u-boot/drivers/mmc/mmc.c
Masahiro Yamada 76ca2d1303 mmc: remove unneeded forward declarations
These functions are defined before the callers.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
2020-02-17 14:55:04 +08:00

3085 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <power/regulator.h>
#include <malloc.h>
#include <memalign.h>
#include <linux/list.h>
#include <div64.h>
#include "mmc_private.h"
#define DEFAULT_CMD6_TIMEOUT_MS 500
static int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage);
#if !CONFIG_IS_ENABLED(DM_MMC)
static int mmc_wait_dat0(struct mmc *mmc, int state, int timeout_us)
{
return -ENOSYS;
}
__weak int board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (wp < 0) {
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
else
wp = 0;
}
return wp;
}
__weak int board_mmc_getcd(struct mmc *mmc)
{
return -1;
}
#endif
#ifdef CONFIG_MMC_TRACE
void mmmc_trace_before_send(struct mmc *mmc, struct mmc_cmd *cmd)
{
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08x\n", cmd->cmdarg);
}
void mmmc_trace_after_send(struct mmc *mmc, struct mmc_cmd *cmd, int ret)
{
int i;
u8 *ptr;
if (ret) {
printf("\t\tRET\t\t\t %d\n", ret);
} else {
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08x \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08x \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08x \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08x \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08x \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08x \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02x ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08x \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
}
}
void mmc_trace_state(struct mmc *mmc, struct mmc_cmd *cmd)
{
int status;
status = (cmd->response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
}
#endif
#if CONFIG_IS_ENABLED(MMC_VERBOSE) || defined(DEBUG)
const char *mmc_mode_name(enum bus_mode mode)
{
static const char *const names[] = {
[MMC_LEGACY] = "MMC legacy",
[SD_LEGACY] = "SD Legacy",
[MMC_HS] = "MMC High Speed (26MHz)",
[SD_HS] = "SD High Speed (50MHz)",
[UHS_SDR12] = "UHS SDR12 (25MHz)",
[UHS_SDR25] = "UHS SDR25 (50MHz)",
[UHS_SDR50] = "UHS SDR50 (100MHz)",
[UHS_SDR104] = "UHS SDR104 (208MHz)",
[UHS_DDR50] = "UHS DDR50 (50MHz)",
[MMC_HS_52] = "MMC High Speed (52MHz)",
[MMC_DDR_52] = "MMC DDR52 (52MHz)",
[MMC_HS_200] = "HS200 (200MHz)",
[MMC_HS_400] = "HS400 (200MHz)",
[MMC_HS_400_ES] = "HS400ES (200MHz)",
};
if (mode >= MMC_MODES_END)
return "Unknown mode";
else
return names[mode];
}
#endif
static uint mmc_mode2freq(struct mmc *mmc, enum bus_mode mode)
{
static const int freqs[] = {
[MMC_LEGACY] = 25000000,
[SD_LEGACY] = 25000000,
[MMC_HS] = 26000000,
[SD_HS] = 50000000,
[MMC_HS_52] = 52000000,
[MMC_DDR_52] = 52000000,
[UHS_SDR12] = 25000000,
[UHS_SDR25] = 50000000,
[UHS_SDR50] = 100000000,
[UHS_DDR50] = 50000000,
[UHS_SDR104] = 208000000,
[MMC_HS_200] = 200000000,
[MMC_HS_400] = 200000000,
[MMC_HS_400_ES] = 200000000,
};
if (mode == MMC_LEGACY)
return mmc->legacy_speed;
else if (mode >= MMC_MODES_END)
return 0;
else
return freqs[mode];
}
static int mmc_select_mode(struct mmc *mmc, enum bus_mode mode)
{
mmc->selected_mode = mode;
mmc->tran_speed = mmc_mode2freq(mmc, mode);
mmc->ddr_mode = mmc_is_mode_ddr(mode);
pr_debug("selecting mode %s (freq : %d MHz)\n", mmc_mode_name(mode),
mmc->tran_speed / 1000000);
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
int ret;
mmmc_trace_before_send(mmc, cmd);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
mmmc_trace_after_send(mmc, cmd, ret);
return ret;
}
#endif
int mmc_send_status(struct mmc *mmc, unsigned int *status)
{
struct mmc_cmd cmd;
int err, retries = 5;
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
while (retries--) {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
mmc_trace_state(mmc, &cmd);
*status = cmd.response[0];
return 0;
}
}
mmc_trace_state(mmc, &cmd);
return -ECOMM;
}
int mmc_poll_for_busy(struct mmc *mmc, int timeout_ms)
{
unsigned int status;
int err;
err = mmc_wait_dat0(mmc, 1, timeout_ms * 1000);
if (err != -ENOSYS)
return err;
while (1) {
err = mmc_send_status(mmc, &status);
if (err)
return err;
if ((status & MMC_STATUS_RDY_FOR_DATA) &&
(status & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
if (status & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("Status Error: 0x%08x\n", status);
#endif
return -ECOMM;
}
if (timeout_ms-- <= 0)
break;
udelay(1000);
}
if (timeout_ms <= 0) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("Timeout waiting card ready\n");
#endif
return -ETIMEDOUT;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
int err;
if (mmc->ddr_mode)
return 0;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
err = mmc_send_cmd(mmc, &cmd, NULL);
#ifdef CONFIG_MMC_QUIRKS
if (err && (mmc->quirks & MMC_QUIRK_RETRY_SET_BLOCKLEN)) {
int retries = 4;
/*
* It has been seen that SET_BLOCKLEN may fail on the first
* attempt, let's try a few more time
*/
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err)
break;
} while (retries--);
}
#endif
return err;
}
#ifdef MMC_SUPPORTS_TUNING
static const u8 tuning_blk_pattern_4bit[] = {
0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
};
static const u8 tuning_blk_pattern_8bit[] = {
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
};
int mmc_send_tuning(struct mmc *mmc, u32 opcode, int *cmd_error)
{
struct mmc_cmd cmd;
struct mmc_data data;
const u8 *tuning_block_pattern;
int size, err;
if (mmc->bus_width == 8) {
tuning_block_pattern = tuning_blk_pattern_8bit;
size = sizeof(tuning_blk_pattern_8bit);
} else if (mmc->bus_width == 4) {
tuning_block_pattern = tuning_blk_pattern_4bit;
size = sizeof(tuning_blk_pattern_4bit);
} else {
return -EINVAL;
}
ALLOC_CACHE_ALIGN_BUFFER(u8, data_buf, size);
cmd.cmdidx = opcode;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1;
data.dest = (void *)data_buf;
data.blocks = 1;
data.blocksize = size;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err)
return err;
if (memcmp(data_buf, tuning_block_pattern, size))
return -EIO;
return 0;
}
#endif
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("mmc fail to send stop cmd\n");
#endif
return 0;
}
}
return blkcnt;
}
#if CONFIG_IS_ENABLED(BLK)
ulong mmc_bread(struct udevice *dev, lbaint_t start, lbaint_t blkcnt, void *dst)
#else
ulong mmc_bread(struct blk_desc *block_dev, lbaint_t start, lbaint_t blkcnt,
void *dst)
#endif
{
#if CONFIG_IS_ENABLED(BLK)
struct blk_desc *block_dev = dev_get_uclass_platdata(dev);
#endif
int dev_num = block_dev->devnum;
int err;
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if (CONFIG_IS_ENABLED(MMC_TINY))
err = mmc_switch_part(mmc, block_dev->hwpart);
else
err = blk_dselect_hwpart(block_dev, block_dev->hwpart);
if (err < 0)
return 0;
if ((start + blkcnt) > block_dev->lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, block_dev->lba);
#endif
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len)) {
pr_debug("%s: Failed to set blocklen\n", __func__);
return 0;
}
do {
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if (mmc_read_blocks(mmc, dst, start, cur) != cur) {
pr_debug("%s: Failed to read blocks\n", __func__);
return 0;
}
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
static int mmc_go_idle(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
static int mmc_switch_voltage(struct mmc *mmc, int signal_voltage)
{
struct mmc_cmd cmd;
int err = 0;
/*
* Send CMD11 only if the request is to switch the card to
* 1.8V signalling.
