mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-09 19:58:55 +00:00
99abd60d59
Sometimes the kernel is built as an EFI application rather than a binary. We still want to support compression for this case. For arm64 the entry point is set later in the bootm_load_os() function, since these images are typically relocated due to the 2MB-alignment requirement of arm64 images. But since the EFI image is not in the same format, we need to update the entry point earlier. Set the entry point always, for kernel_noload to resolve this problem. It should be harmless to do this always. Signed-off-by: Simon Glass <sjg@chromium.org>
1283 lines
33 KiB
C
1283 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2000-2009
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*/
|
|
|
|
#ifndef USE_HOSTCC
|
|
#include <common.h>
|
|
#include <bootm.h>
|
|
#include <bootstage.h>
|
|
#include <cli.h>
|
|
#include <command.h>
|
|
#include <cpu_func.h>
|
|
#include <env.h>
|
|
#include <errno.h>
|
|
#include <fdt_support.h>
|
|
#include <irq_func.h>
|
|
#include <lmb.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <mapmem.h>
|
|
#include <net.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/global_data.h>
|
|
#include <asm/io.h>
|
|
#include <linux/sizes.h>
|
|
#include <tpm-v2.h>
|
|
#if defined(CONFIG_CMD_USB)
|
|
#include <usb.h>
|
|
#endif
|
|
#else
|
|
#include "mkimage.h"
|
|
#endif
|
|
|
|
#include <bootm.h>
|
|
#include <image.h>
|
|
|
|
#define MAX_CMDLINE_SIZE SZ_4K
|
|
|
|
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
|
|
|
|
#ifndef USE_HOSTCC
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
struct bootm_headers images; /* pointers to os/initrd/fdt images */
|
|
|
|
__weak void board_quiesce_devices(void)
|
|
{
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
|
|
/**
|
|
* image_get_kernel - verify legacy format kernel image
|
|
* @img_addr: in RAM address of the legacy format image to be verified
|
|
* @verify: data CRC verification flag
|
|
*
|
|
* image_get_kernel() verifies legacy image integrity and returns pointer to
|
|
* legacy image header if image verification was completed successfully.
|
|
*
|
|
* returns:
|
|
* pointer to a legacy image header if valid image was found
|
|
* otherwise return NULL
|
|
*/
|
|
static struct legacy_img_hdr *image_get_kernel(ulong img_addr, int verify)
|
|
{
|
|
struct legacy_img_hdr *hdr = (struct legacy_img_hdr *)img_addr;
|
|
|
|
if (!image_check_magic(hdr)) {
|
|
puts("Bad Magic Number\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
|
|
return NULL;
|
|
}
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
|
|
|
|
if (!image_check_hcrc(hdr)) {
|
|
puts("Bad Header Checksum\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
|
|
return NULL;
|
|
}
|
|
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
|
|
image_print_contents(hdr);
|
|
|
|
if (verify) {
|
|
puts(" Verifying Checksum ... ");
|
|
if (!image_check_dcrc(hdr)) {
|
|
printf("Bad Data CRC\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
|
|
return NULL;
|
|
}
|
|
puts("OK\n");
|
|
}
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
|
|
|
|
if (!image_check_target_arch(hdr)) {
|
|
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
|
|
return NULL;
|
|
}
|
|
return hdr;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* boot_get_kernel() - find kernel image
|
|
*
|
|
* @addr_fit: first argument to bootm: address, fit configuration, etc.
|
|
* @os_data: pointer to a ulong variable, will hold os data start address
|
|
* @os_len: pointer to a ulong variable, will hold os data length
|
|
* address and length, otherwise NULL
|
|
* pointer to image header if valid image was found, plus kernel start
|
|
* @kernp: image header if valid image was found, otherwise NULL
|
|
*
|
|
* boot_get_kernel() tries to find a kernel image, verifies its integrity
|
|
* and locates kernel data.
|
|
*
|
|
* Return: 0 on success, -ve on error. -EPROTOTYPE means that the image is in
|
|
* a wrong or unsupported format
|
|
*/
|
|
static int boot_get_kernel(const char *addr_fit, struct bootm_headers *images,
|
|
ulong *os_data, ulong *os_len, const void **kernp)
|
|
{
|
|
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
|
|
struct legacy_img_hdr *hdr;
|
|
#endif
|
|
ulong img_addr;
|
|
const void *buf;
|
|
const char *fit_uname_config = NULL, *fit_uname_kernel = NULL;
|
|
#if CONFIG_IS_ENABLED(FIT)
|
|
int os_noffset;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
const void *boot_img;
|
|
const void *vendor_boot_img;
|
|
#endif
|
|
img_addr = genimg_get_kernel_addr_fit(addr_fit, &fit_uname_config,
|
|
&fit_uname_kernel);
|
|
|
|
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
|
|
img_addr += image_load_offset;
|
|
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
|
|
|
|
/* check image type, for FIT images get FIT kernel node */
|
|
*os_data = *os_len = 0;
|
|
buf = map_sysmem(img_addr, 0);
|
|
switch (genimg_get_format(buf)) {
|
|
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
|
|
case IMAGE_FORMAT_LEGACY:
|
|
printf("## Booting kernel from Legacy Image at %08lx ...\n",
|
|
img_addr);
|
|
hdr = image_get_kernel(img_addr, images->verify);
|
|
if (!hdr)
|
|
return -EINVAL;
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
|
|
|
|
/* get os_data and os_len */
|
|
switch (image_get_type(hdr)) {
|
|
case IH_TYPE_KERNEL:
|
|
case IH_TYPE_KERNEL_NOLOAD:
|
|
*os_data = image_get_data(hdr);
|
|
*os_len = image_get_data_size(hdr);
|
|
break;
|
|
case IH_TYPE_MULTI:
|
|
image_multi_getimg(hdr, 0, os_data, os_len);
|
|
break;
|
|
case IH_TYPE_STANDALONE:
|
|
*os_data = image_get_data(hdr);
|
|
*os_len = image_get_data_size(hdr);
|
|
break;
|
|
default:
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
|
|
return -EPROTOTYPE;
|
|
}
|
|
|
|
/*
|
|
* copy image header to allow for image overwrites during
|
|
* kernel decompression.
