mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-30 00:21:06 +00:00
21ebf2adde
A specially crafted FIT image makes it possible to overflow the stack with controlled values when using the verified boot feature. Depending on the memory layout, this could be used to overwrite configuration variables on the heap and setting them to 0, e.g. disable signature verification, thus bypassing it. This change fixes a bug in fdt_find_regions where the fdt structure is parsed. A lower value than -1 of depth can lead to a buffer underflow write on the stack. Signed-off-by: Konrad Beckmann <konrad.beckmann@gmail.com> Reviewed-by: Simon Glass <sjg@chromium.org>
656 lines
19 KiB
C
656 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0+ OR BSD-2-Clause
|
|
/*
|
|
* libfdt - Flat Device Tree manipulation
|
|
* Copyright (C) 2013 Google, Inc
|
|
* Written by Simon Glass <sjg@chromium.org>
|
|
*/
|
|
|
|
#include <linux/libfdt_env.h>
|
|
|
|
#ifndef USE_HOSTCC
|
|
#include <fdt.h>
|
|
#include <linux/libfdt.h>
|
|
#else
|
|
#include "fdt_host.h"
|
|
#endif
|
|
|
|
#define FDT_MAX_DEPTH 32
|
|
|
|
static int str_in_list(const char *str, char * const list[], int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (!strcmp(list[i], str))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fdt_find_regions(const void *fdt, char * const inc[], int inc_count,
|
|
char * const exc_prop[], int exc_prop_count,
|
|
struct fdt_region region[], int max_regions,
|
|
char *path, int path_len, int add_string_tab)
|
|
{
|
|
int stack[FDT_MAX_DEPTH] = { 0 };
|
|
char *end;
|
|
int nextoffset = 0;
|
|
uint32_t tag;
|
|
int count = 0;
|
|
int start = -1;
|
|
int depth = -1;
|
|
int want = 0;
|
|
int base = fdt_off_dt_struct(fdt);
|
|
|
|
end = path;
|
|
*end = '\0';
|
|
do {
|
|
const struct fdt_property *prop;
|
|
const char *name;
|
|
const char *str;
|
|
int include = 0;
|
|
int stop_at = 0;
|
|
int offset;
|
|
int len;
|
|
|
|
offset = nextoffset;
|
|
tag = fdt_next_tag(fdt, offset, &nextoffset);
|
|
stop_at = nextoffset;
|
|
|
|
switch (tag) {
|
|
case FDT_PROP:
|
|
include = want >= 2;
|
|
stop_at = offset;
|
|
prop = fdt_get_property_by_offset(fdt, offset, NULL);
|
|
str = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
|
|
if (str_in_list(str, exc_prop, exc_prop_count))
|
|
include = 0;
|
|
break;
|
|
|
|
case FDT_NOP:
|
|
include = want >= 2;
|
|
stop_at = offset;
|
|
break;
|
|
|
|
case FDT_BEGIN_NODE:
|
|
depth++;
|
|
if (depth == FDT_MAX_DEPTH)
|
|
return -FDT_ERR_BADSTRUCTURE;
|
|
name = fdt_get_name(fdt, offset, &len);
|
|
if (end - path + 2 + len >= path_len)
|
|
return -FDT_ERR_NOSPACE;
|
|
if (end != path + 1)
|
|
*end++ = '/';
|
|
strcpy(end, name);
|
|
end += len;
|
|
stack[depth] = want;
|
|
if (want == 1)
|
|
stop_at = offset;
|
|
if (str_in_list(path, inc, inc_count))
|
|
want = 2;
|
|
else if (want)
|
|
want--;
|
|
else
|
|
stop_at = offset;
|
|
include = want;
|
|
break;
|
|
|
|
case FDT_END_NODE:
|
|
/* Depth must never go below -1 */
|
|
if (depth < 0)
|
|
return -FDT_ERR_BADSTRUCTURE;
|
|
include = want;
|
|
want = stack[depth--];
|
|
while (end > path && *--end != '/')
|
|
;
|
|
*end = '\0';
|
|
break;
|
|
|
|
case FDT_END:
|
|
include = 1;
|
|
break;
|
|
}
|
|
|
|
if (include && start == -1) {
|
|
/* Should we merge with previous? */
|
|
if (count && count <= max_regions &&
|
|
offset == region[count - 1].offset +
|
|
region[count - 1].size - base)
|
|
start = region[--count].offset - base;
|
|
else
|
|
start = offset;
|
|
}
|
|
|
|
if (!include && start != -1) {
|
|
if (count < max_regions) {
|
|
region[count].offset = base + start;
|
|
region[count].size = stop_at - start;
|
|
}
|
|
count++;
|
|
start = -1;
|
|
}
|
|
} while (tag != FDT_END);
|
|
|
|
if (nextoffset != fdt_size_dt_struct(fdt))
|
|
return -FDT_ERR_BADLAYOUT;
|
|
|
|
/* Add a region for the END tag and the string table */
|
|
if (count < max_regions) {
|
|
region[count].offset = base + start;
|
|
region[count].size = nextoffset - start;
|
|
if (add_string_tab)
|
|
region[count].size += fdt_size_dt_strings(fdt);
|
|
}
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* fdt_add_region() - Add a new region to our list
|
|
* @info: State information
|
|
* @offset: Start offset of region
|
|
* @size: Size of region
|
|
*
|
|
* The region is added if there is space, but in any case we increment the
|
|
* count. If permitted, and the new region overlaps the last one, we merge
|
|
* them.