*/
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return mmc_set_signal_voltage(mmc, signal_voltage);
cmd.cmdidx = SD_CMD_SWITCH_UHS18V;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (!mmc_host_is_spi(mmc) && (cmd.response[0] & MMC_STATUS_ERROR))
return -EIO;
/*
* The card should drive cmd and dat[0:3] low immediately
* after the response of cmd11, but wait 100 us to be sure
*/
err = mmc_wait_dat0(mmc, 0, 100);
if (err == -ENOSYS)
udelay(100);
else if (err)
return -ETIMEDOUT;
/*
* During a signal voltage level switch, the clock must be gated
* for 5 ms according to the SD spec
*/
mmc_set_clock(mmc, mmc->clock, MMC_CLK_DISABLE);
err = mmc_set_signal_voltage(mmc, signal_voltage);
if (err)
return err;
/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
mdelay(10);
mmc_set_clock(mmc, mmc->clock, MMC_CLK_ENABLE);
/*
* Failure to switch is indicated by the card holding
* dat[0:3] low. Wait for at least 1 ms according to spec
*/
err = mmc_wait_dat0(mmc, 1, 1000);
if (err == -ENOSYS)
udelay(1000);
else if (err)
return -ETIMEDOUT;
return 0;
}
#endif
static int sd_send_op_cond(struct mmc *mmc, bool uhs_en)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
while (1) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
if (uhs_en)
cmd.cmdarg |= OCR_S18R;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (cmd.response[0] & OCR_BUSY)
break;
if (timeout-- <= 0)
return -EOPNOTSUPP;
udelay(1000);
}
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->ocr = cmd.response[0];
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
if (uhs_en && !(mmc_host_is_spi(mmc)) && (cmd.response[0] & 0x41000000)
== 0x41000000) {
err = mmc_switch_voltage(mmc, MMC_SIGNAL_VOLTAGE_180);
if (err)
return err;
}
#endif
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
static int mmc_send_op_cond_iter(struct mmc *mmc, int use_arg)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc))
cmd.cmdarg = OCR_HCS |
(mmc->cfg->voltages &
(mmc->ocr & OCR_VOLTAGE_MASK)) |
(mmc->ocr & OCR_ACCESS_MODE);
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->ocr = cmd.response[0];
return 0;
}
static int mmc_send_op_cond(struct mmc *mmc)
{
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->ocr & OCR_BUSY)
break;
}
mmc->op_cond_pending = 1;
return 0;
}
static int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
ulong start;
int err;
mmc->op_cond_pending = 0;
if (!(mmc->ocr & OCR_BUSY)) {
/* Some cards seem to need this */
mmc_go_idle(mmc);
start = get_timer(0);
while (1) {
err = mmc_send_op_cond_iter(mmc, 1);
if (err)
return err;
if (mmc->ocr & OCR_BUSY)
break;
if (get_timer(start) > timeout)
return -EOPNOTSUPP;
udelay(100);
}
}
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->ocr = cmd.response[0];
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 1;
return 0;
}
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int __mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value,
bool send_status)
{
unsigned int status, start;
struct mmc_cmd cmd;
int timeout_ms = DEFAULT_CMD6_TIMEOUT_MS;
bool is_part_switch = (set == EXT_CSD_CMD_SET_NORMAL) &&
(index == EXT_CSD_PART_CONF);
int retries = 3;
int ret;
if (mmc->gen_cmd6_time)
timeout_ms = mmc->gen_cmd6_time * 10;
if (is_part_switch && mmc->part_switch_time)
timeout_ms = mmc->part_switch_time * 10;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
do {
ret = mmc_send_cmd(mmc, &cmd, NULL);
} while (ret && retries-- > 0);
if (ret)
return ret;
start = get_timer(0);
/* poll dat0 for rdy/buys status */
ret = mmc_wait_dat0(mmc, 1, timeout_ms * 1000);
if (ret && ret != -ENOSYS)
return ret;
/*
* In cases when not allowed to poll by using CMD13 or because we aren't
* capable of polling by using mmc_wait_dat0, then rely on waiting the
* stated timeout to be sufficient.
*/
if (ret == -ENOSYS && !send_status)
mdelay(timeout_ms);
/* Finally wait until the card is ready or indicates a failure
* to switch. It doesn't hurt to use CMD13 here even if send_status
* is false, because by now (after 'timeout_ms' ms) the bus should be
* reliable.
*/
do {
ret = mmc_send_status(mmc, &status);
if (!ret && (status & MMC_STATUS_SWITCH_ERROR)) {
pr_debug("switch failed %d/%d/0x%x !\n", set, index,
value);
return -EIO;
}
if (!ret && (status & MMC_STATUS_RDY_FOR_DATA))
return 0;
udelay(100);
} while (get_timer(start) < timeout_ms);
return -ETIMEDOUT;
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
return __mmc_switch(mmc, set, index, value, true);
}
#if !CONFIG_IS_ENABLED(MMC_TINY)
static int mmc_set_card_speed(struct mmc *mmc, enum bus_mode mode,
bool hsdowngrade)
{
int err;
int speed_bits;
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
switch (mode) {
case MMC_HS:
case MMC_HS_52:
case MMC_DDR_52:
speed_bits = EXT_CSD_TIMING_HS;
break;
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
case MMC_HS_200:
speed_bits = EXT_CSD_TIMING_HS200;
break;
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
case MMC_HS_400:
speed_bits = EXT_CSD_TIMING_HS400;
break;
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
case MMC_HS_400_ES:
speed_bits = EXT_CSD_TIMING_HS400;
break;
#endif
case MMC_LEGACY:
speed_bits = EXT_CSD_TIMING_LEGACY;
break;
default:
return -EINVAL;
}
err = __mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
speed_bits, !hsdowngrade);
if (err)
return err;
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \
CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
/*
* In case the eMMC is in HS200/HS400 mode and we are downgrading
* to HS mode, the card clock are still running much faster than
* the supported HS mode clock, so we can not reliably read out
* Extended CSD. Reconfigure the controller to run at HS mode.
