u-boot/drivers/fpga/socfpga_arria10.c
Ley Foon Tan db5741f7a8 arm: socfpga: Convert system manager from struct to defines
Convert system manager for Gen5, Arria 10 and Stratix 10 from struct
to defines.

Change to get system manager base address from DT node instead of
using #define.

Signed-off-by: Ley Foon Tan <ley.foon.tan@intel.com>
Reviewed-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
2020-01-07 14:38:33 +01:00

943 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017-2019 Intel Corporation <www.intel.com>
*/
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/sdram.h>
#include <asm/arch/misc.h>
#include <altera.h>
#include <asm/arch/pinmux.h>
#include <common.h>
#include <dm/ofnode.h>
#include <errno.h>
#include <fs_loader.h>
#include <wait_bit.h>
#include <watchdog.h>
#define CFGWDTH_32 1
#define MIN_BITSTREAM_SIZECHECK 230
#define ENCRYPTION_OFFSET 69
#define COMPRESSION_OFFSET 229
#define FPGA_TIMEOUT_MSEC 1000 /* timeout in ms */
#define FPGA_TIMEOUT_CNT 0x1000000
#define DEFAULT_DDR_LOAD_ADDRESS 0x400
DECLARE_GLOBAL_DATA_PTR;
static const struct socfpga_fpga_manager *fpga_manager_base =
(void *)SOCFPGA_FPGAMGRREGS_ADDRESS;
static void fpgamgr_set_cd_ratio(unsigned long ratio);
static uint32_t fpgamgr_get_msel(void)
{
u32 reg;
reg = readl(&fpga_manager_base->imgcfg_stat);
reg = (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL_SET_MSD) >>
ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL0_LSB;
return reg;
}
static void fpgamgr_set_cfgwdth(int width)
{
if (width)
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
else
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
}
int is_fpgamgr_user_mode(void)
{
return (readl(&fpga_manager_base->imgcfg_stat) &
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != 0;
}
static int wait_for_user_mode(void)
{
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK,
1, FPGA_TIMEOUT_MSEC, false);
}
int is_fpgamgr_early_user_mode(void)
{
return (readl(&fpga_manager_base->imgcfg_stat) &
ALT_FPGAMGR_IMGCFG_STAT_F2S_EARLY_USERMODE_SET_MSK) != 0;
}
int fpgamgr_wait_early_user_mode(void)
{
u32 sync_data = 0xffffffff;
u32 i = 0;
unsigned start = get_timer(0);
unsigned long cd_ratio;
/* Getting existing CDRATIO */
cd_ratio = (readl(&fpga_manager_base->imgcfg_ctrl_02) &
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK) >>
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB;
/* Using CDRATIO_X1 for better compatibility */
fpgamgr_set_cd_ratio(CDRATIO_x1);
while (!is_fpgamgr_early_user_mode()) {
if (get_timer(start) > FPGA_TIMEOUT_MSEC)
return -ETIMEDOUT;
fpgamgr_program_write((const long unsigned int *)&sync_data,
sizeof(sync_data));
udelay(FPGA_TIMEOUT_MSEC);
i++;
}
debug("FPGA: Additional %i sync word needed\n", i);
/* restoring original CDRATIO */
fpgamgr_set_cd_ratio(cd_ratio);
return 0;
}
/* Read f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted */
static int wait_for_nconfig_pin_and_nstatus_pin(void)
{
unsigned long mask = ALT_FPGAMGR_IMGCFG_STAT_F2S_NCONFIG_PIN_SET_MSK |
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK;
/*
* Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until
* de-asserted, timeout at 1000ms
*/
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, mask,
true, FPGA_TIMEOUT_MSEC, false);
}
static int wait_for_f2s_nstatus_pin(unsigned long value)
{
/* Poll until f2s to specific value, timeout at 1000ms */
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
value, FPGA_TIMEOUT_MSEC, false);
}
/* set CD ratio */
static void fpgamgr_set_cd_ratio(unsigned long ratio)
{
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
(ratio << ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB) &
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
}
/* get the MSEL value, verify we are set for FPP configuration mode */
static int fpgamgr_verify_msel(void)
{
u32 msel = fpgamgr_get_msel();
if (msel & ~BIT(0)) {
printf("Fail: read msel=%d\n", msel);
return -EPERM;
}
return 0;
}
/*
* Write cdratio and cdwidth based on whether the bitstream is compressed
* and/or encoded
*/
static int fpgamgr_set_cdratio_cdwidth(unsigned int cfg_width, u32 *rbf_data,
size_t rbf_size)
{
unsigned int cd_ratio;
bool encrypt, compress;
/*
* According to the bitstream specification,
* both encryption and compression status are
* in location before offset 230 of the buffer.
