI_VER_1_0;
}
__secure s32 psci_cpu_suspend(u32 __always_unused function_id, u32 power_state,
u32 entry_point_address,
u32 context_id)
{
return ARM_PSCI_RET_INVAL;
}
__secure s32 psci_affinity_info(u32 __always_unused function_id,
u32 target_affinity,
u32 lowest_affinity_level)
{
u32 cpu = target_affinity & MPIDR_AFF0;
if (lowest_affinity_level > 0)
return ARM_PSCI_RET_INVAL;
if (target_affinity & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= IMX7D_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
/* CPU is waiting for killed */
if (readl(imx_cpu_gpr_para_offset(cpu)) == IMX_CPU_SYNC_OFF) {
imx_enable_cpu_ca7(cpu, false);
imx_gpcv2_set_core_power(cpu, false);
writel(IMX_CPU_SYNC_ON, imx_cpu_gpr_para_offset(cpu));
}
return psci_state[cpu];
}
__secure u32 psci_migrate_info_type(void)
{
/* Trusted OS is either not present or does not require migration */
return 2;
}
__secure s32 psci_features(u32 __always_unused function_id, u32 psci_fid)
{
switch (psci_fid) {
case ARM_PSCI_0_2_FN_PSCI_VERSION:
case ARM_PSCI_0_2_FN_CPU_OFF:
case ARM_PSCI_0_2_FN_CPU_ON:
case ARM_PSCI_0_2_FN_AFFINITY_INFO:
case ARM_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case ARM_PSCI_0_2_FN_SYSTEM_OFF:
case ARM_PSCI_0_2_FN_SYSTEM_RESET:
case ARM_PSCI_1_0_FN_PSCI_FEATURES:
case ARM_PSCI_1_0_FN_SYSTEM_SUSPEND:
return 0x0;
}
return ARM_PSCI_RET_NI;
}
static __secure void imx_gpcv2_set_lpm_mode(enum mxc_cpu_pwr_mode mode)
{
u32 val1, val2, val3;
val1 = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_BSC);
val2 = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
/* all cores' LPM settings must be same */
val1 &= ~(BM_LPCR_A7_BSC_LPM0 | BM_LPCR_A7_BSC_LPM1);
val1 |= BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
val2 &= ~(BM_SLPCR_EN_DSM | BM_SLPCR_VSTBY | BM_SLPCR_RBC_EN |
BM_SLPCR_SBYOS | BM_SLPCR_BYPASS_PMIC_READY);
/*
* GPC: When improper low-power sequence is used,
* the SoC enters low power mode before the ARM core executes WFI.
*
* Software workaround:
* 1) Software should trigger IRQ #32 (IOMUX) to be always pending
* by setting IOMUX_GPR1_IRQ.
* 2) Software should then unmask IRQ #32 in GPC before setting GPC
* Low-Power mode.
* 3) Software should mask IRQ #32 right after GPC Low-Power mode
* is set.
*/
switch (mode) {
case RUN:
val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
val3 &= ~0x1;
writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
break;
case WAIT:
val1 |= A7_LPM_WAIT << BP_LPCR_A7_BSC_LPM0;
val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
val3 &= ~0x1;
writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
break;
case STOP:
val1 |= A7_LPM_STOP << BP_LPCR_A7_BSC_LPM0;
val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
val2 |= BM_SLPCR_EN_DSM;
val2 |= BM_SLPCR_SBYOS;
val2 |= BM_SLPCR_VSTBY;
val2 |= BM_SLPCR_BYPASS_PMIC_READY;
val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
val3 |= 0x1;
writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
break;
default:
return;
}
writel(val1, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_BSC);
writel(val2, GPC_IPS_BASE_ADDR + GPC_SLPCR);
}
static __secure void imx_gpcv2_set_plat_power_gate_by_lpm(bool pdn)
{
u32 val = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
val &= ~(BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE);
if (pdn)
val |= BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE;
writel(val, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
}
static __secure void imx_gpcv2_set_cpu_power_gate_by_lpm(u32 cpu, bool pdn)
{
u32 val;
val = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
if (cpu == 0) {
if (pdn)
val |= BM_LPCR_A7_AD_EN_C0_PDN |
BM_LPCR_A7_AD_EN_C0_PUP;
else
val &= ~(BM_LPCR_A7_AD_EN_C0_PDN |
BM_LPCR_A7_AD_EN_C0_PUP);
}
if (cpu == 1) {
if (pdn)
val |= BM_LPCR_A7_AD_EN_C1_PDN |
BM_LPCR_A7_AD_EN_C1_PUP;
else
val &= ~(BM_LPCR_A7_AD_EN_C1_PDN |
BM_LPCR_A7_AD_EN_C1_PUP);
}
writel(val, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
}
static __secure void imx_gpcv2_set_slot_ack(u32 index, enum imx_gpc_slot m_core,