*/
if (hsdowngrade) {
mmc_select_mode(mmc, MMC_HS);
mmc_set_clock(mmc, mmc_mode2freq(mmc, MMC_HS), false);
}
#endif
if ((mode == MMC_HS) || (mode == MMC_HS_52)) {
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, test_csd);
if (err)
return err;
/* No high-speed support */
if (!test_csd[EXT_CSD_HS_TIMING])
return -ENOTSUPP;
}
return 0;
}
static int mmc_get_capabilities(struct mmc *mmc)
{
u8 *ext_csd = mmc->ext_csd;
char cardtype;
mmc->card_caps = MMC_MODE_1BIT | MMC_CAP(MMC_LEGACY);
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
if (!ext_csd) {
pr_err("No ext_csd found!\n"); /* this should enver happen */
return -ENOTSUPP;
}
mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT;
cardtype = ext_csd[EXT_CSD_CARD_TYPE];
mmc->cardtype = cardtype;
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
if (cardtype & (EXT_CSD_CARD_TYPE_HS200_1_2V |
EXT_CSD_CARD_TYPE_HS200_1_8V)) {
mmc->card_caps |= MMC_MODE_HS200;
}
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) || \
CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
if (cardtype & (EXT_CSD_CARD_TYPE_HS400_1_2V |
EXT_CSD_CARD_TYPE_HS400_1_8V)) {
mmc->card_caps |= MMC_MODE_HS400;
}
#endif
if (cardtype & EXT_CSD_CARD_TYPE_52) {
if (cardtype & EXT_CSD_CARD_TYPE_DDR_52)
mmc->card_caps |= MMC_MODE_DDR_52MHz;
mmc->card_caps |= MMC_MODE_HS_52MHz;
}
if (cardtype & EXT_CSD_CARD_TYPE_26)
mmc->card_caps |= MMC_MODE_HS;
#if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
if (ext_csd[EXT_CSD_STROBE_SUPPORT] &&
(mmc->card_caps & MMC_MODE_HS400)) {
mmc->card_caps |= MMC_MODE_HS400_ES;
}
#endif
return 0;
}
#endif
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc_get_blk_desc(mmc)->lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_switch_part(struct mmc *mmc, unsigned int part_num)
{
int ret;
int retry = 3;
do {
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
} while (ret && retry--);
/*
* Set the capacity if the switch succeeded or was intended
* to return to representing the raw device.
*/
if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0))) {
ret = mmc_set_capacity(mmc, part_num);
mmc_get_blk_desc(mmc)->hwpart = part_num;
}
return ret;
}
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
int mmc_hwpart_config(struct mmc *mmc,
const struct mmc_hwpart_conf *conf,
enum mmc_hwpart_conf_mode mode)
{
u8 part_attrs = 0;
u32 enh_size_mult;
u32 enh_start_addr;
u32 gp_size_mult[4];
u32 max_enh_size_mult;
u32 tot_enh_size_mult = 0;
u8 wr_rel_set;
int i, pidx, err;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE)
return -EINVAL;
if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) {
pr_err("eMMC >= 4.4 required for enhanced user data area\n");
return -EMEDIUMTYPE;
}
if (!(mmc->part_support & PART_SUPPORT)) {
pr_err("Card does not support partitioning\n");
return -EMEDIUMTYPE;
}
if (!mmc->hc_wp_grp_size) {
pr_err("Card does not define HC WP group size\n");
return -EMEDIUMTYPE;
}
/* check partition alignment and total enhanced size */
if (conf->user.enh_size) {
if (conf->user.enh_size % mmc->hc_wp_grp_size ||
conf->user.enh_start % mmc->hc_wp_grp_size) {
pr_err("User data enhanced area not HC WP group "
"size aligned\n");
return -EINVAL;
}
part_attrs |= EXT_CSD_ENH_USR;
enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size;
if (mmc->high_capacity) {
enh_start_addr = conf->user.enh_start;
} else {
enh_start_addr = (conf->user.enh_start << 9);
}
} else {
enh_size_mult = 0;
enh_start_addr = 0;
}
tot_enh_size_mult += enh_size_mult;
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) {
pr_err("GP%i partition not HC WP group size "
"aligned\n", pidx+1);
return -EINVAL;
}
gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size;
if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) {
part_attrs |= EXT_CSD_ENH_GP(pidx);
tot_enh_size_mult += gp_size_mult[pidx];
}
}
if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) {
pr_err("Card does not support enhanced attribute\n");
return -EMEDIUMTYPE;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
max_enh_size_mult =
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) +
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) +
ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT];
if (tot_enh_size_mult > max_enh_size_mult) {
pr_err("Total enhanced size exceeds maximum (%u > %u)\n",
tot_enh_size_mult, max_enh_size_mult);
return -EMEDIUMTYPE;
}
/* The default value of EXT_CSD_WR_REL_SET is device
* dependent, the values can only be changed if the
* EXT_CSD_HS_CTRL_REL bit is set. The values can be
* changed only once and before partitioning is completed. */
wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET];
if (conf->user.wr_rel_change) {
if (conf->user.wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_USR;
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR;
}
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].wr_rel_change) {
if (conf->gp_part[pidx].wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx);
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx);
}
}
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] &&
!(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) {
puts("Card does not support host controlled partition write "
"reliability settings\n");
return -EMEDIUMTYPE;
}
if (ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED) {
pr_err("Card already partitioned\n");
return -EPERM;
}
if (mode == MMC_HWPART_CONF_CHECK)
return 0;
/* Partitioning requires high-capacity size definitions */
if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
#if CONFIG_IS_ENABLED(MMC_WRITE)
/* update erase group size to be high-capacity */
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
#endif
}
/* all OK, write the configuration */
for (i = 0; i < 4; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_START_ADDR+i,
(enh_start_addr >> (i*8)) & 0xFF);
if (err)
return err;
}
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_SIZE_MULT+i,
(enh_size_mult >> (i*8)) & 0xFF);
if (err)
return err;
}
for (pidx = 0; pidx < 4; pidx++) {
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_GP_SIZE_MULT+pidx*3+i,
(gp_size_mult[pidx] >> (i*8)) & 0xFF);
if (err)
return err;
}
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs);
if (err)
return err;
if (mode == MMC_HWPART_CONF_SET)
return 0;
/* The WR_REL_SET is a write-once register but shall be
* written before setting PART_SETTING_COMPLETED. As it is
* write-once we can only write it when completing the
* partitioning. */
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_WR_REL_SET, wr_rel_set);
if (err)
return err;
}
/* Setting PART_SETTING_COMPLETED confirms the partition
* configuration but it only becomes effective after power
* cycle, so we do not adjust the partition related settings
* in the mmc struct. */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITION_SETTING,
EXT_CSD_PARTITION_SETTING_COMPLETED);
if (err)
return err;
return 0;
}
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (cd < 0) {
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
else
cd = 1;
}
return cd;
}
#endif
#if !CONFIG_IS_ENABLED(MMC_TINY)
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_get_capabilities(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(__be32, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(__be32, switch_status, 16);
struct mmc_data data;
int timeout;
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
u32 sd3_bus_mode;
#endif
mmc->card_caps = MMC_MODE_1BIT | MMC_CAP(SD_LEGACY);
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)
mmc->card_caps |= MMC_CAP(SD_HS);
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
/* Version before 3.0 don't support UHS modes */
if (mmc->version < SD_VERSION_3)
return 0;
sd3_bus_mode = __be32_to_cpu(switch_status[3]) >> 16 & 0x1f;
if (sd3_bus_mode & SD_MODE_UHS_SDR104)
mmc->card_caps |= MMC_CAP(UHS_SDR104);
if (sd3_bus_mode & SD_MODE_UHS_SDR50)
mmc->card_caps |= MMC_CAP(UHS_SDR50);
if (sd3_bus_mode & SD_MODE_UHS_SDR25)
mmc->card_caps |= MMC_CAP(UHS_SDR25);
if (sd3_bus_mode & SD_MODE_UHS_SDR12)
mmc->card_caps |= MMC_CAP(UHS_SDR12);
if (sd3_bus_mode & SD_MODE_UHS_DDR50)
mmc->card_caps |= MMC_CAP(UHS_DDR50);
#endif
return 0;
