u-boot/drivers/ddr/altera/sdram_soc64.c
Tien Fong Chee 59d4230429 ddr: altera: Add SDRAM driver for Intel N5X device
The DDR subsystem in Diamond Mesa is consisted of controller, PHY,
memory reset manager and memory clock manager.

Configuration settings of controller, PHY and  memory reset manager
is come from DDR handoff data in bitstream, which contain the register
base addresses and user settings from tool.

Configuration settings of memory clock manager is come from the HPS
handoff data in bitstream, however the register base address is defined
in device tree.

The calibration is fully done in HPS, which requires IMEM and DMEM
binaries loading to PHY SRAM for running this calibration, both
IMEM and DMEM binaries are also part of bitstream, this bitstream
would be loaded to OCRAM by SDM, and configured by DDR driver.

Signed-off-by: Siew Chin Lim <elly.siew.chin.lim@intel.com>
Signed-off-by: Tien Fong Chee <tien.fong.chee@intel.com>
2021-08-25 13:47:05 +08:00

399 lines
9.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2021 Intel Corporation <www.intel.com>
*
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <fdtdec.h>
#include <hang.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <reset.h>
#include "sdram_soc64.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/sizes.h>
#define PGTABLE_OFF 0x4000
u32 hmc_readl(struct altera_sdram_plat *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
u32 hmc_ecc_readl(struct altera_sdram_plat *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
u32 hmc_ecc_writel(struct altera_sdram_plat *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
u32 ddr_sch_writel(struct altera_sdram_plat *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int emif_clear(struct altera_sdram_plat *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
int emif_reset(struct altera_sdram_plat *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
#if !IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
int poll_hmc_clock_status(void)
{
return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() +
SYSMGR_SOC64_HMC_CLK),
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
#endif
void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
void sdram_init_ecc_bits(struct bd_info *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
WATCHDOG_RESET();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
void sdram_size_check(struct bd_info *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
phys_size_t size, remaining_size;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
remaining_size = bd->bi_dram[bank].size;
while (ram_check < bd->bi_dram[bank].size) {
size = min((phys_addr_t)SZ_1G,
(phys_addr_t)remaining_size);
/*
* Ensure the size is power of two, this is requirement
* to run get_ram_size() / memory test
*/
if (size != 0 && ((size & (size - 1)) == 0)) {
ram_check += get_ram_size((void *)
(start + ram_check), size);
remaining_size = bd->bi_dram[bank].size -
ram_check;
} else {
puts("DDR: Memory test requires SDRAM size ");
puts("in power of two!\n");
hang();
}
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
phys_size_t sdram_calculate_size(struct altera_sdram_plat *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
void sdram_set_firewall(struct bd_info *bd)
{
u32 i;
phys_size_t value;
u32 lower, upper;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
if (!bd->bi_dram[i].size)
continue;
value = bd->bi_dram[i].start;
/* Keep first 1MB of SDRAM memory region as secure region when
* using ATF flow, where the ATF code is located.
*/
if (IS_ENABLED(CONFIG_SPL_ATF) && i == 0)
value += SZ_1M;
/* Setting non-secure MPU region base and base extended */
lower = lower_32_bits(value);
upper = upper_32_bits(value);
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_MPUREGION0ADDR_BASE +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_MPUREGION0ADDR_BASEEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure Non-MPU region base and base extended */
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASE +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASEEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure MPU limit and limit extexded */
value = bd->bi_dram[i].start + bd->bi_dram[i].size - 1;
lower = lower_32_bits(value);
upper = upper_32_bits(value);
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure Non-MPU limit and limit extexded */
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(BIT(i) | BIT(i + 8),
FW_MPU_DDR_SCR_EN_SET);
}
}
static int altera_sdram_of_to_plat(struct udevice *dev)
{
struct altera_sdram_plat *plat = dev_get_plat(dev);
fdt_addr_t addr;
/* These regs info are part of DDR handoff in bitstream */
#if IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
return 0;
#endif
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ .compatible = "intel,sdr-ctl-agilex" },
{ .compatible = "intel,sdr-ctl-n5x" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.of_to_plat = altera_sdram_of_to_plat,
.plat_auto = sizeof(struct altera_sdram_plat),
.probe = altera_sdram_probe,
.priv_auto = sizeof(struct altera_sdram_priv),
};