mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-12 16:07:30 +00:00
fac9640895
Signed-off-by: Philippe Reynes <tremyfr@yahoo.fr>
937 lines
21 KiB
C
937 lines
21 KiB
C
/*
|
|
* (C) Copyright 2007
|
|
* Sascha Hauer, Pengutronix
|
|
*
|
|
* (C) Copyright 2009 Freescale Semiconductor, Inc.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/arch/imx-regs.h>
|
|
#include <asm/arch/crm_regs.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <div64.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
|
|
enum pll_clocks {
|
|
PLL1_CLOCK = 0,
|
|
PLL2_CLOCK,
|
|
PLL3_CLOCK,
|
|
#ifdef CONFIG_MX53
|
|
PLL4_CLOCK,
|
|
#endif
|
|
PLL_CLOCKS,
|
|
};
|
|
|
|
struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
|
|
[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
|
|
[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
|
|
[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
|
|
#ifdef CONFIG_MX53
|
|
[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
|
|
#endif
|
|
};
|
|
|
|
#define AHB_CLK_ROOT 133333333
|
|
#define SZ_DEC_1M 1000000
|
|
#define PLL_PD_MAX 16 /* Actual pd+1 */
|
|
#define PLL_MFI_MAX 15
|
|
#define PLL_MFI_MIN 5
|
|
#define ARM_DIV_MAX 8
|
|
#define IPG_DIV_MAX 4
|
|
#define AHB_DIV_MAX 8
|
|
#define EMI_DIV_MAX 8
|
|
#define NFC_DIV_MAX 8
|
|
|
|
#define MX5_CBCMR 0x00015154
|
|
#define MX5_CBCDR 0x02888945
|
|
|
|
struct fixed_pll_mfd {
|
|
u32 ref_clk_hz;
|
|
u32 mfd;
|
|
};
|
|
|
|
const struct fixed_pll_mfd fixed_mfd[] = {
|
|
{MXC_HCLK, 24 * 16},
|
|
};
|
|
|
|
struct pll_param {
|
|
u32 pd;
|
|
u32 mfi;
|
|
u32 mfn;
|
|
u32 mfd;
|
|
};
|
|
|
|
#define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
|
|
#define PLL_FREQ_MIN(ref_clk) \
|
|
((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
|
|
#define MAX_DDR_CLK 420000000
|
|
#define NFC_CLK_MAX 34000000
|
|
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
|
|
|
|
void set_usboh3_clk(void)
|
|
{
|
|
clrsetbits_le32(&mxc_ccm->cscmr1,
|
|
MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
|
|
MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
|
|
clrsetbits_le32(&mxc_ccm->cscdr1,
|
|
MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
|
|
MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
|
|
MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
|
|
MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
|
|
}
|
|
|
|
void enable_usboh3_clk(bool enable)
|
|
{
|
|
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
|
|
|
|
clrsetbits_le32(&mxc_ccm->CCGR2,
|
|
MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
|
|
MXC_CCM_CCGR2_USBOH3_60M(cg));
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_I2C_MXC
|
|
/* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
|
|
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
|
|
{
|
|
u32 mask;
|
|
|
|
#if defined(CONFIG_MX51)
|
|
if (i2c_num > 1)
|
|
#elif defined(CONFIG_MX53)
|
|
if (i2c_num > 2)
|
|
#endif
|
|
return -EINVAL;
|
|
mask = MXC_CCM_CCGR_CG_MASK <<
|
|
(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
|
|
if (enable)
|
|
setbits_le32(&mxc_ccm->CCGR1, mask);
|
|
else
|
|
clrbits_le32(&mxc_ccm->CCGR1, mask);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void set_usb_phy_clk(void)
|
|
{
|
|
clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
|
|
}
|
|
|
|
#if defined(CONFIG_MX51)
|
|
void enable_usb_phy1_clk(bool enable)
|
|
{
|
|
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
|
|
|
|
clrsetbits_le32(&mxc_ccm->CCGR2,
|
|
MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
|
|
MXC_CCM_CCGR2_USB_PHY(cg));
|
|
}
|
|
|
|
void enable_usb_phy2_clk(bool enable)
|
|
{
|
|
/* i.MX51 has a single USB PHY clock, so do nothing here. */
|
|
}
|
|
#elif defined(CONFIG_MX53)
|
|
void enable_usb_phy1_clk(bool enable)
|
|
{
|
|
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
|
|
|
|
clrsetbits_le32(&mxc_ccm->CCGR4,
|
|
MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
|
|
MXC_CCM_CCGR4_USB_PHY1(cg));
|
|
}
|
|
|
|
void enable_usb_phy2_clk(bool enable)
|
|
{
|
|
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
|
|
|
|
clrsetbits_le32(&mxc_ccm->CCGR4,
|
|
MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
|
|
MXC_CCM_CCGR4_USB_PHY2(cg));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the frequency of PLLn.