*/
if (rbf_size < MIN_BITSTREAM_SIZECHECK)
return -EINVAL;
encrypt = (rbf_data[ENCRYPTION_OFFSET] >> 2) & 3;
encrypt = encrypt != 0;
compress = (rbf_data[COMPRESSION_OFFSET] >> 1) & 1;
compress = !compress;
debug("FPGA: Header word %d = %08x.\n", 69, rbf_data[69]);
debug("FPGA: Header word %d = %08x.\n", 229, rbf_data[229]);
debug("FPGA: Read from rbf header: encrypt=%d compress=%d.\n", encrypt,
compress);
/*
* from the register map description of cdratio in imgcfg_ctrl_02:
* Normal Configuration : 32bit Passive Parallel
* Partial Reconfiguration : 16bit Passive Parallel
*/
/*
* cd ratio is dependent on cfg width and whether the bitstream
* is encrypted and/or compressed.
*
* | width | encr. | compr. | cd ratio |
* | 16 | 0 | 0 | 1 |
* | 16 | 0 | 1 | 4 |
* | 16 | 1 | 0 | 2 |
* | 16 | 1 | 1 | 4 |
* | 32 | 0 | 0 | 1 |
* | 32 | 0 | 1 | 8 |
* | 32 | 1 | 0 | 4 |
* | 32 | 1 | 1 | 8 |
*/
if (!compress && !encrypt) {
cd_ratio = CDRATIO_x1;
} else {
if (compress)
cd_ratio = CDRATIO_x4;
else
cd_ratio = CDRATIO_x2;
/* if 32 bit, double the cd ratio (so register
field setting is incremented) */
if (cfg_width == CFGWDTH_32)
cd_ratio += 1;
}
fpgamgr_set_cfgwdth(cfg_width);
fpgamgr_set_cd_ratio(cd_ratio);
return 0;
}
static int fpgamgr_reset(void)
{
unsigned long reg;
/* S2F_NCONFIG = 0 */
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
/* Wait for f2s_nstatus == 0 */
if (wait_for_f2s_nstatus_pin(0))
return -ETIME;
/* S2F_NCONFIG = 1 */
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
/* Wait for f2s_nstatus == 1 */
if (wait_for_f2s_nstatus_pin(1))
return -ETIME;
/* read and confirm f2s_condone_pin = 0 and f2s_condone_oe = 1 */
reg = readl(&fpga_manager_base->imgcfg_stat);
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != 0)
return -EPERM;
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_OE_SET_MSK) == 0)
return -EPERM;
return 0;
}
/* Start the FPGA programming by initialize the FPGA Manager */
int fpgamgr_program_init(u32 * rbf_data, size_t rbf_size)
{
int ret;
/* Step 1 */
if (fpgamgr_verify_msel())
return -EPERM;
/* Step 2 */
if (fpgamgr_set_cdratio_cdwidth(CFGWDTH_32, rbf_data, rbf_size))
return -EPERM;
/*
* Step 3:
* Make sure no other external devices are trying to interfere with
* programming:
*/
if (wait_for_nconfig_pin_and_nstatus_pin())
return -ETIME;
/*
* Step 4:
* Deassert the signal drives from HPS
*
* S2F_NCE = 1
* S2F_PR_REQUEST = 0
* EN_CFG_CTRL = 0
* EN_CFG_DATA = 0
* S2F_NCONFIG = 1
* S2F_NSTATUS_OE = 0
* S2F_CONDONE_OE = 0
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_PR_REQUEST_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NSTATUS_OE_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_CONDONE_OE_SET_MSK);
/*
* Step 5:
* Enable overrides
* S2F_NENABLE_CONFIG = 0
* S2F_NENABLE_NCONFIG = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);
/*
* Disable driving signals that HPS doesn't need to drive.