|
|
*/
|
|
memmove(&images->legacy_hdr_os_copy, hdr,
|
|
sizeof(struct legacy_img_hdr));
|
|
|
|
/* save pointer to image header */
|
|
images->legacy_hdr_os = hdr;
|
|
|
|
images->legacy_hdr_valid = 1;
|
|
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
break;
|
|
#endif
|
|
#if CONFIG_IS_ENABLED(FIT)
|
|
case IMAGE_FORMAT_FIT:
|
|
os_noffset = fit_image_load(images, img_addr,
|
|
&fit_uname_kernel, &fit_uname_config,
|
|
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
|
|
BOOTSTAGE_ID_FIT_KERNEL_START,
|
|
FIT_LOAD_IGNORED, os_data, os_len);
|
|
if (os_noffset < 0)
|
|
return -ENOENT;
|
|
|
|
images->fit_hdr_os = map_sysmem(img_addr, 0);
|
|
images->fit_uname_os = fit_uname_kernel;
|
|
images->fit_uname_cfg = fit_uname_config;
|
|
images->fit_noffset_os = os_noffset;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
case IMAGE_FORMAT_ANDROID: {
|
|
int ret;
|
|
|
|
boot_img = buf;
|
|
vendor_boot_img = NULL;
|
|
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
|
|
boot_img = map_sysmem(get_abootimg_addr(), 0);
|
|
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
|
|
}
|
|
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
|
|
ret = android_image_get_kernel(boot_img, vendor_boot_img,
|
|
images->verify, os_data, os_len);
|
|
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
|
|
unmap_sysmem(vendor_boot_img);
|
|
unmap_sysmem(boot_img);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
|
|
return -EPROTOTYPE;
|
|
}
|
|
|
|
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
|
|
*os_data, *os_len, *os_len);
|
|
*kernp = buf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_LMB
|
|
static void boot_start_lmb(struct bootm_headers *images)
|
|
{
|
|
ulong mem_start;
|
|
phys_size_t mem_size;
|
|
|
|
mem_start = env_get_bootm_low();
|
|
mem_size = env_get_bootm_size();
|
|
|
|
lmb_init_and_reserve_range(&images->lmb, (phys_addr_t)mem_start,
|
|
mem_size, NULL);
|
|
}
|
|
#else
|
|
#define lmb_reserve(lmb, base, size)
|
|
static inline void boot_start_lmb(struct bootm_headers *images) { }
|
|
#endif
|
|
|
|
static int bootm_start(void)
|
|
{
|
|
memset((void *)&images, 0, sizeof(images));
|
|
images.verify = env_get_yesno("verify");
|
|
|
|
boot_start_lmb(&images);
|
|
|
|
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
|
|
images.state = BOOTM_STATE_START;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ulong bootm_data_addr(const char *addr_str)
|
|
{
|
|
ulong addr;
|
|
|
|
if (addr_str)
|
|
addr = hextoul(addr_str, NULL);
|
|
else
|
|
addr = image_load_addr;
|
|
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* bootm_pre_load() - Handle the pre-load processing
|
|
*
|
|
* This can be used to do a full signature check of the image, for example.
|
|
* It calls image_pre_load() with the data address of the image to check.
|
|
*
|
|
* @addr_str: String containing load address in hex, or NULL to use
|
|
* image_load_addr
|
|
* Return: 0 if OK, CMD_RET_FAILURE on failure
|
|
*/
|
|
static int bootm_pre_load(const char *addr_str)
|
|
{
|
|
ulong data_addr = bootm_data_addr(addr_str);
|
|
int ret = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
|
|
ret = image_pre_load(data_addr);
|
|
|
|
if (ret)
|
|
ret = CMD_RET_FAILURE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bootm_find_os(): Find the OS to boot
|
|
*
|
|
* @cmd_name: Command name that started this boot, e.g. "bootm"
|
|
* @addr_fit: Address and/or FIT specifier (first arg of bootm command)
|
|
* Return: 0 on success, -ve on error
|
|
*/
|
|
static int bootm_find_os(const char *cmd_name, const char *addr_fit)
|
|
{
|
|
const void *os_hdr;
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
const void *vendor_boot_img;
|
|
const void *boot_img;
|
|
#endif
|
|
bool ep_found = false;
|
|
int ret;
|
|
|
|
/* get kernel image header, start address and length */
|
|
ret = boot_get_kernel(addr_fit, &images, &images.os.image_start,
|
|
&images.os.image_len, &os_hdr);
|
|
if (ret) {
|
|
if (ret == -EPROTOTYPE)
|
|
printf("Wrong Image Type for %s command\n", cmd_name);
|
|
|
|
printf("ERROR %dE: can't get kernel image!\n", ret);
|
|
return 1;
|
|
}
|
|
|
|
/* get image parameters */
|
|
switch (genimg_get_format(os_hdr)) {
|
|
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
|
|
case IMAGE_FORMAT_LEGACY:
|