|
|
*/
|
|
static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
|
|
{
|
|
uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
|
|
uint64_t refclk, temp;
|
|
int32_t mfn_abs;
|
|
|
|
ctrl = readl(&pll->ctrl);
|
|
|
|
if (ctrl & MXC_DPLLC_CTL_HFSM) {
|
|
mfn = readl(&pll->hfs_mfn);
|
|
mfd = readl(&pll->hfs_mfd);
|
|
op = readl(&pll->hfs_op);
|
|
} else {
|
|
mfn = readl(&pll->mfn);
|
|
mfd = readl(&pll->mfd);
|
|
op = readl(&pll->op);
|
|
}
|
|
|
|
mfd &= MXC_DPLLC_MFD_MFD_MASK;
|
|
mfn &= MXC_DPLLC_MFN_MFN_MASK;
|
|
pdf = op & MXC_DPLLC_OP_PDF_MASK;
|
|
mfi = MXC_DPLLC_OP_MFI_RD(op);
|
|
|
|
/* 21.2.3 */
|
|
if (mfi < 5)
|
|
mfi = 5;
|
|
|
|
/* Sign extend */
|
|
if (mfn >= 0x04000000) {
|
|
mfn |= 0xfc000000;
|
|
mfn_abs = -mfn;
|
|
} else
|
|
mfn_abs = mfn;
|
|
|
|
refclk = infreq * 2;
|
|
if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
|
|
refclk *= 2;
|
|
|
|
do_div(refclk, pdf + 1);
|
|
temp = refclk * mfn_abs;
|
|
do_div(temp, mfd + 1);
|
|
ret = refclk * mfi;
|
|
|
|
if ((int)mfn < 0)
|
|
ret -= temp;
|
|
else
|
|
ret += temp;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MX51
|
|
/*
|
|
* This function returns the Frequency Pre-Multiplier clock.
|
|
*/
|
|
static u32 get_fpm(void)
|
|
{
|
|
u32 mult;
|
|
u32 ccr = readl(&mxc_ccm->ccr);
|
|
|
|
if (ccr & MXC_CCM_CCR_FPM_MULT)
|
|
mult = 1024;
|
|
else
|
|
mult = 512;
|
|
|
|
return MXC_CLK32 * mult;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function returns the low power audio clock.
|
|
*/
|
|
static u32 get_lp_apm(void)
|
|
{
|
|
u32 ret_val = 0;
|
|
u32 ccsr = readl(&mxc_ccm->ccsr);
|
|
|
|
if (ccsr & MXC_CCM_CCSR_LP_APM)
|
|
#if defined(CONFIG_MX51)
|
|
ret_val = get_fpm();
|
|
#elif defined(CONFIG_MX53)
|
|
ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
|
|
#endif
|
|
else
|
|
ret_val = MXC_HCLK;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/*
|
|
* Get mcu main rate
|
|
*/
|
|
u32 get_mcu_main_clk(void)
|
|
{
|
|
u32 reg, freq;
|
|
|
|
reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
|
|
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
|
|
return freq / (reg + 1);
|
|
}
|
|
|
|
/*
|
|
* Get the rate of peripheral's root clock.
