u-boot/drivers/net/e1000_spi.c
Simon Glass 0914011310 command: Remove the cmd_tbl_t typedef
We should not use typedefs in U-Boot. They cannot be used as forward
declarations which means that header files must include the full header to
access them.

Drop the typedef and rename the struct to remove the _s suffix which is
now not useful.

This requires quite a few header-file additions.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 18:36:55 -04:00

576 lines
14 KiB
C

#include <common.h>
#include <command.h>
#include <console.h>
#include "e1000.h"
#include <malloc.h>
#include <linux/compiler.h>
/*-----------------------------------------------------------------------
* SPI transfer
*
* This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
* "bitlen" bits in the SPI MISO port. That's just the way SPI works.
*
* The source of the outgoing bits is the "dout" parameter and the
* destination of the input bits is the "din" parameter. Note that "dout"
* and "din" can point to the same memory location, in which case the
* input data overwrites the output data (since both are buffered by
* temporary variables, this is OK).
*
* This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
* never return an error.
*/
static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
const void *dout_mem, void *din_mem, bool intr)
{
const uint8_t *dout = dout_mem;
uint8_t *din = din_mem;
uint8_t mask = 0;
uint32_t eecd;
unsigned long i;
/* Pre-read the control register */
eecd = E1000_READ_REG(hw, EECD);
/* Iterate over each bit */
for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
/* Check for interrupt */
if (intr && ctrlc())
return -1;
/* Determine the output bit */
if (dout && dout[i >> 3] & mask)
eecd |= E1000_EECD_DI;
else
eecd &= ~E1000_EECD_DI;
/* Write the output bit and wait 50us */
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
/* Poke the clock (waits 50us) */
e1000_raise_ee_clk(hw, &eecd);
/* Now read the input bit */
eecd = E1000_READ_REG(hw, EECD);
if (din) {
if (eecd & E1000_EECD_DO)
din[i >> 3] |= mask;
else
din[i >> 3] &= ~mask;
}
/* Poke the clock again (waits 50us) */
e1000_lower_ee_clk(hw, &eecd);
}
/* Now clear any remaining bits of the input */
if (din && (i & 7))
din[i >> 3] &= ~((mask << 1) - 1);
return 0;
}
#ifdef CONFIG_E1000_SPI_GENERIC
static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
{
return container_of(spi, struct e1000_hw, spi);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
/* Find the right PCI device */
struct e1000_hw *hw = e1000_find_card(bus);
if (!hw) {
printf("ERROR: No such e1000 device: e1000#%u\n", bus);
return NULL;
}
/* Make sure it has an SPI chip */
if (hw->eeprom.type != e1000_eeprom_spi) {
E1000_ERR(hw, "No attached SPI EEPROM found!\n");
return NULL;
}
/* Argument sanity checks */
if (cs != 0) {
E1000_ERR(hw, "No such SPI chip: %u\n", cs);
return NULL;
}
if (mode != SPI_MODE_0) {
E1000_ERR(hw, "Only SPI MODE-0 is supported!\n");
return NULL;
}
/* TODO: Use max_hz somehow */
E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
return &hw->spi;
}
void spi_free_slave(struct spi_slave *spi)
{
__maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi);
E1000_DBG(hw->nic, "EEPROM SPI access released\n");
}
int spi_claim_bus(struct spi_slave *spi)
{
struct e1000_hw *hw = e1000_hw_from_spi(spi);
if (e1000_acquire_eeprom(hw)) {
E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n");
return -1;
}
return 0;
}
void spi_release_bus(struct spi_slave *spi)
{
struct e1000_hw *hw = e1000_hw_from_spi(spi);
e1000_release_eeprom(hw);
}
/* Skinny wrapper around e1000_spi_xfer */
int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
const void *dout_mem, void *din_mem, unsigned long flags)
{
struct e1000_hw *hw = e1000_hw_from_spi(spi);
int ret;
if (flags & SPI_XFER_BEGIN)
e1000_standby_eeprom(hw);
ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true);
if (flags & SPI_XFER_END)
e1000_standby_eeprom(hw);
return ret;
}
#endif /* not CONFIG_E1000_SPI_GENERIC */
#ifdef CONFIG_CMD_E1000
/* The EEPROM opcodes */
#define SPI_EEPROM_ENABLE_WR 0x06
#define SPI_EEPROM_DISABLE_WR 0x04
#define SPI_EEPROM_WRITE_STATUS 0x01
#define SPI_EEPROM_READ_STATUS 0x05
#define SPI_EEPROM_WRITE_PAGE 0x02
#define SPI_EEPROM_READ_PAGE 0x03
/* The EEPROM status bits */
#define SPI_EEPROM_STATUS_BUSY 0x01
#define SPI_EEPROM_STATUS_WREN 0x02
static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr)
{
u8 op[] = { SPI_EEPROM_ENABLE_WR };
e1000_standby_eeprom(hw);
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
}
/*
* These have been tested to perform correctly, but they are not used by any
* of the EEPROM commands at this time.