}
static int sd_set_card_speed(struct mmc *mmc, enum bus_mode mode)
{
int err;
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
int speed;
/* SD version 1.00 and 1.01 does not support CMD 6 */
if (mmc->version == SD_VERSION_1_0)
return 0;
switch (mode) {
case SD_LEGACY:
speed = UHS_SDR12_BUS_SPEED;
break;
case SD_HS:
speed = HIGH_SPEED_BUS_SPEED;
break;
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
case UHS_SDR12:
speed = UHS_SDR12_BUS_SPEED;
break;
case UHS_SDR25:
speed = UHS_SDR25_BUS_SPEED;
break;
case UHS_SDR50:
speed = UHS_SDR50_BUS_SPEED;
break;
case UHS_DDR50:
speed = UHS_DDR50_BUS_SPEED;
break;
case UHS_SDR104:
speed = UHS_SDR104_BUS_SPEED;
break;
#endif
default:
return -EINVAL;
}
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, speed, (u8 *)switch_status);
if (err)
return err;
if (((__be32_to_cpu(switch_status[4]) >> 24) & 0xF) != speed)
return -ENOTSUPP;
return 0;
}
static int sd_select_bus_width(struct mmc *mmc, int w)
{
int err;
struct mmc_cmd cmd;
if ((w != 4) && (w != 1))
return -EINVAL;
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
if (w == 4)
cmd.cmdarg = 2;
else if (w == 1)
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
return 0;
}
#endif
#if CONFIG_IS_ENABLED(MMC_WRITE)
static int sd_read_ssr(struct mmc *mmc)
{
static const unsigned int sd_au_size[] = {
0, SZ_16K / 512, SZ_32K / 512,
SZ_64K / 512, SZ_128K / 512, SZ_256K / 512,
SZ_512K / 512, SZ_1M / 512, SZ_2M / 512,
SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512,
SZ_64M / 512,
};
int err, i;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, ssr, 16);
struct mmc_data data;
int timeout = 3;
unsigned int au, eo, et, es;
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
#ifdef CONFIG_MMC_QUIRKS
if (err && (mmc->quirks & MMC_QUIRK_RETRY_APP_CMD)) {
int retries = 4;
/*
* It has been seen that APP_CMD may fail on the first
* attempt, let's try a few more times
*/
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err)
break;
} while (retries--);
}
#endif
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SD_STATUS;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
retry_ssr:
data.dest = (char *)ssr;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_ssr;
return err;
}
for (i = 0; i < 16; i++)
ssr[i] = be32_to_cpu(ssr[i]);
au = (ssr[2] >> 12) & 0xF;
if ((au <= 9) || (mmc->version == SD_VERSION_3)) {
mmc->ssr.au = sd_au_size[au];
es = (ssr[3] >> 24) & 0xFF;
es |= (ssr[2] & 0xFF) << 8;
et = (ssr[3] >> 18) & 0x3F;
if (es && et) {
eo = (ssr[3] >> 16) & 0x3;
mmc->ssr.erase_timeout = (et * 1000) / es;
mmc->ssr.erase_offset = eo * 1000;
}
} else {
pr_debug("Invalid Allocation Unit Size.\n");
}
return 0;
}
#endif
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const u8 multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
static inline int bus_width(uint cap)
{
if (cap == MMC_MODE_8BIT)
return 8;
if (cap == MMC_MODE_4BIT)
return 4;
if (cap == MMC_MODE_1BIT)
return 1;
pr_warn("invalid bus witdh capability 0x%x\n", cap);
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
#ifdef MMC_SUPPORTS_TUNING
static int mmc_execute_tuning(struct mmc *mmc, uint opcode)
{
return -ENOTSUPP;
}
#endif
static int mmc_set_ios(struct mmc *mmc)
{
int ret = 0;
if (mmc->cfg->ops->set_ios)
ret = mmc->cfg->ops->set_ios(mmc);
return ret;
}
static int mmc_host_power_cycle(struct mmc *mmc)
{
int ret = 0;
if (mmc->cfg->ops->host_power_cycle)
ret = mmc->cfg->ops->host_power_cycle(mmc);
return ret;
}
#endif
int mmc_set_clock(struct mmc *mmc, uint clock, bool disable)
{
if (!disable) {
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
}
mmc->clock = clock;
mmc->clk_disable = disable;
debug("clock is %s (%dHz)\n", disable ? "disabled" : "enabled", clock);
return mmc_set_ios(mmc);
}
static int mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
return mmc_set_ios(mmc);
}
#if CONFIG_IS_ENABLED(MMC_VERBOSE) || defined(DEBUG)
/*
* helper function to display the capabilities in a human
* friendly manner. The capabilities include bus width and
* supported modes.
*/
void mmc_dump_capabilities(const char *text, uint caps)
{
enum bus_mode mode;
pr_debug("%s: widths [", text);
if (caps & MMC_MODE_8BIT)
pr_debug("8, ");
if (caps & MMC_MODE_4BIT)
pr_debug("4, ");
if (caps & MMC_MODE_1BIT)
pr_debug("1, ");
pr_debug("\b\b] modes [");
for (mode = MMC_LEGACY; mode < MMC_MODES_END; mode++)
if (MMC_CAP(mode) & caps)
pr_debug("%s, ", mmc_mode_name(mode));
pr_debug("\b\b]\n");
}
#endif
struct mode_width_tuning {
enum bus_mode mode;
uint widths;
#ifdef MMC_SUPPORTS_TUNING
uint tuning;
#endif
};
#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
int mmc_voltage_to_mv(enum mmc_voltage voltage)
{
switch (voltage) {
case MMC_SIGNAL_VOLTAGE_000: return 0;
case MMC_SIGNAL_VOLTAGE_330: return 3300;
case MMC_SIGNAL_VOLTAGE_180: return 1800;
case MMC_SIGNAL_VOLTAGE_120: return 1200;
}
return -EINVAL;
}
static int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage)
{
int err;
if (mmc->signal_voltage == signal_voltage)
return 0;
mmc->signal_voltage = signal_voltage;
err = mmc_set_ios(mmc);
if (err)
pr_debug("unable to set voltage (err %d)\n", err);
return err;
}
#else
static inline int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage)
{
return 0;
}
#endif
#if !CONFIG_IS_ENABLED(MMC_TINY)
static const struct mode_width_tuning sd_modes_by_pref[] = {
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
#ifdef MMC_SUPPORTS_TUNING
{
.mode = UHS_SDR104,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
.tuning = MMC_CMD_SEND_TUNING_BLOCK
},
#endif
{
.mode = UHS_SDR50,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
},
{
.mode = UHS_DDR50,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
},
{
.mode = UHS_SDR25,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
},
#endif
{
.mode = SD_HS,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
},
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
{
.mode = UHS_SDR12,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
},
#endif
{
.mode = SD_LEGACY,
.widths = MMC_MODE_4BIT | MMC_MODE_1BIT,
}
};
#define for_each_sd_mode_by_pref(caps, mwt) \
for (mwt = sd_modes_by_pref;\
mwt < sd_modes_by_pref + ARRAY_SIZE(sd_modes_by_pref);\
mwt++) \
if (caps & MMC_CAP(mwt->mode))
static int sd_select_mode_and_width(struct mmc *mmc, uint card_caps)
{
int err;
uint widths[] = {MMC_MODE_4BIT, MMC_MODE_1BIT};
const struct mode_width_tuning *mwt;
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
bool uhs_en = (mmc->ocr & OCR_S18R) ? true : false;
#else
bool uhs_en = false;
#endif
uint caps;
#ifdef DEBUG
mmc_dump_capabilities("sd card", card_caps);
mmc_dump_capabilities("host", mmc->host_caps);
#endif
if (mmc_host_is_spi(mmc)) {
mmc_set_bus_width(mmc, 1);
mmc_select_mode(mmc, SD_LEGACY);
mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE);
return 0;
}
/* Restrict card's capabilities by what the host can do */
caps = card_caps & mmc->host_caps;
if (!uhs_en)
caps &= ~UHS_CAPS;
for_each_sd_mode_by_pref(caps, mwt) {
uint *w;
for (w = widths; w < widths + ARRAY_SIZE(widths); w++) {
if (*w & caps & mwt->widths) {
pr_debug("trying mode %s width %d (at %d MHz)\n",
mmc_mode_name(mwt->mode),
bus_width(*w),
mmc_mode2freq(mmc, mwt->mode) / 1000000);
/* configure the bus width (card + host) */
err = sd_select_bus_width(mmc, bus_width(*w));
if (err)
goto error;
mmc_set_bus_width(mmc, bus_width(*w));
/* configure the bus mode (card) */
err = sd_set_card_speed(mmc, mwt->mode);
if (err)
goto error;
/* configure the bus mode (host) */
mmc_select_mode(mmc, mwt->mode);
mmc_set_clock(mmc, mmc->tran_speed,
MMC_CLK_ENABLE);
#ifdef MMC_SUPPORTS_TUNING
/* execute tuning if needed */
if (mwt->tuning && !mmc_host_is_spi(mmc)) {
err = mmc_execute_tuning(mmc,
mwt->tuning);
if (err) {
pr_debug("tuning failed\n");
goto error;
}
}
#endif
#if CONFIG_IS_ENABLED(MMC_WRITE)
err = sd_read_ssr(mmc);
if (err)
pr_warn("unable to read ssr\n");
#endif
if (!err)
return 0;
error:
/* revert to a safer bus speed */
mmc_select_mode(mmc, SD_LEGACY);
mmc_set_clock(mmc, mmc->tran_speed,
MMC_CLK_ENABLE);
}
}
}
pr_err("unable to select a mode\n");
return -ENOTSUPP;
}
/*
* read the compare the part of ext csd that is constant.