|
|
*/
|
|
u32 get_periph_clk(void)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl(&mxc_ccm->cbcdr);
|
|
if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
|
|
return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
|
|
reg = readl(&mxc_ccm->cbcmr);
|
|
switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
|
|
case 0:
|
|
return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
|
|
case 1:
|
|
return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
|
|
case 2:
|
|
return get_lp_apm();
|
|
default:
|
|
return 0;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Get the rate of ipg clock.
|
|
*/
|
|
static u32 get_ipg_clk(void)
|
|
{
|
|
uint32_t freq, reg, div;
|
|
|
|
freq = get_ahb_clk();
|
|
|
|
reg = readl(&mxc_ccm->cbcdr);
|
|
div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
|
|
|
|
return freq / div;
|
|
}
|
|
|
|
/*
|
|
* Get the rate of ipg_per clock.
|
|
*/
|
|
static u32 get_ipg_per_clk(void)
|
|
{
|
|
u32 freq, pred1, pred2, podf;
|
|
|
|
if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
|
|
return get_ipg_clk();
|
|
|
|
if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
|
|
freq = get_lp_apm();
|
|
else
|
|
freq = get_periph_clk();
|
|
podf = readl(&mxc_ccm->cbcdr);
|
|
pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
|
|
pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
|
|
podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
|
|
return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
|
|
}
|
|
|
|
/* Get the output clock rate of a standard PLL MUX for peripherals. */
|
|
static u32 get_standard_pll_sel_clk(u32 clk_sel)
|
|
{
|
|
u32 freq = 0;
|
|
|
|
switch (clk_sel & 0x3) {
|
|
case 0:
|
|
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
|
|
break;
|
|
case 1:
|
|
freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
|
|
break;
|
|
case 2:
|
|
freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
|
|
break;
|
|
case 3:
|
|
freq = get_lp_apm();
|
|
break;
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
/*
|
|
* Get the rate of uart clk.
|
|
*/
|
|
static u32 get_uart_clk(void)
|
|
{
|
|
unsigned int clk_sel, freq, reg, pred, podf;
|
|
|
|
reg = readl(&mxc_ccm->cscmr1);
|
|
clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
|
|
freq = get_standard_pll_sel_clk(clk_sel);
|
|
|
|
reg = readl(&mxc_ccm->cscdr1);
|
|
pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
|
|
podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
|
|
freq /= (pred + 1) * (podf + 1);
|
|
|
|
return freq;
|
|
}
|
|
|
|
/*
|
|
* get cspi clock rate.
|
|
*/
|
|
static u32 imx_get_cspiclk(void)
|
|
{
|
|
u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
|
|
u32 cscmr1 = readl(&mxc_ccm->cscmr1);
|
|
u32 cscdr2 = readl(&mxc_ccm->cscdr2);
|
|
|
|
pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
|
|
pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
|
|
clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
|
|
freq = get_standard_pll_sel_clk(clk_sel);
|
|
ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
|
|
return ret_val;
|
|
}
|
|
|
|
/*
|
|
* get esdhc clock rate.
