mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 17:07:38 +00:00
aada81de70
Erratum NMG_eTSEC129 (eTSEC86 in MPC8548 document) applies to some early verion silicons. This workaround detects if the eTSEC Rx logic is properly initialized, and reinitialize the eTSEC Rx logic. Signed-off-by: Gong Chen <g.chen@freescale.com> Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
688 lines
18 KiB
C
688 lines
18 KiB
C
/*
|
|
* Freescale Three Speed Ethernet Controller driver
|
|
*
|
|
* This software may be used and distributed according to the
|
|
* terms of the GNU Public License, Version 2, incorporated
|
|
* herein by reference.
|
|
*
|
|
* Copyright 2004-2011 Freescale Semiconductor, Inc.
|
|
* (C) Copyright 2003, Motorola, Inc.
|
|
* author Andy Fleming
|
|
*
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <net.h>
|
|
#include <command.h>
|
|
#include <tsec.h>
|
|
#include <fsl_mdio.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/processor.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#define TX_BUF_CNT 2
|
|
|
|
static uint rxIdx; /* index of the current RX buffer */
|
|
static uint txIdx; /* index of the current TX buffer */
|
|
|
|
typedef volatile struct rtxbd {
|
|
txbd8_t txbd[TX_BUF_CNT];
|
|
rxbd8_t rxbd[PKTBUFSRX];
|
|
} RTXBD;
|
|
|
|
#define MAXCONTROLLERS (8)
|
|
|
|
static struct tsec_private *privlist[MAXCONTROLLERS];
|
|
static int num_tsecs = 0;
|
|
|
|
#ifdef __GNUC__
|
|
static RTXBD rtx __attribute__ ((aligned(8)));
|
|
#else
|
|
#error "rtx must be 64-bit aligned"
|
|
#endif
|
|
|
|
static int tsec_send(struct eth_device *dev,
|
|
volatile void *packet, int length);
|
|
|
|
/* Default initializations for TSEC controllers. */
|
|
|
|
static struct tsec_info_struct tsec_info[] = {
|
|
#ifdef CONFIG_TSEC1
|
|
STD_TSEC_INFO(1), /* TSEC1 */
|
|
#endif
|
|
#ifdef CONFIG_TSEC2
|
|
STD_TSEC_INFO(2), /* TSEC2 */
|
|
#endif
|
|
#ifdef CONFIG_MPC85XX_FEC
|
|
{
|
|
.regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
|
|
.devname = CONFIG_MPC85XX_FEC_NAME,
|
|
.phyaddr = FEC_PHY_ADDR,
|
|
.flags = FEC_FLAGS,
|
|
.mii_devname = DEFAULT_MII_NAME
|
|
}, /* FEC */
|
|
#endif
|
|
#ifdef CONFIG_TSEC3
|
|
STD_TSEC_INFO(3), /* TSEC3 */
|
|
#endif
|
|
#ifdef CONFIG_TSEC4
|
|
STD_TSEC_INFO(4), /* TSEC4 */
|
|
#endif
|
|
};
|
|
|
|
#define TBIANA_SETTINGS ( \
|
|
TBIANA_ASYMMETRIC_PAUSE \
|
|
| TBIANA_SYMMETRIC_PAUSE \
|
|
| TBIANA_FULL_DUPLEX \
|
|
)
|
|
|
|
/* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
|
|
#ifndef CONFIG_TSEC_TBICR_SETTINGS
|
|
#define CONFIG_TSEC_TBICR_SETTINGS ( \
|
|
TBICR_PHY_RESET \
|
|
| TBICR_ANEG_ENABLE \
|
|
| TBICR_FULL_DUPLEX \
|
|
| TBICR_SPEED1_SET \
|
|
)
|
|
#endif /* CONFIG_TSEC_TBICR_SETTINGS */
|
|
|
|
/* Configure the TBI for SGMII operation */
|
|
static void tsec_configure_serdes(struct tsec_private *priv)
|
|
{
|
|
/* Access TBI PHY registers at given TSEC register offset as opposed
|
|
* to the register offset used for external PHY accesses */
|
|
tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
|
|
0, TBI_ANA, TBIANA_SETTINGS);
|
|
tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
|
|
0, TBI_TBICON, TBICON_CLK_SELECT);
|
|
tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
|
|
0, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS);
|
|
}
|
|
|
|
#ifdef CONFIG_MCAST_TFTP
|
|
|
|
/* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
|
|
|
|
/* Set the appropriate hash bit for the given addr */
|
|
|
|
/* The algorithm works like so:
|
|
* 1) Take the Destination Address (ie the multicast address), and
|
|
* do a CRC on it (little endian), and reverse the bits of the
|
|
* result.