|
|
*/
|
|
static int fdt_add_region(struct fdt_region_state *info, int offset, int size)
|
|
{
|
|
struct fdt_region *reg;
|
|
|
|
reg = info->region ? &info->region[info->count - 1] : NULL;
|
|
if (info->can_merge && info->count &&
|
|
info->count <= info->max_regions &&
|
|
reg && offset <= reg->offset + reg->size) {
|
|
reg->size = offset + size - reg->offset;
|
|
} else if (info->count++ < info->max_regions) {
|
|
if (reg) {
|
|
reg++;
|
|
reg->offset = offset;
|
|
reg->size = size;
|
|
}
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int region_list_contains_offset(struct fdt_region_state *info,
|
|
const void *fdt, int target)
|
|
{
|
|
struct fdt_region *reg;
|
|
int num;
|
|
|
|
target += fdt_off_dt_struct(fdt);
|
|
for (reg = info->region, num = 0; num < info->count; reg++, num++) {
|
|
if (target >= reg->offset && target < reg->offset + reg->size)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fdt_add_alias_regions() - Add regions covering the aliases that we want
|
|
*
|
|
* The /aliases node is not automatically included by fdtgrep unless the
|
|
* command-line arguments cause to be included (or not excluded). However
|
|
* aliases are special in that we generally want to include those which
|
|
* reference a node that fdtgrep includes.
|
|
*
|
|
* In fact we want to include only aliases for those nodes still included in
|
|
* the fdt, and drop the other aliases since they point to nodes that will not
|
|
* be present.
|
|
*
|
|
* This function scans the aliases and adds regions for those which we want
|
|
* to keep.
|
|
*
|
|
* @fdt: Device tree to scan
|
|
* @region: List of regions
|
|
* @count: Number of regions in the list so far (i.e. starting point for this
|
|
* function)
|
|
* @max_regions: Maximum number of regions in @region list
|
|
* @info: Place to put the region state
|
|
* @return number of regions after processing, or -FDT_ERR_NOSPACE if we did
|
|
* not have enough room in the regions table for the regions we wanted to add.
|
|
*/
|
|
int fdt_add_alias_regions(const void *fdt, struct fdt_region *region, int count,
|
|
int max_regions, struct fdt_region_state *info)
|
|
{
|
|
int base = fdt_off_dt_struct(fdt);
|
|
int node, node_end, offset;
|
|
int did_alias_header;
|
|
|
|
node = fdt_subnode_offset(fdt, 0, "aliases");
|
|
if (node < 0)
|
|
return -FDT_ERR_NOTFOUND;
|
|
|
|
/*
|
|
* Find the next node so that we know where the /aliases node ends. We
|
|
* need special handling if /aliases is the last node.