* This can be used to check that the transfer is working
* as expected.
*/
static int mmc_read_and_compare_ext_csd(struct mmc *mmc)
{
int err;
const u8 *ext_csd = mmc->ext_csd;
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, test_csd);
if (err)
return err;
/* Only compare read only fields */
if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT]
== test_csd[EXT_CSD_PARTITIONING_SUPPORT] &&
ext_csd[EXT_CSD_HC_WP_GRP_SIZE]
== test_csd[EXT_CSD_HC_WP_GRP_SIZE] &&
ext_csd[EXT_CSD_REV]
== test_csd[EXT_CSD_REV] &&
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
== test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] &&
memcmp(&ext_csd[EXT_CSD_SEC_CNT],
&test_csd[EXT_CSD_SEC_CNT], 4) == 0)
return 0;
return -EBADMSG;
}
#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
static int mmc_set_lowest_voltage(struct mmc *mmc, enum bus_mode mode,
uint32_t allowed_mask)
{
u32 card_mask = 0;
switch (mode) {
case MMC_HS_400_ES:
case MMC_HS_400:
case MMC_HS_200:
if (mmc->cardtype & (EXT_CSD_CARD_TYPE_HS200_1_8V |
EXT_CSD_CARD_TYPE_HS400_1_8V))
card_mask |= MMC_SIGNAL_VOLTAGE_180;
if (mmc->cardtype & (EXT_CSD_CARD_TYPE_HS200_1_2V |
EXT_CSD_CARD_TYPE_HS400_1_2V))
card_mask |= MMC_SIGNAL_VOLTAGE_120;
break;
case MMC_DDR_52:
if (mmc->cardtype & EXT_CSD_CARD_TYPE_DDR_1_8V)
card_mask |= MMC_SIGNAL_VOLTAGE_330 |
MMC_SIGNAL_VOLTAGE_180;
if (mmc->cardtype & EXT_CSD_CARD_TYPE_DDR_1_2V)
card_mask |= MMC_SIGNAL_VOLTAGE_120;
break;
default:
card_mask |= MMC_SIGNAL_VOLTAGE_330;
break;
}
while (card_mask & allowed_mask) {
enum mmc_voltage best_match;
best_match = 1 << (ffs(card_mask & allowed_mask) - 1);
if (!mmc_set_signal_voltage(mmc, best_match))
return 0;
allowed_mask &= ~best_match;
}
return -ENOTSUPP;
}
#else
static inline int mmc_set_lowest_voltage(struct mmc *mmc, enum bus_mode mode,
uint32_t allowed_mask)
{
return 0;
}
#endif
static const struct mode_width_tuning mmc_modes_by_pref[] = {
#if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
{
.mode = MMC_HS_400_ES,
.widths = MMC_MODE_8BIT,
},
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
{
.mode = MMC_HS_400,
.widths = MMC_MODE_8BIT,
.tuning = MMC_CMD_SEND_TUNING_BLOCK_HS200
},
#endif
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
{
.mode = MMC_HS_200,
.widths = MMC_MODE_8BIT | MMC_MODE_4BIT,
.tuning = MMC_CMD_SEND_TUNING_BLOCK_HS200
},
#endif
{
.mode = MMC_DDR_52,
.widths = MMC_MODE_8BIT | MMC_MODE_4BIT,
},
{
.mode = MMC_HS_52,
.widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT,
},
{
.mode = MMC_HS,
.widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT,
},
{
.mode = MMC_LEGACY,
.widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT,
}
};
#define for_each_mmc_mode_by_pref(caps, mwt) \
for (mwt = mmc_modes_by_pref;\
mwt < mmc_modes_by_pref + ARRAY_SIZE(mmc_modes_by_pref);\
mwt++) \
if (caps & MMC_CAP(mwt->mode))
static const struct ext_csd_bus_width {
uint cap;
bool is_ddr;
uint ext_csd_bits;
} ext_csd_bus_width[] = {
{MMC_MODE_8BIT, true, EXT_CSD_DDR_BUS_WIDTH_8},
{MMC_MODE_4BIT, true, EXT_CSD_DDR_BUS_WIDTH_4},
{MMC_MODE_8BIT, false, EXT_CSD_BUS_WIDTH_8},
{MMC_MODE_4BIT, false, EXT_CSD_BUS_WIDTH_4},
{MMC_MODE_1BIT, false, EXT_CSD_BUS_WIDTH_1},
};
#if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
static int mmc_select_hs400(struct mmc *mmc)
{
int err;
/* Set timing to HS200 for tuning */
err = mmc_set_card_speed(mmc, MMC_HS_200, false);
if (err)
return err;
/* configure the bus mode (host) */
mmc_select_mode(mmc, MMC_HS_200);
mmc_set_clock(mmc, mmc->tran_speed, false);
/* execute tuning if needed */
err = mmc_execute_tuning(mmc, MMC_CMD_SEND_TUNING_BLOCK_HS200);
if (err) {
debug("tuning failed\n");
return err;
}
/* Set back to HS */
mmc_set_card_speed(mmc, MMC_HS, true);
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_FLAG);
if (err)
return err;
err = mmc_set_card_speed(mmc, MMC_HS_400, false);
if (err)
return err;
mmc_select_mode(mmc, MMC_HS_400);
err = mmc_set_clock(mmc, mmc->tran_speed, false);
if (err)
return err;
return 0;
}
#else
static int mmc_select_hs400(struct mmc *mmc)
{
return -ENOTSUPP;
}
#endif
#if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT)
#if !CONFIG_IS_ENABLED(DM_MMC)
static int mmc_set_enhanced_strobe(struct mmc *mmc)
{
return -ENOTSUPP;
}
#endif
static int mmc_select_hs400es(struct mmc *mmc)
{
int err;
err = mmc_set_card_speed(mmc, MMC_HS, true);
if (err)
return err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_FLAG |
EXT_CSD_BUS_WIDTH_STROBE);
if (err) {
printf("switch to bus width for hs400 failed\n");
return err;
}
/* TODO: driver strength */
err = mmc_set_card_speed(mmc, MMC_HS_400_ES, false);
if (err)
return err;
mmc_select_mode(mmc, MMC_HS_400_ES);
err = mmc_set_clock(mmc, mmc->tran_speed, false);
if (err)
return err;
return mmc_set_enhanced_strobe(mmc);
}
#else
static int mmc_select_hs400es(struct mmc *mmc)
{
return -ENOTSUPP;
}
#endif
#define for_each_supported_width(caps, ddr, ecbv) \
for (ecbv = ext_csd_bus_width;\
ecbv < ext_csd_bus_width + ARRAY_SIZE(ext_csd_bus_width);\
ecbv++) \
if ((ddr == ecbv->is_ddr) && (caps & ecbv->cap))
static int mmc_select_mode_and_width(struct mmc *mmc, uint card_caps)
{
int err;
const struct mode_width_tuning *mwt;
const struct ext_csd_bus_width *ecbw;
#ifdef DEBUG
mmc_dump_capabilities("mmc", card_caps);
mmc_dump_capabilities("host", mmc->host_caps);
#endif
if (mmc_host_is_spi(mmc)) {
mmc_set_bus_width(mmc, 1);
mmc_select_mode(mmc, MMC_LEGACY);
mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE);
return 0;
}
/* Restrict card's capabilities by what the host can do */
card_caps &= mmc->host_caps;
/* Only version 4 of MMC supports wider bus widths */
if (mmc->version < MMC_VERSION_4)
return 0;
if (!mmc->ext_csd) {
pr_debug("No ext_csd found!\n"); /* this should enver happen */
return -ENOTSUPP;
}
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \
CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
/*
* In case the eMMC is in HS200/HS400 mode, downgrade to HS mode
* before doing anything else, since a transition from either of
* the HS200/HS400 mode directly to legacy mode is not supported.