|
images.os.type = image_get_type(os_hdr);
|
|
images.os.comp = image_get_comp(os_hdr);
|
|
images.os.os = image_get_os(os_hdr);
|
|
|
|
images.os.end = image_get_image_end(os_hdr);
|
|
images.os.load = image_get_load(os_hdr);
|
|
images.os.arch = image_get_arch(os_hdr);
|
|
break;
|
|
#endif
|
|
#if CONFIG_IS_ENABLED(FIT)
|
|
case IMAGE_FORMAT_FIT:
|
|
if (fit_image_get_type(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.type)) {
|
|
puts("Can't get image type!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_comp(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.comp)) {
|
|
puts("Can't get image compression!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
|
|
&images.os.os)) {
|
|
puts("Can't get image OS!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_OS);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_arch(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.arch)) {
|
|
puts("Can't get image ARCH!\n");
|
|
return 1;
|
|
}
|
|
|
|
images.os.end = fit_get_end(images.fit_hdr_os);
|
|
|
|
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
|
|
&images.os.load)) {
|
|
puts("Can't get image load address!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
|
|
return 1;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
case IMAGE_FORMAT_ANDROID:
|
|
boot_img = os_hdr;
|
|
vendor_boot_img = NULL;
|
|
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
|
|
boot_img = map_sysmem(get_abootimg_addr(), 0);
|
|
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
|
|
}
|
|
images.os.type = IH_TYPE_KERNEL;
|
|
images.os.comp = android_image_get_kcomp(boot_img, vendor_boot_img);
|
|
images.os.os = IH_OS_LINUX;
|
|
images.os.end = android_image_get_end(boot_img, vendor_boot_img);
|
|
images.os.load = android_image_get_kload(boot_img, vendor_boot_img);
|
|
images.ep = images.os.load;
|
|
ep_found = true;
|
|
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
|
|
unmap_sysmem(vendor_boot_img);
|
|
unmap_sysmem(boot_img);
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
puts("ERROR: unknown image format type!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* If we have a valid setup.bin, we will use that for entry (x86) */
|
|
if (images.os.arch == IH_ARCH_I386 ||
|
|
images.os.arch == IH_ARCH_X86_64) {
|
|
ulong len;
|
|
|
|
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
puts("Could not find a valid setup.bin for x86\n");
|
|
return 1;
|
|
}
|
|
/* Kernel entry point is the setup.bin */
|
|
} else if (images.legacy_hdr_valid) {
|
|
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
|
|
#if CONFIG_IS_ENABLED(FIT)
|
|
} else if (images.fit_uname_os) {
|
|
int ret;
|
|
|
|
ret = fit_image_get_entry(images.fit_hdr_os,
|
|
images.fit_noffset_os, &images.ep);
|
|
if (ret) {
|
|
puts("Can't get entry point property!\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
} else if (!ep_found) {
|
|
puts("Could not find kernel entry point!\n");
|
|
return 1;
|
|
}
|
|
|
|
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
|
|
images.os.load = images.os.image_start;
|
|
images.ep += images.os.image_start;
|
|
}
|
|
|
|
images.os.start = map_to_sysmem(os_hdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* check_overlap() - Check if an image overlaps the OS
|
|
*
|
|
* @name: Name of image to check (used to print error)
|
|
* @base: Base address of image
|
|
* @end: End address of image (+1)
|
|
* @os_start: Start of OS
|
|
* @os_size: Size of OS in bytes
|
|
* Return: 0 if OK, -EXDEV if the image overlaps the OS
|
|
*/
|
|
static int check_overlap(const char *name, ulong base, ulong end,
|
|
ulong os_start, ulong os_size)
|
|
{
|
|
ulong os_end;
|
|
|
|
if (!base)
|
|
return 0;
|
|
os_end = os_start + os_size;
|
|
|
|
if ((base >= os_start && base < os_end) ||
|
|
(end > os_start && end <= os_end) ||
|
|
(base < os_start && end >= os_end)) {
|
|
printf("ERROR: %s image overlaps OS image (OS=%lx..%lx)\n",
|
|
name, os_start, os_end);
|
|
|
|
return -EXDEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bootm_find_images(ulong img_addr, const char *conf_ramdisk,
|
|
const char *conf_fdt, ulong start, ulong size)
|
|
{
|
|
const char *select = conf_ramdisk;
|
|
char addr_str[17];
|
|
void *buf;
|
|
int ret;
|
|
|
|
if (IS_ENABLED(CONFIG_ANDROID_BOOT_IMAGE)) {
|
|