|
|
* 2) Use the 8 most significant bits as a hash into a 256-entry
|
|
* table. The table is controlled through 8 32-bit registers:
|
|
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
|
|
* gaddr7. This means that the 3 most significant bits in the
|
|
* hash index which gaddr register to use, and the 5 other bits
|
|
* indicate which bit (assuming an IBM numbering scheme, which
|
|
* for PowerPC (tm) is usually the case) in the tregister holds
|
|
* the entry. */
|
|
static int
|
|
tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
|
|
{
|
|
struct tsec_private *priv = privlist[1];
|
|
volatile tsec_t *regs = priv->regs;
|
|
volatile u32 *reg_array, value;
|
|
u8 result, whichbit, whichreg;
|
|
|
|
result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
|
|
whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
|
|
whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
|
|
value = (1 << (31-whichbit));
|
|
|
|
reg_array = &(regs->hash.gaddr0);
|
|
|
|
if (set) {
|
|
reg_array[whichreg] |= value;
|
|
} else {
|
|
reg_array[whichreg] &= ~value;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* Multicast TFTP ? */
|
|
|
|
/* Initialized required registers to appropriate values, zeroing
|
|
* those we don't care about (unless zero is bad, in which case,
|
|
* choose a more appropriate value)
|
|
*/
|
|
static void init_registers(tsec_t *regs)
|
|
{
|
|
/* Clear IEVENT */
|
|
out_be32(®s->ievent, IEVENT_INIT_CLEAR);
|
|
|
|
out_be32(®s->imask, IMASK_INIT_CLEAR);
|
|
|
|
out_be32(®s->hash.iaddr0, 0);
|
|
out_be32(®s->hash.iaddr1, 0);
|
|
out_be32(®s->hash.iaddr2, 0);
|
|
out_be32(®s->hash.iaddr3, 0);
|
|
out_be32(®s->hash.iaddr4, 0);
|
|
out_be32(®s->hash.iaddr5, 0);
|
|
out_be32(®s->hash.iaddr6, 0);
|
|
out_be32(®s->hash.iaddr7, 0);
|
|
|
|
out_be32(®s->hash.gaddr0, 0);
|
|
out_be32(®s->hash.gaddr1, 0);
|
|
out_be32(®s->hash.gaddr2, 0);
|
|
out_be32(®s->hash.gaddr3, 0);
|
|
out_be32(®s->hash.gaddr4, 0);
|
|
out_be32(®s->hash.gaddr5, 0);
|
|
out_be32(®s->hash.gaddr6, 0);
|
|
out_be32(®s->hash.gaddr7, 0);
|
|
|
|
out_be32(®s->rctrl, 0x00000000);
|
|
|
|
/* Init RMON mib registers */
|
|
memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
|
|
|
|
out_be32(®s->rmon.cam1, 0xffffffff);
|
|
out_be32(®s->rmon.cam2, 0xffffffff);
|
|
|
|
out_be32(®s->mrblr, MRBLR_INIT_SETTINGS);
|
|
|
|
out_be32(®s->minflr, MINFLR_INIT_SETTINGS);
|
|
|
|
out_be32(®s->attr, ATTR_INIT_SETTINGS);
|
|
out_be32(®s->attreli, ATTRELI_INIT_SETTINGS);
|
|
|
|
}
|
|
|
|
/* Configure maccfg2 based on negotiated speed and duplex
|
|
* reported by PHY handling code
|
|
*/
|
|
static void adjust_link(struct tsec_private *priv, struct phy_device *phydev)
|
|
{
|
|
tsec_t *regs = priv->regs;
|
|
u32 ecntrl, maccfg2;
|
|
|
|
if (!phydev->link) {
|
|
printf("%s: No link.\n", phydev->dev->name);
|
|
return;
|
|
}
|
|
|
|
/* clear all bits relative with interface mode */
|
|
ecntrl = in_be32(®s->ecntrl);
|
|
ecntrl &= ~ECNTRL_R100;
|
|
|
|
maccfg2 = in_be32(®s->maccfg2);
|
|
maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX);
|
|
|
|
if (phydev->duplex)
|
|
maccfg2 |= MACCFG2_FULL_DUPLEX;
|
|
|
|
switch (phydev->speed) {
|
|
case 1000:
|
|
maccfg2 |= MACCFG2_GMII;
|
|
break;
|
|
case 100:
|
|
case 10:
|
|
maccfg2 |= MACCFG2_MII;
|
|
|
|
/* Set R100 bit in all modes although
|
|
* it is only used in RGMII mode
|
|
*/
|
|
if (phydev->speed == 100)
|
|
ecntrl |= ECNTRL_R100;
|
|
break;
|
|
default:
|
|
printf("%s: Speed was bad\n", phydev->dev->name);
|
|
break;
|
|
}
|
|
|
|
out_be32(®s->ecntrl, ecntrl);
|
|
out_be32(®s->maccfg2, maccfg2);
|
|
|
|
printf("Speed: %d, %s duplex%s\n", phydev->speed,
|
|
(phydev->duplex) ? "full" : "half",
|