|
|
*/
|
|
static u32 get_esdhc_clk(u32 port)
|
|
{
|
|
u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
|
|
u32 cscmr1 = readl(&mxc_ccm->cscmr1);
|
|
u32 cscdr1 = readl(&mxc_ccm->cscdr1);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
|
|
pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
|
|
podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
|
|
break;
|
|
case 1:
|
|
clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
|
|
pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
|
|
podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
|
|
break;
|
|
case 2:
|
|
if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
|
|
return get_esdhc_clk(1);
|
|
else
|
|
return get_esdhc_clk(0);
|
|
case 3:
|
|
if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
|
|
return get_esdhc_clk(1);
|
|
else
|
|
return get_esdhc_clk(0);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
|
|
return freq;
|
|
}
|
|
|
|
static u32 get_axi_a_clk(void)
|
|
{
|
|
u32 cbcdr = readl(&mxc_ccm->cbcdr);
|
|
u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
|
|
|
|
return get_periph_clk() / (pdf + 1);
|
|
}
|
|
|
|
static u32 get_axi_b_clk(void)
|
|
{
|
|
u32 cbcdr = readl(&mxc_ccm->cbcdr);
|
|
u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
|
|
|
|
return get_periph_clk() / (pdf + 1);
|
|
}
|
|
|
|
static u32 get_emi_slow_clk(void)
|
|
{
|
|
u32 cbcdr = readl(&mxc_ccm->cbcdr);
|
|
u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
|
|
u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
|
|
|
|
if (emi_clk_sel)
|
|
return get_ahb_clk() / (pdf + 1);
|
|
|
|
return get_periph_clk() / (pdf + 1);
|
|
}
|
|
|
|
static u32 get_ddr_clk(void)
|
|
{
|
|
u32 ret_val = 0;
|
|
u32 cbcmr = readl(&mxc_ccm->cbcmr);
|
|
u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
|
|
#ifdef CONFIG_MX51
|
|
u32 cbcdr = readl(&mxc_ccm->cbcdr);
|
|
if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
|
|
u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
|
|
|
|
ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
|
|
ret_val /= ddr_clk_podf + 1;
|
|
|
|
return ret_val;
|
|
}
|
|
#endif
|
|
switch (ddr_clk_sel) {
|
|
case 0:
|
|
ret_val = get_axi_a_clk();
|
|
break;
|
|
case 1:
|
|
ret_val = get_axi_b_clk();
|
|
break;
|
|
case 2:
|
|
ret_val = get_emi_slow_clk();
|
|
break;
|
|
case 3:
|
|
ret_val = get_ahb_clk();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/*
|
|
* The API of get mxc clocks.
|
|
*/
|
|
unsigned int mxc_get_clock(enum mxc_clock clk)
|
|
{
|
|
switch (clk) {
|
|
case MXC_ARM_CLK:
|
|
return get_mcu_main_clk();
|
|
case MXC_AHB_CLK:
|
|
return get_ahb_clk();
|
|
case MXC_IPG_CLK:
|
|
return get_ipg_clk();
|
|
case MXC_IPG_PERCLK:
|
|
case MXC_I2C_CLK:
|
|
return get_ipg_per_clk();
|
|
case MXC_UART_CLK:
|
|
return get_uart_clk();
|
|
case MXC_CSPI_CLK:
|
|
return imx_get_cspiclk();
|
|
case MXC_ESDHC_CLK:
|
|
return get_esdhc_clk(0);
|
|
case MXC_ESDHC2_CLK:
|
|
return get_esdhc_clk(1);
|
|
case MXC_ESDHC3_CLK:
|
|
return get_esdhc_clk(2);
|
|
case MXC_ESDHC4_CLK:
|
|
return get_esdhc_clk(3);
|
|
case MXC_FEC_CLK:
|
|
return get_ipg_clk();
|
|
case MXC_SATA_CLK:
|
|
return get_ahb_clk();
|
|
case MXC_DDR_CLK:
|
|
return get_ddr_clk();
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
u32 imx_get_uartclk(void)
|
|
{
|
|
return get_uart_clk();
|
|
}
|
|
|
|
u32 imx_get_fecclk(void)
|
|
{
|
|
return get_ipg_clk();
|
|
}
|
|
|
|
static int gcd(int m, int n)
|
|
{
|
|
int t;
|
|
while (m > 0) {
|
|
if (n > m) {
|
|
t = m;
|
|
m = n;
|
|
n = t;
|
|
} /* swap */
|
|
m -= n;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* This is to calculate various parameters based on reference clock and
|
|
* targeted clock based on the equation:
|
|
* t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
|
|
* This calculation is based on a fixed MFD value for simplicity.
|
|
*/
|
|
static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
|
|
{
|
|
u64 pd, mfi = 1, mfn, mfd, t1;
|
|
u32 n_target = target;
|
|
u32 n_ref = ref, i;
|
|
|
|
/*
|
|
* Make sure targeted freq is in the valid range.
