u-boot/arch/arm/cpu/armv7/omap-common/emif-common.c
Tom Rini f5af0827f2 arm: omap-common: Guard some parts of the code with CONFIG_OMAP44XX/OMAP54XX
On OMAP4 platforms that also need to calculate their DDR settings we are
now getting very close to the linker limit size.  Since OMAP44XX is only
seen with LPDDR2, remove some run time tests for LPDDR2 or DDR3 as we
will know that we don't have it for OMAP44XX.

Cc: Nishanth Menon <nm@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
2016-03-16 15:03:48 -04:00

1488 lines
41 KiB
C

/*
* EMIF programming
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/emif.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/omap_common.h>
#include <asm/utils.h>
#include <linux/compiler.h>
static int emif1_enabled = -1, emif2_enabled = -1;
void set_lpmode_selfrefresh(u32 base)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 reg;
reg = readl(&emif->emif_pwr_mgmt_ctrl);
reg &= ~EMIF_REG_LP_MODE_MASK;
reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
reg &= ~EMIF_REG_SR_TIM_MASK;
writel(reg, &emif->emif_pwr_mgmt_ctrl);
/* dummy read for the new SR_TIM to be loaded */
readl(&emif->emif_pwr_mgmt_ctrl);
}
void force_emif_self_refresh()
{
set_lpmode_selfrefresh(EMIF1_BASE);
set_lpmode_selfrefresh(EMIF2_BASE);
}
inline u32 emif_num(u32 base)
{
if (base == EMIF1_BASE)
return 1;
else if (base == EMIF2_BASE)
return 2;
else
return 0;
}
static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
{
u32 mr;
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
mr_addr |= cs << EMIF_REG_CS_SHIFT;
writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
if (omap_revision() == OMAP4430_ES2_0)
mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
else
mr = readl(&emif->emif_lpddr2_mode_reg_data);
debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
cs, mr_addr, mr);
if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
((mr & 0xff000000) >> 24) == (mr & 0xff))
return mr & 0xff;
else
return mr;
}
static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
mr_addr |= cs << EMIF_REG_CS_SHIFT;
writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
}
void emif_reset_phy(u32 base)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 iodft;
iodft = readl(&emif->emif_iodft_tlgc);
iodft |= EMIF_REG_RESET_PHY_MASK;
writel(iodft, &emif->emif_iodft_tlgc);
}
static void do_lpddr2_init(u32 base, u32 cs)
{
u32 mr_addr;
const struct lpddr2_mr_regs *mr_regs;
get_lpddr2_mr_regs(&mr_regs);
/* Wait till device auto initialization is complete */
while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
;
set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
/*
* tZQINIT = 1 us
* Enough loops assuming a maximum of 2GHz
*/
sdelay(2000);
set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
/*
* Enable refresh along with writing MR2
* Encoding of RL in MR2 is (RL - 2)
*/
mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
set_mr(base, cs, mr_addr, mr_regs->mr2);
if (mr_regs->mr3 > 0)
set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
}
static void lpddr2_init(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
/* Not NVM */
clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
/*
* Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
* when EMIF_SDRAM_CONFIG register is written
*/
setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
/*
* Set the SDRAM_CONFIG and PHY_CTRL for the
* un-locked frequency & default RL
*/
writel(regs->sdram_config_init, &emif->emif_sdram_config);
writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
do_ext_phy_settings(base, regs);
do_lpddr2_init(base, CS0);
if (regs->sdram_config & EMIF_REG_EBANK_MASK)
do_lpddr2_init(base, CS1);
writel(regs->sdram_config, &emif->emif_sdram_config);
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
/* Enable refresh now */
clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
}
__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
{
}
void emif_update_timings(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
if (!is_dra7xx())
writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
else
writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
if (omap_revision() == OMAP4430_ES1_0) {
/* ES1 bug EMIF should be in force idle during freq_update */
writel(0, &emif->emif_pwr_mgmt_ctrl);
} else {
writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
}
writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
writel(regs->zq_config, &emif->emif_zq_config);
writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
&emif->emif_l3_config);
} else if (omap_revision() >= OMAP4460_ES1_0) {
writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
&emif->emif_l3_config);
} else {
writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
&emif->emif_l3_config);
}
}
#ifndef CONFIG_OMAP44XX
static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
/* keep sdram in self-refresh */
writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
__udelay(130);
/*
* Set invert_clkout (if activated)--DDR_PHYCTRL_1
* Invert clock adds an additional half cycle delay on the
* command interface. The additional half cycle, is usually
* meant to enable leveling in the situation that DQS is later
* than CK on the board.It also helps provide some additional
* margin for leveling.