|
(phydev->port == PORT_FIBRE) ? ", fiber mode" : "");
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
|
|
/*
|
|
* When MACCFG1[Rx_EN] is enabled during system boot as part
|
|
* of the eTSEC port initialization sequence,
|
|
* the eTSEC Rx logic may not be properly initialized.
|
|
*/
|
|
void redundant_init(struct eth_device *dev)
|
|
{
|
|
struct tsec_private *priv = dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
uint t, count = 0;
|
|
int fail = 1;
|
|
static const u8 pkt[] = {
|
|
0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25,
|
|
0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00,
|
|
0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01,
|
|
0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1,
|
|
0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00,
|
|
0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
|
|
0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e,
|
|
0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
|
|
0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
|
|
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
|
|
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
|
|
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
|
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
|
|
0x71, 0x72};
|
|
|
|
/* Enable promiscuous mode */
|
|
setbits_be32(®s->rctrl, 0x8);
|
|
/* Enable loopback mode */
|
|
setbits_be32(®s->maccfg1, MACCFG1_LOOPBACK);
|
|
/* Enable transmit and receive */
|
|
setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
|
|
/* Tell the DMA it is clear to go */
|
|
setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS);
|
|
out_be32(®s->tstat, TSTAT_CLEAR_THALT);
|
|
out_be32(®s->rstat, RSTAT_CLEAR_RHALT);
|
|
clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
|
|
|
|
do {
|
|
tsec_send(dev, (void *)pkt, sizeof(pkt));
|
|
|
|
/* Wait for buffer to be received */
|
|
for (t = 0; rtx.rxbd[rxIdx].status & RXBD_EMPTY; t++) {
|
|
if (t >= 10 * TOUT_LOOP) {
|
|
printf("%s: tsec: rx error\n", dev->name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!memcmp(pkt, (void *)NetRxPackets[rxIdx], sizeof(pkt)))
|
|
fail = 0;
|
|
|
|
rtx.rxbd[rxIdx].length = 0;
|
|
rtx.rxbd[rxIdx].status =
|
|
RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
|
|
rxIdx = (rxIdx + 1) % PKTBUFSRX;
|
|
|
|
if (in_be32(®s->ievent) & IEVENT_BSY) {
|
|
out_be32(®s->ievent, IEVENT_BSY);
|
|
out_be32(®s->rstat, RSTAT_CLEAR_RHALT);
|
|
}
|
|
if (fail) {
|
|
printf("loopback recv packet error!\n");
|
|
clrbits_be32(®s->maccfg1, MACCFG1_RX_EN);
|
|
udelay(1000);
|
|
setbits_be32(®s->maccfg1, MACCFG1_RX_EN);
|
|
}
|
|
} while ((count++ < 4) && (fail == 1));
|
|
|
|
if (fail)
|
|
panic("eTSEC init fail!\n");
|
|
/* Disable promiscuous mode */
|
|
clrbits_be32(®s->rctrl, 0x8);
|
|
/* Disable loopback mode */
|
|
clrbits_be32(®s->maccfg1, MACCFG1_LOOPBACK);
|
|
}
|
|
#endif
|
|
|
|
/* Set up the buffers and their descriptors, and bring up the
|
|
* interface
|
|
*/
|
|
static void startup_tsec(struct eth_device *dev)
|
|
{
|
|
int i;
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
|
|
/* reset the indices to zero */
|
|
rxIdx = 0;
|
|
txIdx = 0;
|
|
#ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
|
|
uint svr;
|
|
#endif
|
|
|
|
/* Point to the buffer descriptors */
|
|
out_be32(®s->tbase, (unsigned int)(&rtx.txbd[txIdx]));
|
|
out_be32(®s->rbase, (unsigned int)(&rtx.rxbd[rxIdx]));
|
|
|
|
/* Initialize the Rx Buffer descriptors */
|
|
for (i = 0; i < PKTBUFSRX; i++) {
|
|
rtx.rxbd[i].status = RXBD_EMPTY;
|
|
rtx.rxbd[i].length = 0;
|
|
rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
|
|
}
|
|
rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