/* Look for an Android boot image */
|
|
buf = map_sysmem(images.os.start, 0);
|
|
if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) {
|
|
strcpy(addr_str, simple_xtoa(img_addr));
|
|
select = addr_str;
|
|
}
|
|
}
|
|
|
|
if (conf_ramdisk)
|
|
select = conf_ramdisk;
|
|
|
|
/* find ramdisk */
|
|
ret = boot_get_ramdisk(select, &images, IH_INITRD_ARCH,
|
|
&images.rd_start, &images.rd_end);
|
|
if (ret) {
|
|
puts("Ramdisk image is corrupt or invalid\n");
|
|
return 1;
|
|
}
|
|
|
|
/* check if ramdisk overlaps OS image */
|
|
if (check_overlap("RD", images.rd_start, images.rd_end, start, size))
|
|
return 1;
|
|
|
|
if (CONFIG_IS_ENABLED(OF_LIBFDT)) {
|
|
buf = map_sysmem(img_addr, 0);
|
|
|
|
/* find flattened device tree */
|
|
ret = boot_get_fdt(buf, conf_fdt, IH_ARCH_DEFAULT, &images,
|
|
&images.ft_addr, &images.ft_len);
|
|
if (ret) {
|
|
puts("Could not find a valid device tree\n");
|
|
return 1;
|
|
}
|
|
|
|
/* check if FDT overlaps OS image */
|
|
if (check_overlap("FDT", map_to_sysmem(images.ft_addr),
|
|
images.ft_len, start, size))
|
|
return 1;
|
|
|
|
if (IS_ENABLED(CONFIG_CMD_FDT))
|
|
set_working_fdt_addr(map_to_sysmem(images.ft_addr));
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(FIT)
|
|
if (IS_ENABLED(CONFIG_FPGA)) {
|
|
/* find bitstreams */
|
|
ret = boot_get_fpga(&images);
|
|
if (ret) {
|
|
printf("FPGA image is corrupted or invalid\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* find all of the loadables */
|
|
ret = boot_get_loadable(&images);
|
|
if (ret) {
|
|
printf("Loadable(s) is corrupt or invalid\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bootm_find_other(ulong img_addr, const char *conf_ramdisk,
|
|
const char *conf_fdt)
|
|
{
|
|
if ((images.os.type == IH_TYPE_KERNEL ||
|
|
images.os.type == IH_TYPE_KERNEL_NOLOAD ||
|
|
images.os.type == IH_TYPE_MULTI) &&
|
|
(images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS ||
|
|
images.os.os == IH_OS_EFI || images.os.os == IH_OS_TEE)) {
|
|
return bootm_find_images(img_addr, conf_ramdisk, conf_fdt, 0,
|
|
0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* USE_HOSTC */
|
|
|
|
#if !defined(USE_HOSTCC) || defined(CONFIG_FIT_SIGNATURE)
|
|
/**
|
|
* handle_decomp_error() - display a decompression error
|
|
*
|
|
* This function tries to produce a useful message. In the case where the
|
|
* uncompressed size is the same as the available space, we can assume that
|
|
* the image is too large for the buffer.
|
|
*
|
|
* @comp_type: Compression type being used (IH_COMP_...)
|
|
* @uncomp_size: Number of bytes uncompressed
|
|
* @buf_size: Number of bytes the decompresion buffer was
|
|
* @ret: errno error code received from compression library
|
|
* Return: Appropriate BOOTM_ERR_ error code
|
|
*/
|
|
static int handle_decomp_error(int comp_type, size_t uncomp_size,
|
|
size_t buf_size, int ret)
|
|
{
|
|
const char *name = genimg_get_comp_name(comp_type);
|
|
|
|
/* ENOSYS means unimplemented compression type, don't reset. */
|
|
if (ret == -ENOSYS)
|
|
return BOOTM_ERR_UNIMPLEMENTED;
|
|
|
|
if (uncomp_size >= buf_size)
|
|
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
|
|
else
|
|
printf("%s: uncompress error %d\n", name, ret);
|
|
|
|
/*
|
|
* The decompression routines are now safe, so will not write beyond
|
|
* their bounds. Probably it is not necessary to reset, but maintain
|
|
* the current behaviour for now.
|
|
*/
|
|
printf("Must RESET board to recover\n");
|
|
#ifndef USE_HOSTCC
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
#endif
|
|
|
|
return BOOTM_ERR_RESET;
|
|
}
|
|
#endif
|
|
|
|
#ifndef USE_HOSTCC
|
|
static int bootm_load_os(struct bootm_headers *images, int boot_progress)
|
|
{
|
|
struct image_info os = images->os;
|
|
ulong load = os.load;
|
|
ulong load_end;
|
|
ulong blob_start = os.start;
|
|
ulong blob_end = os.end;
|
|
ulong image_start = os.image_start;
|
|
ulong image_len = os.image_len;
|
|
ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN);
|
|
bool no_overlap;
|
|
void *load_buf, *image_buf;
|
|
int err;
|
|
|
|
/*
|
|
* For a "noload" compressed kernel we need to allocate a buffer large
|
|
* enough to decompress in to and use that as the load address now.
|
|
* Assume that the kernel compression is at most a factor of 4 since
|
|
* zstd almost achieves that.