*/
writel(regs->emif_ddr_phy_ctlr_1,
&emif->emif_ddr_phy_ctrl_1);
writel(regs->emif_ddr_phy_ctlr_1,
&emif->emif_ddr_phy_ctrl_1_shdw);
__udelay(130);
writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
/* Launch Full leveling */
writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
/* Wait till full leveling is complete */
readl(&emif->emif_rd_wr_lvl_ctl);
__udelay(130);
/* Read data eye leveling no of samples */
config_data_eye_leveling_samples(base);
/*
* Launch 8 incremental WR_LVL- to compensate for
* PHY limitation.
*/
writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
&emif->emif_rd_wr_lvl_ctl);
__udelay(130);
/* Launch Incremental leveling */
writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
__udelay(130);
}
static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
u32 reg, i, phy;
emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
phy = readl(&emif->emif_ddr_phy_ctrl_1);
/* Update PHY_REG_RDDQS_RATIO */
emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
reg = readl(emif_phy_status++);
writel(reg, emif_ext_phy_ctrl_reg++);
writel(reg, emif_ext_phy_ctrl_reg++);
}
/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
reg = readl(emif_phy_status++);
writel(reg, emif_ext_phy_ctrl_reg++);
writel(reg, emif_ext_phy_ctrl_reg++);
}
/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
reg = readl(emif_phy_status++);
writel(reg, emif_ext_phy_ctrl_reg++);
writel(reg, emif_ext_phy_ctrl_reg++);
}
/* Disable Leveling */
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
}
static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
/* Clear Error Status */
clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
/* Disable refreshed before leveling */
clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
EMIF_REG_INITREF_DIS_MASK);
/* Start Full leveling */
writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
__udelay(300);
/* Check for leveling timeout */
if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
printf("Leveling timeout on EMIF%d\n", emif_num(base));
return;
}
/* Enable refreshes after leveling */
clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
debug("HW leveling success\n");
/*
* Update slave ratios in EXT_PHY_CTRLx registers
* as per HW leveling output
*/
update_hwleveling_output(base, regs);
}
static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
if (warm_reset()) {
emif_reset_phy(base);
writel(0x0, &emif->emif_pwr_mgmt_ctrl);
}
do_ext_phy_settings(base, regs);
writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
&emif->emif_sdram_ref_ctrl);
/* Update timing registers */
writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
writel(regs->zq_config, &emif->emif_zq_config);
writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
writel(regs->sdram_config_init, &emif->emif_sdram_config);
__udelay(1000);
writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
dra7_ddr3_leveling(base, regs);
}
static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
writel(regs->sdram_config_init, &emif->emif_sdram_config);
/*
* Set SDRAM_CONFIG and PHY control registers to locked frequency
* and RL =7. As the default values of the Mode Registers are not
* defined, contents of mode Registers must be fully initialized.