|
|
* Otherwise the following calculation might be wrong!!!
|
|
*/
|
|
if (n_target < PLL_FREQ_MIN(ref) ||
|
|
n_target > PLL_FREQ_MAX(ref)) {
|
|
printf("Targeted peripheral clock should be"
|
|
"within [%d - %d]\n",
|
|
PLL_FREQ_MIN(ref) / SZ_DEC_1M,
|
|
PLL_FREQ_MAX(ref) / SZ_DEC_1M);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
|
|
if (fixed_mfd[i].ref_clk_hz == ref) {
|
|
mfd = fixed_mfd[i].mfd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(fixed_mfd))
|
|
return -EINVAL;
|
|
|
|
/* Use n_target and n_ref to avoid overflow */
|
|
for (pd = 1; pd <= PLL_PD_MAX; pd++) {
|
|
t1 = n_target * pd;
|
|
do_div(t1, (4 * n_ref));
|
|
mfi = t1;
|
|
if (mfi > PLL_MFI_MAX)
|
|
return -EINVAL;
|
|
else if (mfi < 5)
|
|
continue;
|
|
break;
|
|
}
|
|
/*
|
|
* Now got pd and mfi already
|
|
*
|
|
* mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
|
|
*/
|
|
t1 = n_target * pd;
|
|
do_div(t1, 4);
|
|
t1 -= n_ref * mfi;
|
|
t1 *= mfd;
|
|
do_div(t1, n_ref);
|
|
mfn = t1;
|
|
debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
|
|
ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
|
|
i = 1;
|
|
if (mfn != 0)
|
|
i = gcd(mfd, mfn);
|
|
pll->pd = (u32)pd;
|
|
pll->mfi = (u32)mfi;
|
|
do_div(mfn, i);
|
|
pll->mfn = (u32)mfn;
|
|
do_div(mfd, i);
|
|
pll->mfd = (u32)mfd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define calc_div(tgt_clk, src_clk, limit) ({ \
|
|
u32 v = 0; \
|
|
if (((src_clk) % (tgt_clk)) <= 100) \
|
|
v = (src_clk) / (tgt_clk); \
|
|
else \
|
|
v = ((src_clk) / (tgt_clk)) + 1;\
|
|
if (v > limit) \
|
|
v = limit; \
|
|
(v - 1); \
|
|
})
|
|
|
|
#define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
|
|
{ \
|
|
writel(0x1232, &pll->ctrl); \
|
|
writel(0x2, &pll->config); \
|
|
writel((((pd) - 1) << 0) | ((fi) << 4), \
|
|
&pll->op); \
|
|
writel(fn, &(pll->mfn)); \
|
|
writel((fd) - 1, &pll->mfd); \
|
|
writel((((pd) - 1) << 0) | ((fi) << 4), \
|
|
&pll->hfs_op); \
|
|
writel(fn, &pll->hfs_mfn); \
|
|
writel((fd) - 1, &pll->hfs_mfd); \
|
|
writel(0x1232, &pll->ctrl); \
|
|
while (!readl(&pll->ctrl) & 0x1) \
|
|
;\
|
|
}
|
|
|
|
static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
|
|
{
|
|
u32 ccsr = readl(&mxc_ccm->ccsr);
|
|
struct mxc_pll_reg *pll = mxc_plls[index];
|
|
|
|
switch (index) {
|
|
case PLL1_CLOCK:
|
|
/* Switch ARM to PLL2 clock */
|
|
writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
|
|
pll_param->mfi, pll_param->mfn,
|
|
pll_param->mfd);
|
|
/* Switch back */
|
|
writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
break;
|
|
case PLL2_CLOCK:
|
|
/* Switch to pll2 bypass clock */
|
|
writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
|
|
pll_param->mfi, pll_param->mfn,
|
|
pll_param->mfd);
|
|
/* Switch back */
|
|
writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
break;
|
|
case PLL3_CLOCK:
|
|
/* Switch to pll3 bypass clock */
|
|
writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
|
|
pll_param->mfi, pll_param->mfn,
|
|
pll_param->mfd);
|
|
/* Switch back */
|
|
writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
break;
|
|
#ifdef CONFIG_MX53
|
|
case PLL4_CLOCK:
|
|
/* Switch to pll4 bypass clock */
|
|
writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
|
|
pll_param->mfi, pll_param->mfn,
|
|
pll_param->mfd);
|
|
/* Switch back */
|
|
writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
|
|
&mxc_ccm->ccsr);
|
|