|
|
* Use an alignment of 2MB since this might help arm64
|
|
*/
|
|
if (os.type == IH_TYPE_KERNEL_NOLOAD && os.comp != IH_COMP_NONE) {
|
|
ulong req_size = ALIGN(image_len * 4, SZ_1M);
|
|
|
|
load = lmb_alloc(&images->lmb, req_size, SZ_2M);
|
|
if (!load)
|
|
return 1;
|
|
os.load = load;
|
|
images->ep = load;
|
|
debug("Allocated %lx bytes at %lx for kernel (size %lx) decompression\n",
|
|
req_size, load, image_len);
|
|
}
|
|
|
|
load_buf = map_sysmem(load, 0);
|
|
image_buf = map_sysmem(os.image_start, image_len);
|
|
err = image_decomp(os.comp, load, os.image_start, os.type,
|
|
load_buf, image_buf, image_len,
|
|
CONFIG_SYS_BOOTM_LEN, &load_end);
|
|
if (err) {
|
|
err = handle_decomp_error(os.comp, load_end - load,
|
|
CONFIG_SYS_BOOTM_LEN, err);
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
return err;
|
|
}
|
|
/* We need the decompressed image size in the next steps */
|
|
images->os.image_len = load_end - load;
|
|
|
|
flush_cache(flush_start, ALIGN(load_end, ARCH_DMA_MINALIGN) - flush_start);
|
|
|
|
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end);
|
|
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
|
|
|
|
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
|
|
|
|
if (!no_overlap && load < blob_end && load_end > blob_start) {
|
|
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
|
|
blob_start, blob_end);
|
|
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
|
|
load_end);
|
|
|
|
/* Check what type of image this is. */
|
|
if (images->legacy_hdr_valid) {
|
|
if (image_get_type(&images->legacy_hdr_os_copy)
|
|
== IH_TYPE_MULTI)
|
|
puts("WARNING: legacy format multi component image overwritten\n");
|
|
return BOOTM_ERR_OVERLAP;
|
|
} else {
|
|
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
|
|
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
|
|
return BOOTM_ERR_RESET;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_CMD_BOOTI) && images->os.arch == IH_ARCH_ARM64 &&
|
|
images->os.os == IH_OS_LINUX) {
|
|
ulong relocated_addr;
|
|
ulong image_size;
|
|
int ret;
|
|
|
|
ret = booti_setup(load, &relocated_addr, &image_size, false);
|
|
if (ret) {
|
|
printf("Failed to prep arm64 kernel (err=%d)\n", ret);
|
|
return BOOTM_ERR_RESET;
|
|
}
|
|
|
|
/* Handle BOOTM_STATE_LOADOS */
|
|
if (relocated_addr != load) {
|
|
printf("Moving Image from 0x%lx to 0x%lx, end=%lx\n",
|
|
load, relocated_addr,
|
|
relocated_addr + image_size);
|
|
memmove((void *)relocated_addr, load_buf, image_size);
|
|
}
|
|
|
|
images->ep = relocated_addr;
|
|
images->os.start = relocated_addr;
|
|
images->os.end = relocated_addr + image_size;
|
|
}
|
|
|
|
lmb_reserve(&images->lmb, images->os.load, (load_end -
|
|
images->os.load));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
|
|
*
|
|
* Return: interrupt flag (0 if interrupts were disabled, non-zero if they were
|
|
* enabled)
|
|
*/
|
|
ulong bootm_disable_interrupts(void)
|
|
{
|
|
ulong iflag;
|
|
|
|
/*
|
|
* We have reached the point of no return: we are going to
|
|
* overwrite all exception vector code, so we cannot easily
|
|
* recover from any failures any more...
|
|
*/
|
|
iflag = disable_interrupts();
|
|
#ifdef CONFIG_NETCONSOLE
|
|
/* Stop the ethernet stack if NetConsole could have left it up */
|
|
eth_halt();
|
|
#endif
|
|
|
|
#if defined(CONFIG_CMD_USB)
|
|
/*
|
|
* turn off USB to prevent the host controller from writing to the
|
|
* SDRAM while Linux is booting. This could happen (at least for OHCI
|
|
* controller), because the HCCA (Host Controller Communication Area)
|
|
* lies within the SDRAM and the host controller writes continously to
|
|
* this area (as busmaster!). The HccaFrameNumber is for example
|
|
* updated every 1 ms within the HCCA structure in SDRAM! For more
|
|
* details see the OpenHCI specification.
|
|
*/
|
|
usb_stop();
|
|
#endif
|
|
return iflag;
|
|
}
|
|
|
|
#define CONSOLE_ARG "console="
|
|
#define NULL_CONSOLE (CONSOLE_ARG "ttynull")
|
|
#define CONSOLE_ARG_SIZE sizeof(NULL_CONSOLE)
|
|
|
|
/**
|
|
* fixup_silent_linux() - Handle silencing the linux boot if required
|
|
*
|
|
* This uses the silent_linux envvar to control whether to add/set a "console="
|
|
* parameter to the command line
|
|
*
|
|
* @buf: Buffer containing the string to process
|
|
* @maxlen: Maximum length of buffer
|
|
* Return: 0 if OK, -ENOSPC if @maxlen is too small
|
|
*/
|
|
static int fixup_silent_linux(char *buf, int maxlen)
|
|
{
|
|
int want_silent;
|
|
char *cmdline;
|
|
int size;
|
|
|
|
/*
|
|
* Move the input string to the end of buffer. The output string will be
|
|
* built up at the start.