*/
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == MMC_HS_400)
mmc_set_card_speed(mmc, MMC_HS, true);
else
#endif
mmc_set_clock(mmc, mmc->legacy_speed, MMC_CLK_ENABLE);
for_each_mmc_mode_by_pref(card_caps, mwt) {
for_each_supported_width(card_caps & mwt->widths,
mmc_is_mode_ddr(mwt->mode), ecbw) {
enum mmc_voltage old_voltage;
pr_debug("trying mode %s width %d (at %d MHz)\n",
mmc_mode_name(mwt->mode),
bus_width(ecbw->cap),
mmc_mode2freq(mmc, mwt->mode) / 1000000);
old_voltage = mmc->signal_voltage;
err = mmc_set_lowest_voltage(mmc, mwt->mode,
MMC_ALL_SIGNAL_VOLTAGE);
if (err)
continue;
/* configure the bus width (card + host) */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ecbw->ext_csd_bits & ~EXT_CSD_DDR_FLAG);
if (err)
goto error;
mmc_set_bus_width(mmc, bus_width(ecbw->cap));
if (mwt->mode == MMC_HS_400) {
err = mmc_select_hs400(mmc);
if (err) {
printf("Select HS400 failed %d\n", err);
goto error;
}
} else if (mwt->mode == MMC_HS_400_ES) {
err = mmc_select_hs400es(mmc);
if (err) {
printf("Select HS400ES failed %d\n",
err);
goto error;
}
} else {
/* configure the bus speed (card) */
err = mmc_set_card_speed(mmc, mwt->mode, false);
if (err)
goto error;
/*
* configure the bus width AND the ddr mode
* (card). The host side will be taken care
* of in the next step
*/
if (ecbw->ext_csd_bits & EXT_CSD_DDR_FLAG) {
err = mmc_switch(mmc,
EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ecbw->ext_csd_bits);
if (err)
goto error;
}
/* configure the bus mode (host) */
mmc_select_mode(mmc, mwt->mode);
mmc_set_clock(mmc, mmc->tran_speed,
MMC_CLK_ENABLE);
#ifdef MMC_SUPPORTS_TUNING
/* execute tuning if needed */
if (mwt->tuning) {
err = mmc_execute_tuning(mmc,
mwt->tuning);
if (err) {
pr_debug("tuning failed\n");
goto error;
}
}
#endif
}
/* do a transfer to check the configuration */
err = mmc_read_and_compare_ext_csd(mmc);
if (!err)
return 0;
error:
mmc_set_signal_voltage(mmc, old_voltage);
/* if an error occured, revert to a safer bus mode */
mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_1);
mmc_select_mode(mmc, MMC_LEGACY);
mmc_set_bus_width(mmc, 1);
}
}
pr_err("unable to select a mode\n");
return -ENOTSUPP;
}
#endif
#if CONFIG_IS_ENABLED(MMC_TINY)
DEFINE_CACHE_ALIGN_BUFFER(u8, ext_csd_bkup, MMC_MAX_BLOCK_LEN);
#endif
static int mmc_startup_v4(struct mmc *mmc)
{
int err, i;
u64 capacity;
bool has_parts = false;
bool part_completed;
static const u32 mmc_versions[] = {
MMC_VERSION_4,
MMC_VERSION_4_1,
MMC_VERSION_4_2,
MMC_VERSION_4_3,
MMC_VERSION_4_4,
MMC_VERSION_4_41,
MMC_VERSION_4_5,
MMC_VERSION_5_0,
MMC_VERSION_5_1
};
#if CONFIG_IS_ENABLED(MMC_TINY)
u8 *ext_csd = ext_csd_bkup;
if (IS_SD(mmc) || mmc->version < MMC_VERSION_4)
return 0;
if (!mmc->ext_csd)
memset(ext_csd_bkup, 0, sizeof(ext_csd_bkup));
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
goto error;
/* store the ext csd for future reference */
if (!mmc->ext_csd)
mmc->ext_csd = ext_csd;
#else
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4))
return 0;
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
goto error;
/* store the ext csd for future reference */
if (!mmc->ext_csd)
mmc->ext_csd = malloc(MMC_MAX_BLOCK_LEN);
if (!mmc->ext_csd)
return -ENOMEM;
memcpy(mmc->ext_csd, ext_csd, MMC_MAX_BLOCK_LEN);
#endif
if (ext_csd[EXT_CSD_REV] >= ARRAY_SIZE(mmc_versions))
return -EINVAL;
mmc->version = mmc_versions[ext_csd[EXT_CSD_REV]];
if (mmc->version >= MMC_VERSION_4_2) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
}
if (mmc->version >= MMC_VERSION_4_5)
mmc->gen_cmd6_time = ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
/* The partition data may be non-zero but it is only
* effective if PARTITION_SETTING_COMPLETED is set in
* EXT_CSD, so ignore any data if this bit is not set,
* except for enabling the high-capacity group size
* definition (see below).