|
|
*/
|
|
node_end = fdt_next_subnode(fdt, node);
|
|
if (node_end == -FDT_ERR_NOTFOUND)
|
|
/* Move back to the FDT_END_NODE tag of '/' */
|
|
node_end = fdt_size_dt_struct(fdt) - sizeof(fdt32_t) * 2;
|
|
else if (node_end < 0) /* other error */
|
|
return node_end;
|
|
node_end -= sizeof(fdt32_t); /* Move to FDT_END_NODE tag of /aliases */
|
|
|
|
did_alias_header = 0;
|
|
info->region = region;
|
|
info->count = count;
|
|
info->can_merge = 0;
|
|
info->max_regions = max_regions;
|
|
|
|
for (offset = fdt_first_property_offset(fdt, node);
|
|
offset >= 0;
|
|
offset = fdt_next_property_offset(fdt, offset)) {
|
|
const struct fdt_property *prop;
|
|
const char *name;
|
|
int target, next;
|
|
|
|
prop = fdt_get_property_by_offset(fdt, offset, NULL);
|
|
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
|
|
target = fdt_path_offset(fdt, name);
|
|
if (!region_list_contains_offset(info, fdt, target))
|
|
continue;
|
|
next = fdt_next_property_offset(fdt, offset);
|
|
if (next < 0)
|
|
next = node_end;
|
|
|
|
if (!did_alias_header) {
|
|
fdt_add_region(info, base + node, 12);
|
|
did_alias_header = 1;
|
|
}
|
|
fdt_add_region(info, base + offset, next - offset);
|
|
}
|
|
|
|
/* Add the FDT_END_NODE tag */
|
|
if (did_alias_header)
|
|
fdt_add_region(info, base + node_end, sizeof(fdt32_t));
|
|
|
|
return info->count < max_regions ? info->count : -FDT_ERR_NOSPACE;
|
|
}
|
|
|
|
/**
|
|
* fdt_include_supernodes() - Include supernodes required by this node
|
|
* @info: State information
|
|
* @depth: Current stack depth
|
|
*
|
|
* When we decided to include a node or property which is not at the top
|
|
* level, this function forces the inclusion of higher level nodes. For
|
|
* example, given this tree:
|
|
*
|
|
* / {
|
|
* testing {
|
|
* }
|
|
* }
|
|
*
|
|
* If we decide to include testing then we need the root node to have a valid
|
|
* tree. This function adds those regions.
|
|
*/
|
|
static int fdt_include_supernodes(struct fdt_region_state *info, int depth)
|
|
{
|
|
int base = fdt_off_dt_struct(info->fdt);
|
|
int start, stop_at;
|
|
int i;
|
|
|
|
/*
|
|
* Work down the stack looking for supernodes that we didn't include.
|
|
* The algortihm here is actually pretty simple, since we know that
|
|
* no previous subnode had to include these nodes, or if it did, we
|
|
* marked them as included (on the stack) already.
|
|
*/
|
|
for (i = 0; i <= depth; i++) {
|
|
if (!info->stack[i].included) {
|
|
start = info->stack[i].offset;
|
|
|
|
/* Add the FDT_BEGIN_NODE tag of this supernode */
|
|
fdt_next_tag(info->fdt, start, &stop_at);
|
|
if (fdt_add_region(info, base + start, stop_at - start))
|
|
return -1;
|
|
|
|
/* Remember that this supernode is now included */
|
|
info->stack[i].included = 1;
|
|
info->can_merge = 1;
|
|
}
|
|
|
|
/* Force (later) generation of the FDT_END_NODE tag */
|
|
if (!info->stack[i].want)
|
|
info->stack[i].want = WANT_NODES_ONLY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum {
|
|
FDT_DONE_NOTHING,
|
|
FDT_DONE_MEM_RSVMAP,
|
|
FDT_DONE_STRUCT,
|
|
FDT_DONE_END,
|
|
FDT_DONE_STRINGS,
|
|
FDT_DONE_ALL,
|
|
};
|
|
|
|
int fdt_first_region(const void *fdt,
|
|
int (*h_include)(void *priv, const void *fdt, int offset,
|
|
int type, const char *data, int size),
|
|
void *priv, struct fdt_region *region,
|
|
char *path, int path_len, int flags,
|
|
struct fdt_region_state *info)
|
|
{
|
|
struct fdt_region_ptrs *p = &info->ptrs;
|
|
|
|
/* Set up our state */
|
|
info->fdt = fdt;
|
|
info->can_merge = 1;
|
|
info->max_regions = 1;
|
|
info->start = -1;
|
|
p->want = WANT_NOTHING;
|
|
p->end = path;
|
|
*p->end = '\0';
|
|
p->nextoffset = 0;
|
|
p->depth = -1;
|
|
p->done = FDT_DONE_NOTHING;
|
|
|
|
return fdt_next_region(fdt, h_include, priv, region,
|
|
path, path_len, flags, info);
|
|
}
|
|
|
|
/***********************************************************************
|
|
*
|
|
* Theory of operation
|
|
*
|
|
* Note: in this description 'included' means that a node (or other part
|
|
* of the tree) should be included in the region list, i.e. it will have
|
|
* a region which covers its part of the tree.