*/
static __maybe_unused int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw,
bool intr)
{
u8 op[] = { SPI_EEPROM_DISABLE_WR };
e1000_standby_eeprom(hw);
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
}
static __maybe_unused int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
u8 status, bool intr)
{
u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
e1000_standby_eeprom(hw);
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
}
static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr)
{
u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
e1000_standby_eeprom(hw);
if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
return -1;
return op[1];
}
static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
const void *data, u16 off, u16 len, bool intr)
{
u8 op[] = {
SPI_EEPROM_WRITE_PAGE,
(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
};
e1000_standby_eeprom(hw);
if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
return -1;
if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
return -1;
return 0;
}
static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
void *data, u16 off, u16 len, bool intr)
{
u8 op[] = {
SPI_EEPROM_READ_PAGE,
(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
};
e1000_standby_eeprom(hw);
if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
return -1;
if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
return -1;
return 0;
}
static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr)
{
int status;
while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
if (!(status & SPI_EEPROM_STATUS_BUSY))
return 0;
}
return -1;
}
static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
void *data, u16 off, unsigned int len, bool intr)
{
/* Interruptibly wait for the EEPROM to be ready */
if (e1000_spi_eeprom_poll_ready(hw, intr))
return -1;
/* Dump each page in sequence */
while (len) {
/* Calculate the data bytes on this page */
u16 pg_off = off & (hw->eeprom.page_size - 1);
u16 pg_len = hw->eeprom.page_size - pg_off;
if (pg_len > len)
pg_len = len;
/* Now dump the page */
if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
return -1;
/* Otherwise go on to the next page */
len -= pg_len;
off += pg_len;
data += pg_len;
}
/* We're done! */
return 0;
}
static int e1000_spi_eeprom_program(struct e1000_hw *hw,
const void *data, u16 off, u16 len, bool intr)
{
/* Program each page in sequence */
while (len) {
/* Calculate the data bytes on this page */
u16 pg_off = off & (hw->eeprom.page_size - 1);
u16 pg_len = hw->eeprom.page_size - pg_off;
if (pg_len > len)
pg_len = len;
/* Interruptibly wait for the EEPROM to be ready */
if (e1000_spi_eeprom_poll_ready(hw, intr))
return -1;
/* Enable write access */
if (e1000_spi_eeprom_enable_wr(hw, intr))
return -1;
/* Now program the page */
if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
return -1;
/* Otherwise go on to the next page */
len -= pg_len;
off += pg_len;
data += pg_len;
}
/* Wait for the last write to complete */
if (e1000_spi_eeprom_poll_ready(hw, intr))
return -1;
/* We're done! */
return 0;
}
static int do_e1000_spi_show(struct cmd_tbl *cmdtp, struct e1000_hw *hw,
int argc, char *const argv[])
{
unsigned int length = 0;
u16 i, offset = 0;
u8 *buffer;
int err;
if (argc > 2) {
cmd_usage(cmdtp);
return 1;
}
/* Parse the offset and length */
if (argc >= 1)
offset = simple_strtoul(argv[0], NULL, 0);
if (argc == 2)
length = simple_strtoul(argv[1], NULL, 0);
else if (offset < (hw->eeprom.word_size << 1))
length = (hw->eeprom.word_size << 1) - offset;
/* Extra sanity checks */
if (!length) {
E1000_ERR(hw, "Requested zero-sized dump!\n");
return 1;
}
if ((0x10000 < length) || (0x10000 - length < offset)) {
E1000_ERR(hw, "Can't dump past 0xFFFF!\n");
return 1;
}
/* Allocate a buffer to hold stuff */
buffer = malloc(length);
if (!buffer) {
E1000_ERR(hw, "Out of Memory!\n");
return 1;
}
/* Acquire the EEPROM and perform the dump */
if (e1000_acquire_eeprom(hw)) {
E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n");
free(buffer);
return 1;
}
err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true);
e1000_release_eeprom(hw);
if (err) {
E1000_ERR(hw, "Interrupted!\n");
free(buffer);
return 1;
}
/* Now hexdump the result */
printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
hw->name, offset, offset + length - 1);
for (i = 0; i < length; i++) {
if ((i & 0xF) == 0)
printf("\n%s: %04hX: ", hw->name, offset + i);