* S2F_NENABLE_NSTATUS = 1
* S2F_NENABLE_CONDONE = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NSTATUS_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_CONDONE_SET_MSK);
/*
* Step 6:
* Drive chip select S2F_NCE = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
/* Step 7 */
if (wait_for_nconfig_pin_and_nstatus_pin())
return -ETIME;
/* Step 8 */
ret = fpgamgr_reset();
if (ret)
return ret;
/*
* Step 9:
* EN_CFG_CTRL and EN_CFG_DATA = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
return 0;
}
/* Ensure the FPGA entering config done */
static int fpgamgr_program_poll_cd(void)
{
unsigned long reg, i;
for (i = 0; i < FPGA_TIMEOUT_CNT; i++) {
reg = readl(&fpga_manager_base->imgcfg_stat);
if (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK)
return 0;
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) == 0) {
printf("nstatus == 0 while waiting for condone\n");
return -EPERM;
}
WATCHDOG_RESET();
}
if (i == FPGA_TIMEOUT_CNT)
return -ETIME;
return 0;
}
/* Ensure the FPGA entering user mode */
static int fpgamgr_program_poll_usermode(void)
{
unsigned long reg;
int ret = 0;
if (fpgamgr_dclkcnt_set(0xf))
return -ETIME;
ret = wait_for_user_mode();
if (ret < 0) {
printf("%s: Failed to enter user mode with ", __func__);
printf("error code %d\n", ret);
return ret;
}
/*
* Step 14:
* Stop DATA path and Dclk
* EN_CFG_CTRL and EN_CFG_DATA = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
/*
* Step 15:
* Disable overrides
* S2F_NENABLE_CONFIG = 1
* S2F_NENABLE_NCONFIG = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);
/* Disable chip select S2F_NCE = 1 */
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
/*
* Step 16:
* Final check
*/
reg = readl(&fpga_manager_base->imgcfg_stat);
if (((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) ||
((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) ||
((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK))
return -EPERM;
return 0;
}
int fpgamgr_program_finish(void)
{
/* Ensure the FPGA entering config done */
int status = fpgamgr_program_poll_cd();
if (status) {
printf("FPGA: Poll CD failed with error code %d\n", status);
return -EPERM;
}
/* Ensure the FPGA entering user mode */
status = fpgamgr_program_poll_usermode();
if (status) {
printf("FPGA: Poll usermode failed with error code %d\n",
status);
return -EPERM;
}
printf("Full Configuration Succeeded.\n");
return 0;
}
ofnode get_fpga_mgr_ofnode(ofnode from)
{
return ofnode_by_compatible(from, "altr,socfpga-a10-fpga-mgr");
}
const char *get_fpga_filename(void)
{
const char *fpga_filename = NULL;
ofnode fpgamgr_node = get_fpga_mgr_ofnode(ofnode_null());
if (ofnode_valid(fpgamgr_node))
fpga_filename = ofnode_read_string(fpgamgr_node,
"altr,bitstream");
return fpga_filename;
}
static void get_rbf_image_info(struct rbf_info *rbf, u16 *buffer)
{
/*
* Magic ID starting at:
* -> 1st dword[15:0] in periph.rbf
* -> 2nd dword[15:0] in core.rbf
* Note: dword == 32 bits
*/
u32 word_reading_max = 2;
u32 i;
for (i = 0; i < word_reading_max; i++) {
if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
rbf->security = unencrypted;
} else if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
rbf->security = encrypted;
} else if (*(buffer + i + 1) ==
FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
rbf->security = unencrypted;
} else if (*(buffer + i + 1) ==
FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
rbf->security = encrypted;
} else {
rbf->security = invalid;
continue;
}
/* PERIPH RBF(buffer + i + 1), CORE RBF(buffer + i + 2) */