*/
part_completed = !!(ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED);
mmc->part_switch_time = ext_csd[EXT_CSD_PART_SWITCH_TIME];
/* Some eMMC set the value too low so set a minimum */
if (mmc->part_switch_time < MMC_MIN_PART_SWITCH_TIME && mmc->part_switch_time)
mmc->part_switch_time = MMC_MIN_PART_SWITCH_TIME;
/* store the partition info of emmc */
mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT];
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
ext_csd[EXT_CSD_BOOT_MULT])
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
if (part_completed &&
(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & ENHNCD_SUPPORT))
mmc->part_attr = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE];
mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17;
for (i = 0; i < 4; i++) {
int idx = EXT_CSD_GP_SIZE_MULT + i * 3;
uint mult = (ext_csd[idx + 2] << 16) +
(ext_csd[idx + 1] << 8) + ext_csd[idx];
if (mult)
has_parts = true;
if (!part_completed)
continue;
mmc->capacity_gp[i] = mult;
mmc->capacity_gp[i] *=
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->capacity_gp[i] <<= 19;
}
#ifndef CONFIG_SPL_BUILD
if (part_completed) {
mmc->enh_user_size =
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16) +
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) +
ext_csd[EXT_CSD_ENH_SIZE_MULT];
mmc->enh_user_size *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->enh_user_size *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->enh_user_size <<= 19;
mmc->enh_user_start =
(ext_csd[EXT_CSD_ENH_START_ADDR + 3] << 24) +
(ext_csd[EXT_CSD_ENH_START_ADDR + 2] << 16) +
(ext_csd[EXT_CSD_ENH_START_ADDR + 1] << 8) +
ext_csd[EXT_CSD_ENH_START_ADDR];
if (mmc->high_capacity)
mmc->enh_user_start <<= 9;
}
#endif
/*
* Host needs to enable ERASE_GRP_DEF bit if device is
* partitioned. This bit will be lost every time after a reset
* or power off. This will affect erase size.
*/
if (part_completed)
has_parts = true;
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) &&
(ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB))
has_parts = true;
if (has_parts) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
goto error;
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
}
if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01) {
#if CONFIG_IS_ENABLED(MMC_WRITE)
/* Read out group size from ext_csd */
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
#endif
/*
* if high capacity and partition setting completed
* SEC_COUNT is valid even if it is smaller than 2 GiB
* JEDEC Standard JESD84-B45, 6.2.4
*/
if (mmc->high_capacity && part_completed) {
capacity = (ext_csd[EXT_CSD_SEC_CNT]) |
(ext_csd[EXT_CSD_SEC_CNT + 1] << 8) |
(ext_csd[EXT_CSD_SEC_CNT + 2] << 16) |
(ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
capacity *= MMC_MAX_BLOCK_LEN;
mmc->capacity_user = capacity;
}
}
#if CONFIG_IS_ENABLED(MMC_WRITE)
else {
/* Calculate the group size from the csd value. */
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
#endif
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
mmc->hc_wp_grp_size = 1024
* ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
* ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
#endif
mmc->wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET];
return 0;
error:
if (mmc->ext_csd) {
#if !CONFIG_IS_ENABLED(MMC_TINY)
free(mmc->ext_csd);
#endif
mmc->ext_csd = NULL;
}
return err;
}
static int mmc_startup(struct mmc *mmc)
{
int err, i;
uint mult, freq;
u64 cmult, csize;
struct mmc_cmd cmd;
struct blk_desc *bdesc;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
#ifdef CONFIG_MMC_QUIRKS
if (err && (mmc->quirks & MMC_QUIRK_RETRY_SEND_CID)) {
int retries = 4;
/*
* It has been seen that SEND_CID may fail on the first
* attempt, let's try a few more time
*/
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err)
break;
} while (retries--);
}
#endif
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->legacy_speed = freq * mult;
mmc_select_mode(mmc, MMC_LEGACY);
mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1);
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
#if CONFIG_IS_ENABLED(MMC_WRITE)
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
#endif
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
#if CONFIG_IS_ENABLED(MMC_WRITE)
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
#endif
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
pr_warn("MMC: SET_DSR failed\n");
}
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
/*
* For SD, its erase group is always one sector
*/
#if CONFIG_IS_ENABLED(MMC_WRITE)
mmc->erase_grp_size = 1;
#endif
mmc->part_config = MMCPART_NOAVAILABLE;
err = mmc_startup_v4(mmc);
if (err)
return err;
err = mmc_set_capacity(mmc, mmc_get_blk_desc(mmc)->hwpart);
if (err)
return err;
#if CONFIG_IS_ENABLED(MMC_TINY)
mmc_set_clock(mmc, mmc->legacy_speed, false);
mmc_select_mode(mmc, IS_SD(mmc) ? SD_LEGACY : MMC_LEGACY);
mmc_set_bus_width(mmc, 1);
#else
if (IS_SD(mmc)) {
err = sd_get_capabilities(mmc);
if (err)
return err;
err = sd_select_mode_and_width(mmc, mmc->card_caps);
} else {
err = mmc_get_capabilities(mmc);
if (err)
return err;
err = mmc_select_mode_and_width(mmc, mmc->card_caps);
}
#endif
if (err)
return err;
mmc->best_mode = mmc->selected_mode;
/* Fix the block length for DDR mode */
if (mmc->ddr_mode) {
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
#if CONFIG_IS_ENABLED(MMC_WRITE)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
#endif
}
/* fill in device description */
bdesc = mmc_get_blk_desc(mmc);
bdesc->lun = 0;
bdesc->hwpart = 0;
bdesc->type = 0;
bdesc->blksz = mmc->read_bl_len;
bdesc->log2blksz = LOG2(bdesc->blksz);
bdesc->lba = lldiv(mmc->capacity, mmc->read_bl_len);
#if !defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_LIBCOMMON_SUPPORT) && \
!CONFIG_IS_ENABLED(USE_TINY_PRINTF))
sprintf(bdesc->vendor, "Man %06x Snr %04x%04x",
mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
(mmc->cid[3] >> 16) & 0xffff);
sprintf(bdesc->product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24) & 0xff);
sprintf(bdesc->revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf,
(mmc->cid[2] >> 16) & 0xf);
#else
bdesc->vendor[0] = 0;
bdesc->product[0] = 0;
bdesc->revision[0] = 0;
#endif
#if !defined(CONFIG_DM_MMC) && (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT))
part_init(bdesc);
#endif
return 0;
}
static int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return -EOPNOTSUPP;
else
mmc->version = SD_VERSION_2;
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
/* board-specific MMC power initializations. */
__weak void board_mmc_power_init(void)
{
}
#endif
static int mmc_power_init(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
#if CONFIG_IS_ENABLED(DM_REGULATOR)
int ret;
ret = device_get_supply_regulator(mmc->dev, "vmmc-supply",
&mmc->vmmc_supply);
if (ret)
pr_debug("%s: No vmmc supply\n", mmc->dev->name);
ret = device_get_supply_regulator(mmc->dev, "vqmmc-supply",
&mmc->vqmmc_supply);
if (ret)
pr_debug("%s: No vqmmc supply\n", mmc->dev->name);
#endif
#else /* !CONFIG_DM_MMC */
/*
* Driver model should use a regulator, as above, rather than calling
* out to board code.
*/
board_mmc_power_init();
#endif
return 0;
}
/*
* put the host in the initial state:
* - turn on Vdd (card power supply)
* - configure the bus width and clock to minimal values
*/
static void mmc_set_initial_state(struct mmc *mmc)
{
int err;
/* First try to set 3.3V. If it fails set to 1.8V */
err = mmc_set_signal_voltage(mmc, MMC_SIGNAL_VOLTAGE_330);
if (err != 0)
err = mmc_set_signal_voltage(mmc, MMC_SIGNAL_VOLTAGE_180);
if (err != 0)
pr_warn("mmc: failed to set signal voltage\n");
mmc_select_mode(mmc, MMC_LEGACY);
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 0, MMC_CLK_ENABLE);
}
static int mmc_power_on(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC) && CONFIG_IS_ENABLED(DM_REGULATOR)
if (mmc->vmmc_supply) {
int ret = regulator_set_enable(mmc->vmmc_supply, true);
if (ret) {
puts("Error enabling VMMC supply\n");
return ret;
}
}
#endif
return 0;
}
static int mmc_power_off(struct mmc *mmc)
{
mmc_set_clock(mmc, 0, MMC_CLK_DISABLE);
#if CONFIG_IS_ENABLED(DM_MMC) && CONFIG_IS_ENABLED(DM_REGULATOR)
if (mmc->vmmc_supply) {
int ret = regulator_set_enable(mmc->vmmc_supply, false);
if (ret) {
pr_debug("Error disabling VMMC supply\n");
return ret;
}
}
#endif
return 0;
}
static int mmc_power_cycle(struct mmc *mmc)
{
int ret;
ret = mmc_power_off(mmc);
if (ret)
return ret;
ret = mmc_host_power_cycle(mmc);
if (ret)
return ret;
/*
* SD spec recommends at least 1ms of delay. Let's wait for 2ms
* to be on the safer side.