|
|
*/
|
|
size = strlen(buf) + 1;
|
|
if (size * 2 > maxlen)
|
|
return -ENOSPC;
|
|
cmdline = buf + maxlen - size;
|
|
memmove(cmdline, buf, size);
|
|
/*
|
|
* Only fix cmdline when requested. The environment variable can be:
|
|
*
|
|
* no - we never fixup
|
|
* yes - we always fixup
|
|
* unset - we rely on the console silent flag
|
|
*/
|
|
want_silent = env_get_yesno("silent_linux");
|
|
if (want_silent == 0)
|
|
return 0;
|
|
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
|
|
return 0;
|
|
|
|
debug("before silent fix-up: %s\n", cmdline);
|
|
if (*cmdline) {
|
|
char *start = strstr(cmdline, CONSOLE_ARG);
|
|
|
|
/* Check space for maximum possible new command line */
|
|
if (size + CONSOLE_ARG_SIZE > maxlen)
|
|
return -ENOSPC;
|
|
|
|
if (start) {
|
|
char *end = strchr(start, ' ');
|
|
int start_bytes;
|
|
|
|
start_bytes = start - cmdline;
|
|
strncpy(buf, cmdline, start_bytes);
|
|
strncpy(buf + start_bytes, NULL_CONSOLE, CONSOLE_ARG_SIZE);
|
|
if (end)
|
|
strcpy(buf + start_bytes + CONSOLE_ARG_SIZE - 1, end);
|
|
else
|
|
buf[start_bytes + CONSOLE_ARG_SIZE] = '\0';
|
|
} else {
|
|
sprintf(buf, "%s %s", cmdline, NULL_CONSOLE);
|
|
}
|
|
if (buf + strlen(buf) >= cmdline)
|
|
return -ENOSPC;
|
|
} else {
|
|
if (maxlen < CONSOLE_ARG_SIZE)
|
|
return -ENOSPC;
|
|
strcpy(buf, NULL_CONSOLE);
|
|
}
|
|
debug("after silent fix-up: %s\n", buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* process_subst() - Handle substitution of ${...} fields in the environment
|
|
*
|
|
* Handle variable substitution in the provided buffer
|
|
*
|
|
* @buf: Buffer containing the string to process
|
|
* @maxlen: Maximum length of buffer
|
|
* Return: 0 if OK, -ENOSPC if @maxlen is too small
|
|
*/
|
|
static int process_subst(char *buf, int maxlen)
|
|
{
|
|
char *cmdline;
|
|
int size;
|
|
int ret;
|
|
|
|
/* Move to end of buffer */
|
|
size = strlen(buf) + 1;
|
|
cmdline = buf + maxlen - size;
|
|
if (buf + size > cmdline)
|
|
return -ENOSPC;
|
|
memmove(cmdline, buf, size);
|
|
|
|
ret = cli_simple_process_macros(cmdline, buf, cmdline - buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bootm_process_cmdline(char *buf, int maxlen, int flags)
|
|
{
|
|
int ret;
|
|
|
|
/* Check config first to enable compiler to eliminate code */
|
|
if (IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
|
|
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) &&
|
|
(flags & BOOTM_CL_SILENT)) {
|
|
ret = fixup_silent_linux(buf, maxlen);
|
|
if (ret)
|
|
return log_msg_ret("silent", ret);
|
|
}
|
|
if (IS_ENABLED(CONFIG_BOOTARGS_SUBST) && IS_ENABLED(CONFIG_CMDLINE) &&
|
|
(flags & BOOTM_CL_SUBST)) {
|
|
ret = process_subst(buf, maxlen);
|
|
if (ret)
|
|
return log_msg_ret("subst", ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bootm_process_cmdline_env(int flags)
|
|
{
|
|
const int maxlen = MAX_CMDLINE_SIZE;
|
|
bool do_silent;
|
|
const char *env;
|
|
char *buf;
|
|
int ret;
|
|
|
|
/* First check if any action is needed */
|
|
do_silent = IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
|
|
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && (flags & BOOTM_CL_SILENT);
|
|
if (!do_silent && !IS_ENABLED(CONFIG_BOOTARGS_SUBST))
|
|
return 0;
|
|
|
|
env = env_get("bootargs");
|
|
if (env && strlen(env) >= maxlen)
|
|
return -E2BIG;
|
|
buf = malloc(maxlen);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
if (env)
|
|
strcpy(buf, env);
|
|
else
|
|
*buf = '\0';
|
|
ret = bootm_process_cmdline(buf, maxlen, flags);
|
|
if (!ret) {
|
|
ret = env_set("bootargs", buf);
|
|
|
|
/*
|
|
* If buf is "" and bootargs does not exist, this will produce
|
|
* an error trying to delete bootargs. Ignore it
|
|
*/
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
}
|
|
free(buf);
|
|
if (ret)
|
|
return log_msg_ret("env", ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bootm_measure(struct bootm_headers *images)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Skip measurement if EFI is going to do it */
|
|
if (images->os.os == IH_OS_EFI &&
|
|
IS_ENABLED(CONFIG_EFI_TCG2_PROTOCOL) &&
|
|
IS_ENABLED(CONFIG_BOOTM_EFI))
|
|
return ret;
|
|
|
|
if (IS_ENABLED(CONFIG_MEASURED_BOOT)) {
|
|
struct tcg2_event_log elog;
|
|
struct udevice *dev;
|
|
void *initrd_buf;
|
|
void *image_buf;
|
|
const char *s;
|
|
u32 rd_len;
|
|
bool ign;
|
|
|
|
elog.log_size = 0;
|
|
ign = IS_ENABLED(CONFIG_MEASURE_IGNORE_LOG);
|
|
ret = tcg2_measurement_init(&dev, &elog, ign);
|
|
if (ret)
|
|
return ret;
|
|
|
|
image_buf = map_sysmem(images->os.image_start,
|
|
images->os.image_len);
|
|
ret = tcg2_measure_data(dev, &elog, 8, images->os.image_len,
|
|
image_buf, EV_COMPACT_HASH,
|
|
strlen("linux") + 1, (u8 *)"linux");
|
|
if (ret)
|
|
goto unmap_image;
|
|
|
|
rd_len = images->rd_end - images->rd_start;
|
|
initrd_buf = map_sysmem(images->rd_start, rd_len);
|
|
ret = tcg2_measure_data(dev, &elog, 9, rd_len, initrd_buf,
|
|
EV_COMPACT_HASH, strlen("initrd") + 1,
|
|
(u8 *)"initrd");
|
|
if (ret)
|
|
goto unmap_initrd;
|
|
|
|
if (IS_ENABLED(CONFIG_MEASURE_DEVICETREE)) {
|
|
ret = tcg2_measure_data(dev, &elog, 0, images->ft_len,
|
|
(u8 *)images->ft_addr,
|
|
EV_TABLE_OF_DEVICES,
|
|
strlen("dts") + 1,
|
|
(u8 *)"dts");
|
|
if (ret)
|
|
goto unmap_initrd;
|
|
}
|
|
|
|
s = env_get("bootargs");
|
|
if (!s)
|
|
s = "";
|
|
ret = tcg2_measure_data(dev, &elog, 1, strlen(s) + 1, (u8 *)s,
|
|
EV_PLATFORM_CONFIG_FLAGS,
|
|
strlen(s) + 1, (u8 *)s);
|
|
|
|
unmap_initrd:
|
|
unmap_sysmem(initrd_buf);
|
|
|
|
unmap_image:
|
|
unmap_sysmem(image_buf);
|
|
tcg2_measurement_term(dev, &elog, ret != 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bootm_run_states(struct bootm_info *bmi, int states)
|
|
{
|
|
struct bootm_headers *images = bmi->images;
|
|
boot_os_fn *boot_fn;
|
|
ulong iflag = 0;
|
|
int ret = 0, need_boot_fn;
|
|
|
|
images->state |= states;
|
|
|
|
/*
|
|
* Work through the states and see how far we get. We stop on
|
|
* any error.