if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
rbf->section = periph_section;
break;
} else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_CORE) {
rbf->section = core_section;
break;
} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
rbf->section = periph_section;
break;
} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_CORE) {
rbf->section = core_section;
break;
}
rbf->section = unknown;
break;
WATCHDOG_RESET();
}
}
#ifdef CONFIG_FS_LOADER
static int first_loading_rbf_to_buffer(struct udevice *dev,
struct fpga_loadfs_info *fpga_loadfs,
u32 *buffer, size_t *buffer_bsize)
{
u32 *buffer_p = (u32 *)*buffer;
u32 *loadable = buffer_p;
size_t buffer_size = *buffer_bsize;
size_t fit_size;
int ret, i, count, confs_noffset, images_noffset, rbf_offset, rbf_size;
const char *fpga_node_name = NULL;
const char *uname = NULL;
/* Load image header into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, sizeof(struct image_header),
0);
if (ret < 0) {
debug("FPGA: Failed to read image header from flash.\n");
return -ENOENT;
}
if (image_get_magic((struct image_header *)buffer_p) != FDT_MAGIC) {
debug("FPGA: No FDT magic was found.\n");
return -EBADF;
}
fit_size = fdt_totalsize(buffer_p);
if (fit_size > buffer_size) {
debug("FPGA: FIT image is larger than available buffer.\n");
debug("Please use FIT external data or increasing buffer.\n");
return -ENOMEM;
}
/* Load entire FIT into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, fit_size, 0);
if (ret < 0)
return ret;
ret = fit_check_format(buffer_p);
if (!ret) {
debug("FPGA: No valid FIT image was found.\n");
return -EBADF;
}
confs_noffset = fdt_path_offset(buffer_p, FIT_CONFS_PATH);
images_noffset = fdt_path_offset(buffer_p, FIT_IMAGES_PATH);
if (confs_noffset < 0 || images_noffset < 0) {
debug("FPGA: No Configurations or images nodes were found.\n");
return -ENOENT;
}
/* Get default configuration unit name from default property */
confs_noffset = fit_conf_get_node(buffer_p, NULL);
if (confs_noffset < 0) {
debug("FPGA: No default configuration was found in config.\n");
return -ENOENT;
}
count = fit_conf_get_prop_node_count(buffer_p, confs_noffset,
FIT_FPGA_PROP);
if (count < 0) {
debug("FPGA: Invalid configuration format for FPGA node.\n");
return count;
}
debug("FPGA: FPGA node count: %d\n", count);
for (i = 0; i < count; i++) {
images_noffset = fit_conf_get_prop_node_index(buffer_p,
confs_noffset,
FIT_FPGA_PROP, i);
uname = fit_get_name(buffer_p, images_noffset, NULL);
if (uname) {
debug("FPGA: %s\n", uname);
if (strstr(uname, "fpga-periph") &&
(!is_fpgamgr_early_user_mode() ||
is_fpgamgr_user_mode())) {
fpga_node_name = uname;
printf("FPGA: Start to program ");
printf("peripheral/full bitstream ...\n");
break;
} else if (strstr(uname, "fpga-core") &&
(is_fpgamgr_early_user_mode() &&
!is_fpgamgr_user_mode())) {
fpga_node_name = uname;
printf("FPGA: Start to program core ");
printf("bitstream ...\n");
break;
}
}
WATCHDOG_RESET();
}
if (!fpga_node_name) {
debug("FPGA: No suitable bitstream was found, count: %d.\n", i);
return 1;
}
images_noffset = fit_image_get_node(buffer_p, fpga_node_name);
if (images_noffset < 0) {
debug("FPGA: No node '%s' was found in FIT.\n",
fpga_node_name);
return -ENOENT;
}
if (!fit_image_get_data_position(buffer_p, images_noffset,
&rbf_offset)) {
debug("FPGA: Data position was found.\n");
} else if (!fit_image_get_data_offset(buffer_p, images_noffset,
&rbf_offset)) {
/*
* For FIT with external data, figure out where
* the external images start. This is the base
* for the data-offset properties in each image.