else if ((i & 0xF) == 0x8)
printf(" ");
printf(" %02hx", buffer[i]);
}
printf("\n");
/* Success! */
free(buffer);
return 0;
}
static int do_e1000_spi_dump(struct cmd_tbl *cmdtp, struct e1000_hw *hw,
int argc, char *const argv[])
{
unsigned int length;
u16 offset;
void *dest;
if (argc != 3) {
cmd_usage(cmdtp);
return 1;
}
/* Parse the arguments */
dest = (void *)simple_strtoul(argv[0], NULL, 16);
offset = simple_strtoul(argv[1], NULL, 0);
length = simple_strtoul(argv[2], NULL, 0);
/* Extra sanity checks */
if (!length) {
E1000_ERR(hw, "Requested zero-sized dump!\n");
return 1;
}
if ((0x10000 < length) || (0x10000 - length < offset)) {
E1000_ERR(hw, "Can't dump past 0xFFFF!\n");
return 1;
}
/* Acquire the EEPROM */
if (e1000_acquire_eeprom(hw)) {
E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n");
return 1;
}
/* Perform the programming operation */
if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) {
E1000_ERR(hw, "Interrupted!\n");
e1000_release_eeprom(hw);
return 1;
}
e1000_release_eeprom(hw);
printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->name);
return 0;
}
static int do_e1000_spi_program(struct cmd_tbl *cmdtp, struct e1000_hw *hw,
int argc, char *const argv[])
{
unsigned int length;
const void *source;
u16 offset;
if (argc != 3) {
cmd_usage(cmdtp);
return 1;
}
/* Parse the arguments */
source = (const void *)simple_strtoul(argv[0], NULL, 16);
offset = simple_strtoul(argv[1], NULL, 0);
length = simple_strtoul(argv[2], NULL, 0);
/* Acquire the EEPROM */
if (e1000_acquire_eeprom(hw)) {
E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n");
return 1;
}
/* Perform the programming operation */
if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) {
E1000_ERR(hw, "Interrupted!\n");
e1000_release_eeprom(hw);
return 1;
}
e1000_release_eeprom(hw);
printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->name);
return 0;
}
static int do_e1000_spi_checksum(struct cmd_tbl *cmdtp, struct e1000_hw *hw,
int argc, char *const argv[])
{
uint16_t i, length, checksum = 0, checksum_reg;
uint16_t *buffer;
bool upd;
if (argc == 0)
upd = 0;
else if ((argc == 1) && !strcmp(argv[0], "update"))
upd = 1;
else {
cmd_usage(cmdtp);
return 1;
}
/* Allocate a temporary buffer */
length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
buffer = malloc(length);
if (!buffer) {
E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
return 1;
}
/* Acquire the EEPROM */
if (e1000_acquire_eeprom(hw)) {
E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n");
return 1;
}
/* Read the EEPROM */
if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) {
E1000_ERR(hw, "Interrupted!\n");
e1000_release_eeprom(hw);
return 1;
}
/* Compute the checksum and read the expected value */
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
checksum += le16_to_cpu(buffer[i]);
checksum = ((uint16_t)EEPROM_SUM) - checksum;
checksum_reg = le16_to_cpu(buffer[i]);
/* Verify it! */
if (checksum_reg == checksum) {
printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
hw->name, checksum);
e1000_release_eeprom(hw);
return 0;
}
/* Hrm, verification failed, print an error */
E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
checksum_reg, checksum);
/* If they didn't ask us to update it, just return an error */
if (!upd) {
e1000_release_eeprom(hw);
return 1;
}
/* Ok, correct it! */
printf("%s: Reprogramming the EEPROM checksum...\n", hw->name);
buffer[i] = cpu_to_le16(checksum);
if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
sizeof(uint16_t), true)) {
E1000_ERR(hw, "Interrupted!\n");
e1000_release_eeprom(hw);
return 1;
}
e1000_release_eeprom(hw);
return 0;
}
int do_e1000_spi(struct cmd_tbl *cmdtp, struct e1000_hw *hw,
int argc, char *const argv[])
{
if (argc < 1) {
cmd_usage(cmdtp);
return 1;
}
/* Make sure it has an SPI chip */
if (hw->eeprom.type != e1000_eeprom_spi) {
E1000_ERR(hw, "No attached SPI EEPROM found (%d)!\n",
hw->eeprom.type);
return 1;
}
/* Check the eeprom sub-sub-command arguments */
if (!strcmp(argv[0], "show"))
return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
if (!strcmp(argv[0], "dump"))
return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
if (!strcmp(argv[0], "program"))
return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
if (!strcmp(argv[0], "checksum"))
return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
cmd_usage(cmdtp);
return 1;
}
#endif /* not CONFIG_CMD_E1000 */