bool mode, bool ack)
{
u32 val;
if (index >= MAX_SLOT_NUMBER)
return;
/* set slot */
writel(readl(GPC_IPS_BASE_ADDR + GPC_SLOT0_CFG + index * 4) |
((mode + 1) << (m_core * 2)),
GPC_IPS_BASE_ADDR + GPC_SLOT0_CFG + index * 4);
if (ack) {
/* set ack */
val = readl(GPC_IPS_BASE_ADDR + GPC_PGC_ACK_SEL_A7);
/* clear dummy ack */
val &= ~(mode ? BM_GPC_PGC_ACK_SEL_A7_PU_DUMMY_ACK :
BM_GPC_PGC_ACK_SEL_A7_PD_DUMMY_ACK);
val |= 1 << (m_core + (mode ? 16 : 0));
writel(val, GPC_IPS_BASE_ADDR + GPC_PGC_ACK_SEL_A7);
}
}
static __secure void imx_system_counter_resume(void)
{
u32 val;
val = readl(SYSCNT_CTRL_IPS_BASE_ADDR);
val &= ~BM_SYS_COUNTER_CNTCR_FCR1;
val |= BM_SYS_COUNTER_CNTCR_FCR0;
writel(val, SYSCNT_CTRL_IPS_BASE_ADDR);
}
static __secure void imx_system_counter_suspend(void)
{
u32 val;
val = readl(SYSCNT_CTRL_IPS_BASE_ADDR);
val &= ~BM_SYS_COUNTER_CNTCR_FCR0;
val |= BM_SYS_COUNTER_CNTCR_FCR1;
writel(val, SYSCNT_CTRL_IPS_BASE_ADDR);
}
static __secure void gic_resume(void)
{
u32 itlinesnr, i;
u32 gic_dist_addr = GIC400_ARB_BASE_ADDR + GIC_DIST_OFFSET;
/* enable the GIC distributor */
writel(readl(gic_dist_addr + GICD_CTLR) | 0x03,
gic_dist_addr + GICD_CTLR);
/* TYPER[4:0] contains an encoded number of available interrupts */
itlinesnr = readl(gic_dist_addr + GICD_TYPER) & 0x1f;
/* set all bits in the GIC group registers to one to allow access
* from non-secure state. The first 32 interrupts are private per
* CPU and will be set later when enabling the GIC for each core
*/
for (i = 1; i <= itlinesnr; i++)
writel((u32)-1, gic_dist_addr + GICD_IGROUPRn + 4 * i);
}
static inline void imx_pll_suspend(void)
{
writel(BM_ANATOP_ARM_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_ARM_PLL + REG_SET);
writel(BM_ANATOP_DDR_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_DDR_PLL + REG_SET);
writel(BM_ANATOP_SYS_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_SYS_PLL + REG_SET);
writel(BM_ANATOP_ENET_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_ENET_PLL + REG_SET);
writel(BM_ANATOP_AUDIO_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_AUDIO_PLL + REG_SET);
writel(BM_ANATOP_VIDEO_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_VIDEO_PLL + REG_SET);
}
static inline void imx_pll_resume(void)
{
writel(BM_ANATOP_ARM_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_ARM_PLL + REG_CLR);
writel(BM_ANATOP_DDR_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_DDR_PLL + REG_CLR);
writel(BM_ANATOP_SYS_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_SYS_PLL + REG_CLR);
writel(BM_ANATOP_ENET_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_ENET_PLL + REG_CLR);
writel(BM_ANATOP_AUDIO_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_AUDIO_PLL + REG_CLR);
writel(BM_ANATOP_VIDEO_PLL_OVERRIDE,
ANATOP_BASE_ADDR + ANADIG_VIDEO_PLL + REG_CLR);
}
static inline void imx_udelay(u32 usec)
{
u32 freq;
u64 start, end;
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (freq));
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
do {
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
if ((end - start) > usec * (freq / 1000000))
break;
} while (1);
}
static inline void imx_ddrc_enter_self_refresh(void)
{
writel(0, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
while (readl(DDRC_IPS_BASE_ADDR + DDRC_PSTAT) & 0x10001)
;
writel(0x20, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
while ((readl(DDRC_IPS_BASE_ADDR + DDRC_STAT) & 0x23) != 0x23)
;
writel(readl(DDRC_IPS_BASE_ADDR + DDRC_PWRCTL) | 0x8,
DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
}
static inline void imx_ddrc_exit_self_refresh(void)
{
writel(0, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
while ((readl(DDRC_IPS_BASE_ADDR + DDRC_STAT) & 0x3) == 0x3)
;
writel(readl(DDRC_IPS_BASE_ADDR + DDRC_PWRCTL) | 0x1,
DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
}
__secure void imx_system_resume(void)
{
unsigned int i, val, imr[4], entry;
entry = psci_get_target_pc(0);
imx_ddrc_exit_self_refresh();
imx_system_counter_resume();