*/
rbf_offset += ((fdt_totalsize(buffer_p) + 3) & ~3);
debug("FPGA: Data offset was found.\n");
} else {
debug("FPGA: No data position/offset was found.\n");
return -ENOENT;
}
ret = fit_image_get_data_size(buffer_p, images_noffset, &rbf_size);
if (ret < 0) {
debug("FPGA: No data size was found (err=%d).\n", ret);
return -ENOENT;
}
if (gd->ram_size < rbf_size) {
debug("FPGA: Using default OCRAM buffer and size.\n");
} else {
ret = fit_image_get_load(buffer_p, images_noffset,
(ulong *)loadable);
if (ret < 0) {
buffer_p = (u32 *)DEFAULT_DDR_LOAD_ADDRESS;
debug("FPGA: No loadable was found.\n");
debug("FPGA: Using default DDR load address: 0x%x .\n",
DEFAULT_DDR_LOAD_ADDRESS);
} else {
buffer_p = (u32 *)*loadable;
debug("FPGA: Found loadable address = 0x%x.\n",
*loadable);
}
buffer_size = rbf_size;
}
debug("FPGA: External data: offset = 0x%x, size = 0x%x.\n",
rbf_offset, rbf_size);
fpga_loadfs->remaining = rbf_size;
/*
* Determine buffer size vs bitstream size, and calculating number of
* chunk by chunk transfer is required due to smaller buffer size
* compare to bitstream
*/
if (rbf_size <= buffer_size) {
/* Loading whole bitstream into buffer */
buffer_size = rbf_size;
fpga_loadfs->remaining = 0;
} else {
fpga_loadfs->remaining -= buffer_size;
}
fpga_loadfs->offset = rbf_offset;
/* Loading bitstream into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, buffer_size,
fpga_loadfs->offset);
if (ret < 0) {
debug("FPGA: Failed to read bitstream from flash.\n");
return -ENOENT;
}
/* Getting info about bitstream types */
get_rbf_image_info(&fpga_loadfs->rbfinfo, (u16 *)buffer_p);
/* Update next reading bitstream offset */
fpga_loadfs->offset += buffer_size;
/* Update the final addr for bitstream */
*buffer = (u32)buffer_p;
/* Update the size of bitstream to be programmed into FPGA */
*buffer_bsize = buffer_size;
return 0;
}
static int subsequent_loading_rbf_to_buffer(struct udevice *dev,
struct fpga_loadfs_info *fpga_loadfs,
u32 *buffer, size_t *buffer_bsize)
{
int ret = 0;
u32 *buffer_p = (u32 *)*buffer;
/* Read the bitstream chunk by chunk. */
if (fpga_loadfs->remaining > *buffer_bsize) {
fpga_loadfs->remaining -= *buffer_bsize;
} else {
*buffer_bsize = fpga_loadfs->remaining;
fpga_loadfs->remaining = 0;
}
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, *buffer_bsize,
fpga_loadfs->offset);
if (ret < 0) {
debug("FPGA: Failed to read bitstream from flash.\n");
return -ENOENT;
}
/* Update next reading bitstream offset */
fpga_loadfs->offset += *buffer_bsize;
return 0;
}
int socfpga_loadfs(fpga_fs_info *fpga_fsinfo, const void *buf, size_t bsize,
u32 offset)
{
struct fpga_loadfs_info fpga_loadfs;
struct udevice *dev;
int status, ret, size;
u32 buffer = (uintptr_t)buf;
size_t buffer_sizebytes = bsize;
size_t buffer_sizebytes_ori = bsize;
size_t total_sizeof_image = 0;
ofnode node;
const fdt32_t *phandle_p;
u32 phandle;
node = get_fpga_mgr_ofnode(ofnode_null());
if (ofnode_valid(node)) {
phandle_p = ofnode_get_property(node, "firmware-loader", &size);
if (!phandle_p) {
node = ofnode_path("/chosen");
if (!ofnode_valid(node)) {
debug("FPGA: /chosen node was not found.\n");
return -ENOENT;
}
phandle_p = ofnode_get_property(node, "firmware-loader",
&size);
if (!phandle_p) {
debug("FPGA: firmware-loader property was not");
debug(" found.\n");
return -ENOENT;
}
}
} else {
debug("FPGA: FPGA manager node was not found.\n");
return -ENOENT;
}
phandle = fdt32_to_cpu(*phandle_p);
ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER,
phandle, &dev);
if (ret)
return ret;
memset(&fpga_loadfs, 0, sizeof(fpga_loadfs));
fpga_loadfs.fpga_fsinfo = fpga_fsinfo;
fpga_loadfs.offset = offset;
printf("FPGA: Checking FPGA configuration setting ...\n");
/*
* Note: Both buffer and buffer_sizebytes values can be altered by
* function below.