break;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Config CPU clock */
|
|
static int config_core_clk(u32 ref, u32 freq)
|
|
{
|
|
int ret = 0;
|
|
struct pll_param pll_param;
|
|
|
|
memset(&pll_param, 0, sizeof(struct pll_param));
|
|
|
|
/* The case that periph uses PLL1 is not considered here */
|
|
ret = calc_pll_params(ref, freq, &pll_param);
|
|
if (ret != 0) {
|
|
printf("Error:Can't find pll parameters: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return config_pll_clk(PLL1_CLOCK, &pll_param);
|
|
}
|
|
|
|
static int config_nfc_clk(u32 nfc_clk)
|
|
{
|
|
u32 parent_rate = get_emi_slow_clk();
|
|
u32 div;
|
|
|
|
if (nfc_clk == 0)
|
|
return -EINVAL;
|
|
div = parent_rate / nfc_clk;
|
|
if (div == 0)
|
|
div++;
|
|
if (parent_rate / div > NFC_CLK_MAX)
|
|
div++;
|
|
clrsetbits_le32(&mxc_ccm->cbcdr,
|
|
MXC_CCM_CBCDR_NFC_PODF_MASK,
|
|
MXC_CCM_CBCDR_NFC_PODF(div - 1));
|
|
while (readl(&mxc_ccm->cdhipr) != 0)
|
|
;
|
|
return 0;
|
|
}
|
|
|
|
void enable_nfc_clk(unsigned char enable)
|
|
{
|
|
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
|
|
|
|
clrsetbits_le32(&mxc_ccm->CCGR5,
|
|
MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
|
|
MXC_CCM_CCGR5_EMI_ENFC(cg));
|
|
}
|
|
|
|
/* Config main_bus_clock for periphs */
|
|
static int config_periph_clk(u32 ref, u32 freq)
|
|
{
|
|
int ret = 0;
|
|
struct pll_param pll_param;
|
|
|
|
memset(&pll_param, 0, sizeof(struct pll_param));
|
|
|
|
if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
|
|
ret = calc_pll_params(ref, freq, &pll_param);
|
|
if (ret != 0) {
|
|
printf("Error:Can't find pll parameters: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
|
|
readl(&mxc_ccm->cbcmr))) {
|
|
case 0:
|
|
return config_pll_clk(PLL1_CLOCK, &pll_param);
|
|
break;
|
|
case 1:
|
|
return config_pll_clk(PLL3_CLOCK, &pll_param);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int config_ddr_clk(u32 emi_clk)
|
|
{
|
|
u32 clk_src;
|
|
s32 shift = 0, clk_sel, div = 1;
|
|
u32 cbcmr = readl(&mxc_ccm->cbcmr);
|
|
|
|
if (emi_clk > MAX_DDR_CLK) {
|
|
printf("Warning:DDR clock should not exceed %d MHz\n",
|
|
MAX_DDR_CLK / SZ_DEC_1M);
|
|
emi_clk = MAX_DDR_CLK;
|
|
}
|
|
|
|
clk_src = get_periph_clk();
|
|
/* Find DDR clock input */
|
|
clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
|
|
switch (clk_sel) {
|
|
case 0:
|
|
shift = 16;
|
|
break;
|
|
case 1:
|
|
shift = 19;
|
|
break;
|
|
case 2:
|
|
shift = 22;
|
|
break;
|
|
case 3:
|
|
shift = 10;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((clk_src % emi_clk) < 10000000)
|
|
div = clk_src / emi_clk;
|
|
else
|
|
div = (clk_src / emi_clk) + 1;
|
|
if (div > 8)
|
|
div = 8;
|
|
|
|
clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
|
|
while (readl(&mxc_ccm->cdhipr) != 0)
|
|
;
|
|
writel(0x0, &mxc_ccm->ccdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function assumes the expected core clock has to be changed by
|
|
* modifying the PLL. This is NOT true always but for most of the times,
|
|
* it is. So it assumes the PLL output freq is the same as the expected
|
|
* core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
|
|
* In the latter case, it will try to increase the presc value until
|
|
* (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
|
|
* calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
|
|
* on the targeted PLL and reference input clock to the PLL. Lastly,
|
|
* it sets the register based on these values along with the dividers.