*/
udelay(2000);
return mmc_power_on(mmc);
}
int mmc_get_op_cond(struct mmc *mmc)
{
bool uhs_en = supports_uhs(mmc->cfg->host_caps);
int err;
if (mmc->has_init)
return 0;
#ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT
mmc_adapter_card_type_ident();
#endif
err = mmc_power_init(mmc);
if (err)
return err;
#ifdef CONFIG_MMC_QUIRKS
mmc->quirks = MMC_QUIRK_RETRY_SET_BLOCKLEN |
MMC_QUIRK_RETRY_SEND_CID |
MMC_QUIRK_RETRY_APP_CMD;
#endif
err = mmc_power_cycle(mmc);
if (err) {
/*
* if power cycling is not supported, we should not try
* to use the UHS modes, because we wouldn't be able to
* recover from an error during the UHS initialization.
*/
pr_debug("Unable to do a full power cycle. Disabling the UHS modes for safety\n");
uhs_en = false;
mmc->host_caps &= ~UHS_CAPS;
err = mmc_power_on(mmc);
}
if (err)
return err;
#if CONFIG_IS_ENABLED(DM_MMC)
/* The device has already been probed ready for use */
#else
/* made sure it's not NULL earlier */
err = mmc->cfg->ops->init(mmc);
if (err)
return err;
#endif
mmc->ddr_mode = 0;
retry:
mmc_set_initial_state(mmc);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc_get_blk_desc(mmc)->hwpart = 0;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc, uhs_en);
if (err && uhs_en) {
uhs_en = false;
mmc_power_cycle(mmc);
goto retry;
}
/* If the command timed out, we check for an MMC card */
if (err == -ETIMEDOUT) {
err = mmc_send_op_cond(mmc);
if (err) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("Card did not respond to voltage select!\n");
#endif
return -EOPNOTSUPP;
}
}
return err;
}
int mmc_start_init(struct mmc *mmc)
{
bool no_card;
int err = 0;
/*
* all hosts are capable of 1 bit bus-width and able to use the legacy
* timings.
*/
mmc->host_caps = mmc->cfg->host_caps | MMC_CAP(SD_LEGACY) |
MMC_CAP(MMC_LEGACY) | MMC_MODE_1BIT;
#if !defined(CONFIG_MMC_BROKEN_CD)
no_card = mmc_getcd(mmc) == 0;
#else
no_card = 0;
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
/* we pretend there's no card when init is NULL */
no_card = no_card || (mmc->cfg->ops->init == NULL);
#endif
if (no_card) {
mmc->has_init = 0;
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
pr_err("MMC: no card present\n");
#endif
return -ENOMEDIUM;
}
err = mmc_get_op_cond(mmc);
if (!err)
mmc->init_in_progress = 1;
return err;
}
static int mmc_complete_init(struct mmc *mmc)
{
int err = 0;
mmc->init_in_progress = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
return err;
}
int mmc_init(struct mmc *mmc)
{
int err = 0;
__maybe_unused ulong start;
#if CONFIG_IS_ENABLED(DM_MMC)
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(mmc->dev);
upriv->mmc = mmc;
#endif
if (mmc->has_init)
return 0;
start = get_timer(0);
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
if (!err)
err = mmc_complete_init(mmc);
if (err)
pr_info("%s: %d, time %lu\n", __func__, err, get_timer(start));
return err;
}
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) || \
CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \
CONFIG_IS_ENABLED(MMC_HS400_SUPPORT)
int mmc_deinit(struct mmc *mmc)
{
u32 caps_filtered;
if (!mmc->has_init)
return 0;
if (IS_SD(mmc)) {
caps_filtered = mmc->card_caps &
~(MMC_CAP(UHS_SDR12) | MMC_CAP(UHS_SDR25) |
MMC_CAP(UHS_SDR50) | MMC_CAP(UHS_DDR50) |
MMC_CAP(UHS_SDR104));
return sd_select_mode_and_width(mmc, caps_filtered);
} else {
caps_filtered = mmc->card_caps &
~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_HS_400));
return mmc_select_mode_and_width(mmc, caps_filtered);
}
}
#endif
int mmc_set_dsr(struct mmc *mmc, u16 val)
{
mmc->dsr = val;
return 0;
}
/* CPU-specific MMC initializations */
__weak int cpu_mmc_init(bd_t *bis)
{
return -1;
}
/* board-specific MMC initializations. */
__weak int board_mmc_init(bd_t *bis)
{
return -1;
}
void mmc_set_preinit(struct mmc *mmc, int preinit)
{
mmc->preinit = preinit;
}
#if CONFIG_IS_ENABLED(DM_MMC)
static int mmc_probe(bd_t *bis)
{
int ret, i;
struct uclass *uc;
struct udevice *dev;
ret = uclass_get(UCLASS_MMC, &uc);
if (ret)
return ret;
/*
* Try to add them in sequence order. Really with driver model we
* should allow holes, but the current MMC list does not allow that.
* So if we request 0, 1, 3 we will get 0, 1, 2.
*/
for (i = 0; ; i++) {
ret = uclass_get_device_by_seq(UCLASS_MMC, i, &dev);
if (ret == -ENODEV)
break;
}
uclass_foreach_dev(dev, uc) {
ret = device_probe(dev);
if (ret)
pr_err("%s - probe failed: %d\n", dev->name, ret);
}
return 0;
}
#else
static int mmc_probe(bd_t *bis)
{
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
return 0;
}
#endif
int mmc_initialize(bd_t *bis)
{
static int initialized = 0;
int ret;
if (initialized) /* Avoid initializing mmc multiple times */
return 0;
initialized = 1;
#if !CONFIG_IS_ENABLED(BLK)
#if !CONFIG_IS_ENABLED(MMC_TINY)
mmc_list_init();
#endif
#endif
ret = mmc_probe(bis);
if (ret)
return ret;
#ifndef CONFIG_SPL_BUILD
print_mmc_devices(',');
#endif
mmc_do_preinit();
return 0;
}
#if CONFIG_IS_ENABLED(DM_MMC)
int mmc_init_device(int num)
{
struct udevice *dev;
struct mmc *m;
int ret;
ret = uclass_get_device(UCLASS_MMC, num, &dev);
if (ret)
return ret;
m = mmc_get_mmc_dev(dev);
if (!m)
return 0;
#ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT
mmc_set_preinit(m, 1);
#endif
if (m->preinit)
mmc_start_init(m);
return 0;
}
#endif
#ifdef CONFIG_CMD_BKOPS_ENABLE
int mmc_set_bkops_enable(struct mmc *mmc)
{
int err;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
err = mmc_send_ext_csd(mmc, ext_csd);
if (err) {
puts("Could not get ext_csd register values\n");
return err;
}
if (!(ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1)) {
puts("Background operations not supported on device\n");
return -EMEDIUMTYPE;
}
if (ext_csd[EXT_CSD_BKOPS_EN] & 0x1) {
puts("Background operations already enabled\n");
return 0;
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_EN, 1);
if (err) {
puts("Failed to enable manual background operations\n");
return err;
}
puts("Enabled manual background operations\n");
return 0;
}
#endif