|
|
*
|
|
* This function maintains some state from the last time it is called.
|
|
* It checks the next part of the tree that it is supposed to look at
|
|
* (p.nextoffset) to see if that should be included or not. When it
|
|
* finds something to include, it sets info->start to its offset. This
|
|
* marks the start of the region we want to include.
|
|
*
|
|
* Once info->start is set to the start (i.e. not -1), we continue
|
|
* scanning until we find something that we don't want included. This
|
|
* will be the end of a region. At this point we can close off the
|
|
* region and add it to the list. So we do so, and reset info->start
|
|
* to -1.
|
|
*
|
|
* One complication here is that we want to merge regions. So when we
|
|
* come to add another region later, we may in fact merge it with the
|
|
* previous one if one ends where the other starts.
|
|
*
|
|
* The function fdt_add_region() will return -1 if it fails to add the
|
|
* region, because we already have a region ready to be returned, and
|
|
* the new one cannot be merged in with it. In this case, we must return
|
|
* the region we found, and wait for another call to this function.
|
|
* When it comes, we will repeat the processing of the tag and again
|
|
* try to add a region. This time it will succeed.
|
|
*
|
|
* The current state of the pointers (stack, offset, etc.) is maintained
|
|
* in a ptrs member. At the start of every loop iteration we make a copy
|
|
* of it. The copy is then updated as the tag is processed. Only if we
|
|
* get to the end of the loop iteration (and successfully call
|
|
* fdt_add_region() if we need to) can we commit the changes we have
|
|
* made to these pointers. For example, if we see an FDT_END_NODE tag,
|
|
* we will decrement the depth value. But if we need to add a region
|
|
* for this tag (let's say because the previous tag is included and this
|
|
* FDT_END_NODE tag is not included) then we will only commit the result
|
|
* if we were able to add the region. That allows us to retry again next
|
|
* time.
|
|
*
|
|
* We keep track of a variable called 'want' which tells us what we want
|
|
* to include when there is no specific information provided by the
|
|
* h_include function for a particular property. This basically handles
|
|
* the inclusion of properties which are pulled in by virtue of the node
|
|
* they are in. So if you include a node, its properties are also
|
|
* included. In this case 'want' will be WANT_NODES_AND_PROPS. The
|
|
* FDT_REG_DIRECT_SUBNODES feature also makes use of 'want'. While we
|
|
* are inside the subnode, 'want' will be set to WANT_NODES_ONLY, so
|
|
* that only the subnode's FDT_BEGIN_NODE and FDT_END_NODE tags will be
|
|
* included, and properties will be skipped. If WANT_NOTHING is
|
|
* selected, then we will just rely on what the h_include() function
|
|
* tells us.
|
|
*
|
|
* Using 'want' we work out 'include', which tells us whether this
|
|
* current tag should be included or not. As you can imagine, if the
|
|
* value of 'include' changes, that means we are on a boundary between
|
|
* nodes to include and nodes to exclude. At this point we either close
|
|
* off a previous region and add it to the list, or mark the start of a
|
|
* new region.
|
|
*
|
|
* Apart from the nodes, we have mem_rsvmap, the FDT_END tag and the
|
|
* string list. Each of these dealt with as a whole (i.e. we create a
|
|
* region for each if it is to be included). For mem_rsvmap we don't
|
|
* allow it to merge with the first struct region. For the stringlist,
|
|
* we don't allow it to merge with the last struct region (which
|
|
* contains at minimum the FDT_END tag).