*/
ret = first_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer,
&buffer_sizebytes);
if (ret == 1) {
printf("FPGA: Skipping configuration ...\n");
return 0;
} else if (ret) {
return ret;
}
if (fpga_loadfs.rbfinfo.section == core_section &&
!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
debug("FPGA : Must be in Early Release mode to program ");
debug("core bitstream.\n");
return -EPERM;
}
/* Disable all signals from HPS peripheral controller to FPGA */
writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);
/* Disable all axi bridges (hps2fpga, lwhps2fpga & fpga2hps) */
socfpga_bridges_reset();
if (fpga_loadfs.rbfinfo.section == periph_section) {
/* Initialize the FPGA Manager */
status = fpgamgr_program_init((u32 *)buffer, buffer_sizebytes);
if (status) {
debug("FPGA: Init with peripheral bitstream failed.\n");
return -EPERM;
}
}
/* Transfer bitstream to FPGA Manager */
fpgamgr_program_write((void *)buffer, buffer_sizebytes);
total_sizeof_image += buffer_sizebytes;
while (fpga_loadfs.remaining) {
ret = subsequent_loading_rbf_to_buffer(dev,
&fpga_loadfs,
&buffer,
&buffer_sizebytes_ori);
if (ret)
return ret;
/* Transfer data to FPGA Manager */
fpgamgr_program_write((void *)buffer,
buffer_sizebytes_ori);
total_sizeof_image += buffer_sizebytes_ori;
WATCHDOG_RESET();
}
if (fpga_loadfs.rbfinfo.section == periph_section) {
if (fpgamgr_wait_early_user_mode() != -ETIMEDOUT) {
config_pins(gd->fdt_blob, "shared");
puts("FPGA: Early Release Succeeded.\n");
} else {
debug("FPGA: Failed to see Early Release.\n");
return -EIO;
}
/* For monolithic bitstream */
if (is_fpgamgr_user_mode()) {
/* Ensure the FPGA entering config done */
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
}
} else if (fpga_loadfs.rbfinfo.section == core_section) {
/* Ensure the FPGA entering config done */
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
} else {
debug("FPGA: Config Error: Unsupported bitstream type.\n");
return -ENOEXEC;
}
return (int)total_sizeof_image;
}
void fpgamgr_program(const void *buf, size_t bsize, u32 offset)
{
fpga_fs_info fpga_fsinfo;
fpga_fsinfo.filename = get_fpga_filename();
if (fpga_fsinfo.filename)
socfpga_loadfs(&fpga_fsinfo, buf, bsize, offset);
}
#endif
/* This function is used to load the core bitstream from the OCRAM. */
int socfpga_load(Altera_desc *desc, const void *rbf_data, size_t rbf_size)
{
unsigned long status;
struct rbf_info rbfinfo;
memset(&rbfinfo, 0, sizeof(rbfinfo));
/* Disable all signals from hps peripheral controller to fpga */
writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);
/* Disable all axi bridge (hps2fpga, lwhps2fpga & fpga2hps) */
socfpga_bridges_reset();
/* Getting info about bitstream types */
get_rbf_image_info(&rbfinfo, (u16 *)rbf_data);
if (rbfinfo.section == periph_section) {
/* Initialize the FPGA Manager */
status = fpgamgr_program_init((u32 *)rbf_data, rbf_size);
if (status)
return status;
}
if (rbfinfo.section == core_section &&
!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
debug("FPGA : Must be in early release mode to program ");
debug("core bitstream.\n");
return -EPERM;
}
/* Write the bitstream to FPGA Manager */
fpgamgr_program_write(rbf_data, rbf_size);
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
return status;
}