|
|
|
|
/* Initialize the TX Buffer Descriptors */
|
|
for (i = 0; i < TX_BUF_CNT; i++) {
|
|
rtx.txbd[i].status = 0;
|
|
rtx.txbd[i].length = 0;
|
|
rtx.txbd[i].bufPtr = 0;
|
|
}
|
|
rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
|
|
|
|
#ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
|
|
svr = get_svr();
|
|
if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0))
|
|
redundant_init(dev);
|
|
#endif
|
|
/* Enable Transmit and Receive */
|
|
setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
|
|
/* Tell the DMA it is clear to go */
|
|
setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS);
|
|
out_be32(®s->tstat, TSTAT_CLEAR_THALT);
|
|
out_be32(®s->rstat, RSTAT_CLEAR_RHALT);
|
|
clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
|
|
}
|
|
|
|
/* This returns the status bits of the device. The return value
|
|
* is never checked, and this is what the 8260 driver did, so we
|
|
* do the same. Presumably, this would be zero if there were no
|
|
* errors
|
|
*/
|
|
static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
|
|
{
|
|
int i;
|
|
int result = 0;
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
|
|
/* Find an empty buffer descriptor */
|
|
for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
|
|
if (i >= TOUT_LOOP) {
|
|
debug("%s: tsec: tx buffers full\n", dev->name);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
rtx.txbd[txIdx].bufPtr = (uint) packet;
|
|
rtx.txbd[txIdx].length = length;
|
|
rtx.txbd[txIdx].status |=
|
|
(TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
|
|
|
|
/* Tell the DMA to go */
|
|
out_be32(®s->tstat, TSTAT_CLEAR_THALT);
|
|
|
|
/* Wait for buffer to be transmitted */
|
|
for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
|
|
if (i >= TOUT_LOOP) {
|
|
debug("%s: tsec: tx error\n", dev->name);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
txIdx = (txIdx + 1) % TX_BUF_CNT;
|
|
result = rtx.txbd[txIdx].status & TXBD_STATS;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int tsec_recv(struct eth_device *dev)
|
|
{
|
|
int length;
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
|
|
while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
|
|
|
|
length = rtx.rxbd[rxIdx].length;
|
|
|
|
/* Send the packet up if there were no errors */
|
|
if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
|
|
NetReceive(NetRxPackets[rxIdx], length - 4);
|
|
} else {
|
|
printf("Got error %x\n",
|
|
(rtx.rxbd[rxIdx].status & RXBD_STATS));
|
|
}
|
|
|
|
rtx.rxbd[rxIdx].length = 0;
|
|
|
|
/* Set the wrap bit if this is the last element in the list */
|
|
rtx.rxbd[rxIdx].status =
|
|
RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
|
|
|
|
rxIdx = (rxIdx + 1) % PKTBUFSRX;
|
|
}
|
|
|
|
if (in_be32(®s->ievent) & IEVENT_BSY) {
|
|
out_be32(®s->ievent, IEVENT_BSY);
|
|
out_be32(®s->rstat, RSTAT_CLEAR_RHALT);
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* Stop the interface */
|
|
static void tsec_halt(struct eth_device *dev)
|
|
{
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
|
|
clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
|
|
setbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
|
|
|
|
while ((in_be32(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC))
|
|
!= (IEVENT_GRSC | IEVENT_GTSC))
|
|
;
|
|
|
|
clrbits_be32(®s->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN);
|
|
|
|
/* Shut down the PHY, as needed */
|
|
phy_shutdown(priv->phydev);
|
|
}
|
|
|
|
/* Initializes data structures and registers for the controller,
|
|
* and brings the interface up. Returns the link status, meaning
|
|
* that it returns success if the link is up, failure otherwise.