|
|
*/
|
|
if (states & BOOTM_STATE_START)
|
|
ret = bootm_start();
|
|
|
|
if (!ret && (states & BOOTM_STATE_PRE_LOAD))
|
|
ret = bootm_pre_load(bmi->addr_img);
|
|
|
|
if (!ret && (states & BOOTM_STATE_FINDOS))
|
|
ret = bootm_find_os(bmi->cmd_name, bmi->addr_img);
|
|
|
|
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
|
|
ulong img_addr;
|
|
|
|
img_addr = bmi->addr_img ? hextoul(bmi->addr_img, NULL)
|
|
: image_load_addr;
|
|
ret = bootm_find_other(img_addr, bmi->conf_ramdisk,
|
|
bmi->conf_fdt);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_MEASURED_BOOT) && !ret &&
|
|
(states & BOOTM_STATE_MEASURE))
|
|
bootm_measure(images);
|
|
|
|
/* Load the OS */
|
|
if (!ret && (states & BOOTM_STATE_LOADOS)) {
|
|
iflag = bootm_disable_interrupts();
|
|
ret = bootm_load_os(images, 0);
|
|
if (ret && ret != BOOTM_ERR_OVERLAP)
|
|
goto err;
|
|
else if (ret == BOOTM_ERR_OVERLAP)
|
|
ret = 0;
|
|
}
|
|
|
|
/* Relocate the ramdisk */
|
|
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
|
|
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
|
|
ulong rd_len = images->rd_end - images->rd_start;
|
|
|
|
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
|
|
rd_len, &images->initrd_start, &images->initrd_end);
|
|
if (!ret) {
|
|
env_set_hex("initrd_start", images->initrd_start);
|
|
env_set_hex("initrd_end", images->initrd_end);
|
|
}
|
|
}
|
|
#endif
|
|
#if CONFIG_IS_ENABLED(OF_LIBFDT) && defined(CONFIG_LMB)
|
|
if (!ret && (states & BOOTM_STATE_FDT)) {
|
|
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
|
|
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
|
|
&images->ft_len);
|
|
}
|
|
#endif
|
|
|
|
/* From now on, we need the OS boot function */
|
|
if (ret)
|
|
return ret;
|
|
boot_fn = bootm_os_get_boot_func(images->os.os);
|
|
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
|
|
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
|
|
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
|
|
if (boot_fn == NULL && need_boot_fn) {
|
|
if (iflag)
|
|
enable_interrupts();
|
|
printf("ERROR: booting os '%s' (%d) is not supported\n",
|
|
genimg_get_os_name(images->os.os), images->os.os);
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
|
|
return 1;
|
|
}
|
|
|
|
/* Call various other states that are not generally used */
|
|
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
|
|
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, bmi);
|
|
if (!ret && (states & BOOTM_STATE_OS_BD_T))
|
|
ret = boot_fn(BOOTM_STATE_OS_BD_T, bmi);
|
|
if (!ret && (states & BOOTM_STATE_OS_PREP)) {
|
|
int flags = 0;
|
|
/* For Linux OS do all substitutions at console processing */
|
|
if (images->os.os == IH_OS_LINUX)
|
|
flags = BOOTM_CL_ALL;
|
|
ret = bootm_process_cmdline_env(flags);
|
|
if (ret) {
|
|
printf("Cmdline setup failed (err=%d)\n", ret);
|
|
ret = CMD_RET_FAILURE;
|
|
goto err;
|
|
}
|
|
ret = boot_fn(BOOTM_STATE_OS_PREP, bmi);
|
|
}
|
|
|
|
#ifdef CONFIG_TRACE
|
|
/* Pretend to run the OS, then run a user command */
|
|
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
|
|
char *cmd_list = env_get("fakegocmd");
|
|
|
|
ret = boot_selected_os(BOOTM_STATE_OS_FAKE_GO, bmi, boot_fn);
|
|
if (!ret && cmd_list)
|
|
ret = run_command_list(cmd_list, -1, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Check for unsupported subcommand. */
|
|
if (ret) {
|
|
printf("subcommand failed (err=%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Now run the OS! We hope this doesn't return */
|
|
if (!ret && (states & BOOTM_STATE_OS_GO))
|
|
ret = boot_selected_os(BOOTM_STATE_OS_GO, bmi, boot_fn);
|
|
|
|
/* Deal with any fallout */
|
|
err:
|
|
if (iflag)
|
|
enable_interrupts();
|
|
|
|
if (ret == BOOTM_ERR_UNIMPLEMENTED) {
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
|
|
} else if (ret == BOOTM_ERR_RESET) {
|
|
printf("Resetting the board...\n");
|
|
reset_cpu();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int boot_run(struct bootm_info *bmi, const char *cmd, int extra_states)
|
|
{
|