|
|
* Note 1) There is no value checking for the passed-in divider values
|
|
* so the caller has to make sure those values are sensible.
|
|
* 2) Also adjust the NFC divider such that the NFC clock doesn't
|
|
* exceed NFC_CLK_MAX.
|
|
* 3) IPU HSP clock is independent of AHB clock. Even it can go up to
|
|
* 177MHz for higher voltage, this function fixes the max to 133MHz.
|
|
* 4) This function should not have allowed diag_printf() calls since
|
|
* the serial driver has been stoped. But leave then here to allow
|
|
* easy debugging by NOT calling the cyg_hal_plf_serial_stop().
|
|
*/
|
|
int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
|
|
{
|
|
freq *= SZ_DEC_1M;
|
|
|
|
switch (clk) {
|
|
case MXC_ARM_CLK:
|
|
if (config_core_clk(ref, freq))
|
|
return -EINVAL;
|
|
break;
|
|
case MXC_PERIPH_CLK:
|
|
if (config_periph_clk(ref, freq))
|
|
return -EINVAL;
|
|
break;
|
|
case MXC_DDR_CLK:
|
|
if (config_ddr_clk(freq))
|
|
return -EINVAL;
|
|
break;
|
|
case MXC_NFC_CLK:
|
|
if (config_nfc_clk(freq))
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
printf("Warning:Unsupported or invalid clock type\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MX53
|
|
/*
|
|
* The clock for the external interface can be set to use internal clock
|
|
* if fuse bank 4, row 3, bit 2 is set.
|
|
* This is an undocumented feature and it was confirmed by Freescale's support:
|
|
* Fuses (but not pins) may be used to configure SATA clocks.
|
|
* Particularly the i.MX53 Fuse_Map contains the next information
|
|
* about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
|
|
* '00' - 100MHz (External)
|
|
* '01' - 50MHz (External)
|
|
* '10' - 120MHz, internal (USB PHY)
|
|
* '11' - Reserved
|
|
*/
|
|
void mxc_set_sata_internal_clock(void)
|
|
{
|
|
u32 *tmp_base =
|
|
(u32 *)(IIM_BASE_ADDR + 0x180c);
|
|
|
|
set_usb_phy_clk();
|
|
|
|
clrsetbits_le32(tmp_base, 0x6, 0x4);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dump some core clockes.
|
|
*/
|
|
int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
u32 freq;
|
|
|
|
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
|
|
printf("PLL1 %8d MHz\n", freq / 1000000);
|
|
freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
|
|
printf("PLL2 %8d MHz\n", freq / 1000000);
|
|
freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
|
|
printf("PLL3 %8d MHz\n", freq / 1000000);
|
|
#ifdef CONFIG_MX53
|
|
freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
|
|
printf("PLL4 %8d MHz\n", freq / 1000000);
|
|
#endif
|
|
|
|
printf("\n");
|
|
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
|
|
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
|
|
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
|
|
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
|
|
#ifdef CONFIG_MXC_SPI
|
|
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************/
|
|
|
|
U_BOOT_CMD(
|
|
clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
|
|
"display clocks",
|
|
""
|
|
);
|