imx_gpcv2_set_lpm_mode(RUN);
imx_gpcv2_set_cpu_power_gate_by_lpm(0, false);
imx_gpcv2_set_plat_power_gate_by_lpm(false);
imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C0);
imx_gpcv2_set_m_core_pgc(false, GPC_PGC_SCU);
/*
* need to mask all interrupts in GPC before
* operating RBC configurations
*/
for (i = 0; i < 4; i++) {
imr[i] = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
writel(~0, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
}
/* configure RBC enable bit */
val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
val &= ~BM_SLPCR_RBC_EN;
writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
/* configure RBC count */
val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
val &= ~BM_SLPCR_REG_BYPASS_COUNT;
writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
/*
* need to delay at least 2 cycles of CKIL(32K)
* due to hardware design requirement, which is
* ~61us, here we use 65us for safe
*/
imx_udelay(65);
/* restore GPC interrupt mask settings */
for (i = 0; i < 4; i++)
writel(imr[i], GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
/* initialize gic distributor */
gic_resume();
_nonsec_init();
/* save cpu0 entry */
psci_save(0, entry, 0);
psci_cpu_entry();
}
__secure void psci_system_suspend(u32 __always_unused function_id,
u32 ep, u32 context_id)
{
u32 gpc_mask[4];
u32 i, val;
psci_save(0, ep, context_id);
/* overwrite PLL to be controlled by low power mode */
imx_pll_suspend();
imx_system_counter_suspend();
/* set CA7 platform to enter STOP mode */
imx_gpcv2_set_lpm_mode(STOP);
/* enable core0/scu power down/up with low power mode */
imx_gpcv2_set_cpu_power_gate_by_lpm(0, true);
imx_gpcv2_set_plat_power_gate_by_lpm(true);
/* time slot settings for core0 and scu */
imx_gpcv2_set_slot_ack(0, CORE0_A7, false, false);
imx_gpcv2_set_slot_ack(1, SCU_A7, false, true);
imx_gpcv2_set_slot_ack(5, SCU_A7, true, false);
imx_gpcv2_set_slot_ack(6, CORE0_A7, true, true);
imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C0);
imx_gpcv2_set_m_core_pgc(true, GPC_PGC_SCU);
psci_v7_flush_dcache_all();
imx_ddrc_enter_self_refresh();
/*
* e10133: ARM: Boot failure after A7 enters into
* low-power idle mode
*
* Workaround:
* If both CPU0/CPU1 are IDLE, the last IDLE CPU should
* disable GIC first, then REG_BYPASS_COUNTER is used
* to mask wakeup INT, and then execute “wfi” is used to
* bring the system into power down processing safely.
* The counter must be enabled as close to the “wfi” state
* as possible. The following equation can be used to
* determine the RBC counter value:
* RBC_COUNT * (1/32K RTC frequency) >=
* (46 + PDNSCR_SW + PDNSCR_SW2ISO ) ( 1/IPG_CLK frequency ).
*/
/* disable GIC distributor */
writel(0, GIC400_ARB_BASE_ADDR + GIC_DIST_OFFSET);
for (i = 0; i < 4; i++)
gpc_mask[i] = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
/*
* enable the RBC bypass counter here
* to hold off the interrupts. RBC counter
* = 8 (240us). With this setting, the latency
* from wakeup interrupt to ARM power up
* is ~250uS.
*/
val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
val &= ~(0x3f << 24);
val |= (0x8 << 24);
writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
/* enable the counter. */
val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
val |= (1 << 30);
writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
/* unmask all the GPC interrupts. */
for (i = 0; i < 4; i++)
writel(gpc_mask[i], GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
/*
* now delay for a short while (3usec)
* ARM is at 1GHz at this point
* so a short loop should be enough.
* this delay is required to ensure that
* the RBC counter can start counting in
* case an interrupt is already pending
* or in case an interrupt arrives just
* as ARM is about to assert DSM_request.
*/
imx_udelay(3);
/* save resume entry and sp in CPU0 GPR registers */
asm volatile("mov %0, sp" : "=r" (val));
writel((u32)psci_system_resume, SRC_BASE_ADDR + SRC_GPR1_MX7D);
writel(val, SRC_BASE_ADDR + SRC_GPR2_MX7D);
/* sleep */
while (1)
wfi();
}