|
|
* This allows u-boot to find the first active controller.
|
|
*/
|
|
static int tsec_init(struct eth_device *dev, bd_t * bd)
|
|
{
|
|
uint tempval;
|
|
char tmpbuf[MAC_ADDR_LEN];
|
|
int i;
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
tsec_t *regs = priv->regs;
|
|
|
|
/* Make sure the controller is stopped */
|
|
tsec_halt(dev);
|
|
|
|
/* Init MACCFG2. Defaults to GMII */
|
|
out_be32(®s->maccfg2, MACCFG2_INIT_SETTINGS);
|
|
|
|
/* Init ECNTRL */
|
|
out_be32(®s->ecntrl, ECNTRL_INIT_SETTINGS);
|
|
|
|
/* Copy the station address into the address registers.
|
|
* Backwards, because little endian MACS are dumb */
|
|
for (i = 0; i < MAC_ADDR_LEN; i++)
|
|
tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
|
|
|
|
tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
|
|
tmpbuf[3];
|
|
|
|
out_be32(®s->macstnaddr1, tempval);
|
|
|
|
tempval = *((uint *) (tmpbuf + 4));
|
|
|
|
out_be32(®s->macstnaddr2, tempval);
|
|
|
|
/* Clear out (for the most part) the other registers */
|
|
init_registers(regs);
|
|
|
|
/* Ready the device for tx/rx */
|
|
startup_tsec(dev);
|
|
|
|
/* Start up the PHY */
|
|
phy_startup(priv->phydev);
|
|
|
|
adjust_link(priv, priv->phydev);
|
|
|
|
/* If there's no link, fail */
|
|
return priv->phydev->link ? 0 : -1;
|
|
}
|
|
|
|
static phy_interface_t tsec_get_interface(struct tsec_private *priv)
|
|
{
|
|
tsec_t *regs = priv->regs;
|
|
u32 ecntrl;
|
|
|
|
ecntrl = in_be32(®s->ecntrl);
|
|
|
|
if (ecntrl & ECNTRL_SGMII_MODE)
|
|
return PHY_INTERFACE_MODE_SGMII;
|
|
|
|
if (ecntrl & ECNTRL_TBI_MODE) {
|
|
if (ecntrl & ECNTRL_REDUCED_MODE)
|
|
return PHY_INTERFACE_MODE_RTBI;
|
|
else
|
|
return PHY_INTERFACE_MODE_TBI;
|
|
}
|
|
|
|
if (ecntrl & ECNTRL_REDUCED_MODE) {
|
|
if (ecntrl & ECNTRL_REDUCED_MII_MODE)
|
|
return PHY_INTERFACE_MODE_RMII;
|
|
else {
|
|
phy_interface_t interface = priv->interface;
|
|
|
|
/*
|
|
* This isn't autodetected, so it must
|
|
* be set by the platform code.