|
int states;
|
|
|
|
bmi->cmd_name = cmd;
|
|
states = BOOTM_STATE_MEASURE | BOOTM_STATE_OS_PREP |
|
|
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO;
|
|
if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH))
|
|
states |= BOOTM_STATE_RAMDISK;
|
|
states |= extra_states;
|
|
|
|
return bootm_run_states(bmi, states);
|
|
}
|
|
|
|
int bootm_run(struct bootm_info *bmi)
|
|
{
|
|
return boot_run(bmi, "bootm", BOOTM_STATE_START | BOOTM_STATE_FINDOS |
|
|
BOOTM_STATE_PRE_LOAD | BOOTM_STATE_FINDOTHER |
|
|
BOOTM_STATE_LOADOS);
|
|
}
|
|
|
|
int bootz_run(struct bootm_info *bmi)
|
|
{
|
|
return boot_run(bmi, "bootz", 0);
|
|
}
|
|
|
|
int booti_run(struct bootm_info *bmi)
|
|
{
|
|
return boot_run(bmi, "booti", 0);
|
|
}
|
|
|
|
int bootm_boot_start(ulong addr, const char *cmdline)
|
|
{
|
|
char addr_str[30];
|
|
struct bootm_info bmi;
|
|
int states;
|
|
int ret;
|
|
|
|
states = BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_PRE_LOAD |
|
|
BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS |
|
|
BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
|
|
BOOTM_STATE_OS_GO;
|
|
if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH))
|
|
states |= BOOTM_STATE_RAMDISK;
|
|
if (IS_ENABLED(CONFIG_PPC) || IS_ENABLED(CONFIG_MIPS))
|
|
states |= BOOTM_STATE_OS_CMDLINE;
|
|
images.state |= states;
|
|
|
|
snprintf(addr_str, sizeof(addr_str), "%lx", addr);
|
|
|
|
ret = env_set("bootargs", cmdline);
|
|
if (ret) {
|
|
printf("Failed to set cmdline\n");
|
|
return ret;
|
|
}
|
|
bootm_init(&bmi);
|
|
bmi.addr_img = addr_str;
|
|
bmi.cmd_name = "bootm";
|
|
ret = bootm_run_states(&bmi, states);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bootm_init(struct bootm_info *bmi)
|
|
{
|
|
memset(bmi, '\0', sizeof(struct bootm_info));
|
|
bmi->boot_progress = true;
|
|
if (IS_ENABLED(CONFIG_CMD_BOOTM))
|
|
bmi->images = &images;
|
|
}
|
|
|
|
/**
|
|
* switch_to_non_secure_mode() - switch to non-secure mode
|
|
*
|
|
* This routine is overridden by architectures requiring this feature.
|
|
*/
|
|
void __weak switch_to_non_secure_mode(void)
|
|
{
|
|
}
|
|
|
|
#else /* USE_HOSTCC */
|
|
|
|
#if defined(CONFIG_FIT_SIGNATURE)
|
|
static int bootm_host_load_image(const void *fit, int req_image_type,
|
|
int cfg_noffset)
|
|
{
|
|
const char *fit_uname_config = NULL;
|
|
ulong data, len;
|
|
struct bootm_headers images;
|
|
int noffset;
|
|
ulong load_end, buf_size;
|
|
uint8_t image_type;
|
|
uint8_t image_comp;
|
|
void *load_buf;
|
|
int ret;
|
|
|
|
fit_uname_config = fdt_get_name(fit, cfg_noffset, NULL);
|
|
memset(&images, '\0', sizeof(images));
|
|
images.verify = 1;
|
|
noffset = fit_image_load(&images, (ulong)fit,
|
|
NULL, &fit_uname_config,
|
|
IH_ARCH_DEFAULT, req_image_type, -1,
|
|
FIT_LOAD_IGNORED, &data, &len);
|
|
if (noffset < 0)
|
|
return noffset;
|
|
if (fit_image_get_type(fit, noffset, &image_type)) {
|
|
puts("Can't get image type!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fit_image_get_comp(fit, noffset, &image_comp))
|
|
image_comp = IH_COMP_NONE;
|
|
|
|
/* Allow the image to expand by a factor of 4, should be safe */
|
|
buf_size = (1 << 20) + len * 4;
|
|
load_buf = malloc(buf_size);
|
|
ret = image_decomp(image_comp, 0, data, image_type, load_buf,
|
|
(void *)data, len, buf_size, &load_end);
|
|
free(load_buf);
|
|
|
|
if (ret) {
|
|
ret = handle_decomp_error(image_comp, load_end - 0, buf_size, ret);
|
|
if (ret != BOOTM_ERR_UNIMPLEMENTED)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bootm_host_load_images(const void *fit, int cfg_noffset)
|
|
{
|
|
static uint8_t image_types[] = {
|
|
IH_TYPE_KERNEL,
|
|
IH_TYPE_FLATDT,
|
|
IH_TYPE_RAMDISK,
|
|
};
|
|
int err = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
|
|
int ret;
|
|
|
|
ret = bootm_host_load_image(fit, image_types[i], cfg_noffset);
|
|
if (!err && ret && ret != -ENOENT)
|
|
err = ret;
|
|
}
|
|
|
|
/* Return the first error we found */
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
#endif /* ndef USE_HOSTCC */
|