|
|
*
|
|
*********************************************************************/
|
|
|
|
int fdt_next_region(const void *fdt,
|
|
int (*h_include)(void *priv, const void *fdt, int offset,
|
|
int type, const char *data, int size),
|
|
void *priv, struct fdt_region *region,
|
|
char *path, int path_len, int flags,
|
|
struct fdt_region_state *info)
|
|
{
|
|
int base = fdt_off_dt_struct(fdt);
|
|
int last_node = 0;
|
|
const char *str;
|
|
|
|
info->region = region;
|
|
info->count = 0;
|
|
if (info->ptrs.done < FDT_DONE_MEM_RSVMAP &&
|
|
(flags & FDT_REG_ADD_MEM_RSVMAP)) {
|
|
/* Add the memory reserve map into its own region */
|
|
if (fdt_add_region(info, fdt_off_mem_rsvmap(fdt),
|
|
fdt_off_dt_struct(fdt) -
|
|
fdt_off_mem_rsvmap(fdt)))
|
|
return 0;
|
|
info->can_merge = 0; /* Don't allow merging with this */
|
|
info->ptrs.done = FDT_DONE_MEM_RSVMAP;
|
|
}
|
|
|
|
/*
|
|
* Work through the tags one by one, deciding whether each needs to
|
|
* be included or not. We set the variable 'include' to indicate our
|
|
* decision. 'want' is used to track what we want to include - it
|
|
* allows us to pick up all the properties (and/or subnode tags) of
|
|
* a node.
|
|
*/
|
|
while (info->ptrs.done < FDT_DONE_STRUCT) {
|
|
const struct fdt_property *prop;
|
|
struct fdt_region_ptrs p;
|
|
const char *name;
|
|
int include = 0;
|
|
int stop_at = 0;
|
|
uint32_t tag;
|
|
int offset;
|
|
int val;
|
|
int len;
|
|
|
|
/*
|
|
* Make a copy of our pointers. If we make it to the end of
|
|
* this block then we will commit them back to info->ptrs.
|
|
* Otherwise we can try again from the same starting state
|
|
* next time we are called.
|
|
*/
|
|
p = info->ptrs;
|
|
|
|
/*
|
|
* Find the tag, and the offset of the next one. If we need to
|
|
* stop including tags, then by default we stop *after*
|
|
* including the current tag
|
|
*/
|
|
offset = p.nextoffset;
|
|
tag = fdt_next_tag(fdt, offset, &p.nextoffset);
|
|
stop_at = p.nextoffset;
|
|
|
|
switch (tag) {
|
|
case FDT_PROP:
|
|
stop_at = offset;
|
|
prop = fdt_get_property_by_offset(fdt, offset, NULL);
|
|
str = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
|
|
val = h_include(priv, fdt, last_node, FDT_IS_PROP, str,
|
|
strlen(str) + 1);
|
|
if (val == -1) {
|
|
include = p.want >= WANT_NODES_AND_PROPS;
|
|
} else {
|
|
include = val;
|
|
/*
|
|
* Make sure we include the } for this block.
|
|
* It might be more correct to have this done
|
|
* by the call to fdt_include_supernodes() in
|
|
* the case where it adds the node we are
|
|
* currently in, but this is equivalent.
|
|
*/
|
|
if ((flags & FDT_REG_SUPERNODES) && val &&
|
|
!p.want)
|
|
p.want = WANT_NODES_ONLY;
|
|
}
|
|
|
|
/* Value grepping is not yet supported */
|
|
break;
|
|
|
|
case FDT_NOP:
|
|
include = p.want >= WANT_NODES_AND_PROPS;
|
|
stop_at = offset;
|
|
break;
|
|
|
|
case FDT_BEGIN_NODE:
|
|
last_node = offset;
|
|
p.depth++;
|
|
if (p.depth == FDT_MAX_DEPTH)
|
|
return -FDT_ERR_BADSTRUCTURE;
|
|
name = fdt_get_name(fdt, offset, &len);
|
|
if (p.end - path + 2 + len >= path_len)
|
|
return -FDT_ERR_NOSPACE;
|
|
|
|
/* Build the full path of this node */
|
|
if (p.end != path + 1)
|
|
*p.end++ = '/';
|
|
strcpy(p.end, name);
|
|
p.end += len;
|
|
info->stack[p.depth].want = p.want;
|
|
info->stack[p.depth].offset = offset;
|
|
|
|
/*
|
|
* If we are not intending to include this node unless
|
|
* it matches, make sure we stop *before* its tag.