|
|
*/
|
|
if ((interface == PHY_INTERFACE_MODE_RGMII_ID) ||
|
|
(interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
|
|
(interface == PHY_INTERFACE_MODE_RGMII_RXID))
|
|
return interface;
|
|
|
|
return PHY_INTERFACE_MODE_RGMII;
|
|
}
|
|
}
|
|
|
|
if (priv->flags & TSEC_GIGABIT)
|
|
return PHY_INTERFACE_MODE_GMII;
|
|
|
|
return PHY_INTERFACE_MODE_MII;
|
|
}
|
|
|
|
|
|
/* Discover which PHY is attached to the device, and configure it
|
|
* properly. If the PHY is not recognized, then return 0
|
|
* (failure). Otherwise, return 1
|
|
*/
|
|
static int init_phy(struct eth_device *dev)
|
|
{
|
|
struct tsec_private *priv = (struct tsec_private *)dev->priv;
|
|
struct phy_device *phydev;
|
|
tsec_t *regs = priv->regs;
|
|
u32 supported = (SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full);
|
|
|
|
if (priv->flags & TSEC_GIGABIT)
|
|
supported |= SUPPORTED_1000baseT_Full;
|
|
|
|
/* Assign a Physical address to the TBI */
|
|
out_be32(®s->tbipa, CONFIG_SYS_TBIPA_VALUE);
|
|
|
|
priv->interface = tsec_get_interface(priv);
|
|
|
|
if (priv->interface == PHY_INTERFACE_MODE_SGMII)
|
|
tsec_configure_serdes(priv);
|
|
|
|
phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
|
|
|
|
phydev->supported &= supported;
|
|
phydev->advertising = phydev->supported;
|
|
|
|
priv->phydev = phydev;
|
|
|
|
phy_config(phydev);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize device structure. Returns success if PHY
|
|
* initialization succeeded (i.e. if it recognizes the PHY)
|
|
*/
|
|
static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info)
|
|
{
|
|
struct eth_device *dev;
|
|
int i;
|
|
struct tsec_private *priv;
|
|
|
|
dev = (struct eth_device *)malloc(sizeof *dev);
|
|
|
|
if (NULL == dev)
|
|
return 0;
|
|
|
|
memset(dev, 0, sizeof *dev);
|
|
|
|
priv = (struct tsec_private *)malloc(sizeof(*priv));
|
|
|
|
if (NULL == priv)
|
|
return 0;
|
|
|
|
privlist[num_tsecs++] = priv;
|
|
priv->regs = tsec_info->regs;
|
|
priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
|
|
|
|
priv->phyaddr = tsec_info->phyaddr;
|
|
priv->flags = tsec_info->flags;
|
|
|
|
sprintf(dev->name, tsec_info->devname);
|
|
priv->interface = tsec_info->interface;
|
|
priv->bus = miiphy_get_dev_by_name(tsec_info->mii_devname);
|
|
dev->iobase = 0;
|
|
dev->priv = priv;
|
|
dev->init = tsec_init;
|
|
dev->halt = tsec_halt;
|
|
dev->send = tsec_send;
|
|
dev->recv = tsec_recv;
|
|
#ifdef CONFIG_MCAST_TFTP
|
|
dev->mcast = tsec_mcast_addr;
|
|
#endif
|
|
|
|
/* Tell u-boot to get the addr from the env */
|
|
for (i = 0; i < 6; i++)
|
|
dev->enetaddr[i] = 0;
|
|
|
|
eth_register(dev);
|
|
|
|
/* Reset the MAC */
|
|
setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
|
|
udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
|
|
clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
|
|
|
|
/* Try to initialize PHY here, and return */
|
|
return init_phy(dev);
|
|
}
|
|
|
|
/*
|
|
* Initialize all the TSEC devices
|
|
*
|
|
* Returns the number of TSEC devices that were initialized
|
|
*/
|
|
int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
|
|
{
|
|
int i;
|
|
int ret, count = 0;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
ret = tsec_initialize(bis, &tsecs[i]);
|
|
if (ret > 0)
|
|
count += ret;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int tsec_standard_init(bd_t *bis)
|
|
{
|
|
struct fsl_pq_mdio_info info;
|
|
|
|
info.regs = (struct tsec_mii_mng *)CONFIG_SYS_MDIO_BASE_ADDR;
|
|
info.name = DEFAULT_MII_NAME;
|
|
|
|
fsl_pq_mdio_init(bis, &info);
|
|
|
|
return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
|
|
}
|