|
|
*/
|
|
if (p.want == WANT_NODES_ONLY ||
|
|
!(flags & (FDT_REG_DIRECT_SUBNODES |
|
|
FDT_REG_ALL_SUBNODES))) {
|
|
stop_at = offset;
|
|
p.want = WANT_NOTHING;
|
|
}
|
|
val = h_include(priv, fdt, offset, FDT_IS_NODE, path,
|
|
p.end - path + 1);
|
|
|
|
/* Include this if requested */
|
|
if (val) {
|
|
p.want = (flags & FDT_REG_ALL_SUBNODES) ?
|
|
WANT_ALL_NODES_AND_PROPS :
|
|
WANT_NODES_AND_PROPS;
|
|
}
|
|
|
|
/* If not requested, decay our 'p.want' value */
|
|
else if (p.want) {
|
|
if (p.want != WANT_ALL_NODES_AND_PROPS)
|
|
p.want--;
|
|
|
|
/* Not including this tag, so stop now */
|
|
} else {
|
|
stop_at = offset;
|
|
}
|
|
|
|
/*
|
|
* Decide whether to include this tag, and update our
|
|
* stack with the state for this node
|
|
*/
|
|
include = p.want;
|
|
info->stack[p.depth].included = include;
|
|
break;
|
|
|
|
case FDT_END_NODE:
|
|
include = p.want;
|
|
if (p.depth < 0)
|
|
return -FDT_ERR_BADSTRUCTURE;
|
|
|
|
/*
|
|
* If we don't want this node, stop right away, unless
|
|
* we are including subnodes
|
|
*/
|
|
if (!p.want && !(flags & FDT_REG_DIRECT_SUBNODES))
|
|
stop_at = offset;
|
|
p.want = info->stack[p.depth].want;
|
|
p.depth--;
|
|
while (p.end > path && *--p.end != '/')
|
|
;
|
|
*p.end = '\0';
|
|
break;
|
|
|
|
case FDT_END:
|
|
/* We always include the end tag */
|
|
include = 1;
|
|
p.done = FDT_DONE_STRUCT;
|
|
break;
|
|
}
|
|
|
|
/* If this tag is to be included, mark it as region start */
|
|
if (include && info->start == -1) {
|
|
/* Include any supernodes required by this one */
|
|
if (flags & FDT_REG_SUPERNODES) {
|
|
if (fdt_include_supernodes(info, p.depth))
|
|
return 0;
|
|
}
|
|
info->start = offset;
|
|
}
|
|
|
|
/*
|
|
* If this tag is not to be included, finish up the current
|
|
* region.
|
|
*/
|
|
if (!include && info->start != -1) {
|
|
if (fdt_add_region(info, base + info->start,
|
|
stop_at - info->start))
|
|
return 0;
|
|
info->start = -1;
|
|
info->can_merge = 1;
|
|
}
|
|
|
|
/* If we have made it this far, we can commit our pointers */
|
|
info->ptrs = p;
|
|
}
|
|
|
|
/* Add a region for the END tag and a separate one for string table */
|
|
if (info->ptrs.done < FDT_DONE_END) {
|
|
if (info->ptrs.nextoffset != fdt_size_dt_struct(fdt))
|
|
return -FDT_ERR_BADSTRUCTURE;
|
|
|
|
if (fdt_add_region(info, base + info->start,
|
|
info->ptrs.nextoffset - info->start))
|
|
return 0;
|
|
info->ptrs.done++;
|
|
}
|
|
if (info->ptrs.done < FDT_DONE_STRINGS) {
|
|
if (flags & FDT_REG_ADD_STRING_TAB) {
|
|
info->can_merge = 0;
|
|
if (fdt_off_dt_strings(fdt) <
|
|
base + info->ptrs.nextoffset)
|
|
return -FDT_ERR_BADLAYOUT;
|
|
if (fdt_add_region(info, fdt_off_dt_strings(fdt),
|
|
fdt_size_dt_strings(fdt)))
|
|
return 0;
|
|
}
|
|
info->ptrs.done++;
|
|
}
|
|
|
|
return info->count > 0 ? 0 : -FDT_ERR_NOTFOUND;
|
|
}
|