* H/W takes care of this initialization
*/
writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
/* Update timing registers */
writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
writel(regs->sdram_config_init, &emif->emif_sdram_config);
do_ext_phy_settings(base, regs);
writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
omap5_ddr3_leveling(base, regs);
}
static void ddr3_init(u32 base, const struct emif_regs *regs)
{
if (is_omap54xx())
omap5_ddr3_init(base, regs);
else
dra7_ddr3_init(base, regs);
}
#endif
#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
/*
* Organization and refresh requirements for LPDDR2 devices of different
* types and densities. Derived from JESD209-2 section 2.4
*/
const struct lpddr2_addressing addressing_table[] = {
/* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
};
static const u32 lpddr2_density_2_size_in_mbytes[] = {
8, /* 64Mb */
16, /* 128Mb */
32, /* 256Mb */
64, /* 512Mb */
128, /* 1Gb */
256, /* 2Gb */
512, /* 4Gb */
1024, /* 8Gb */
2048, /* 16Gb */
4096 /* 32Gb */
};
/*
* Calculate the period of DDR clock from frequency value and set the
* denominator and numerator in global variables for easy access later
*/
static void set_ddr_clk_period(u32 freq)
{
/*
* period = 1/freq
* period_in_ns = 10^9/freq
*/
*T_num = 1000000000;
*T_den = freq;
cancel_out(T_num, T_den, 200);
}
/*
* Convert time in nano seconds to number of cycles of DDR clock
*/
static inline u32 ns_2_cycles(u32 ns)
{
return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
}
/*
* ns_2_cycles with the difference that the time passed is 2 times the actual
* value(to avoid fractions). The cycles returned is for the original value of
* the timing parameter
*/
static inline u32 ns_x2_2_cycles(u32 ns)
{
return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
}
/*
* Find addressing table index based on the device's type(S2 or S4) and
* density
*/
s8 addressing_table_index(u8 type, u8 density, u8 width)
{
u8 index;
if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
return -1;
/*
* Look at the way ADDR_TABLE_INDEX* values have been defined
* in emif.h compared to LPDDR2_DENSITY_* values
* The table is layed out in the increasing order of density
* (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
* at the end
*/
if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
index = ADDR_TABLE_INDEX1GS2;
else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
index = ADDR_TABLE_INDEX2GS2;
else
index = density;
debug("emif: addressing table index %d\n", index);
return index;
}
/*
* Find the the right timing table from the array of timing
* tables of the device using DDR clock frequency
*/
static const struct lpddr2_ac_timings *get_timings_table(const struct
lpddr2_ac_timings const *const *device_timings,
u32 freq)
{
u32 i, temp, freq_nearest;
const struct lpddr2_ac_timings *timings = 0;
emif_assert(freq <= MAX_LPDDR2_FREQ);
emif_assert(device_timings);
/*
* Start with the maximum allowed frequency - that is always safe
*/
freq_nearest = MAX_LPDDR2_FREQ;
/*
* Find the timings table that has the max frequency value:
* i. Above or equal to the DDR frequency - safe
* ii. The lowest that satisfies condition (i) - optimal
*/
for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
temp = device_timings[i]->max_freq;
if ((temp >= freq) && (temp <= freq_nearest)) {
freq_nearest = temp;
timings = device_timings[i];
}
}
debug("emif: timings table: %d\n", freq_nearest);
return timings;
}
/*
* Finds the value of emif_sdram_config_reg
* All parameters are programmed based on the device on CS0.
* If there is a device on CS1, it will be same as that on CS0 or
* it will be NVM. We don't support NVM yet.
* If cs1_device pointer is NULL it is assumed that there is no device
* on CS1
*/
static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
const struct lpddr2_device_details *cs1_device,
const struct lpddr2_addressing *addressing,
u8 RL)
{
u32 config_reg = 0;
config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
EMIF_REG_IBANK_POS_SHIFT;
config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
config_reg |= RL << EMIF_REG_CL_SHIFT;
config_reg |= addressing->row_sz[cs0_device->io_width] <<
EMIF_REG_ROWSIZE_SHIFT;
config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
EMIF_REG_EBANK_SHIFT;
config_reg |= addressing->col_sz[cs0_device->io_width] <<
EMIF_REG_PAGESIZE_SHIFT;
return config_reg;
}
static u32 get_sdram_ref_ctrl(u32 freq,
const struct lpddr2_addressing *addressing)
{
u32 ref_ctrl = 0, val = 0, freq_khz;
freq_khz = freq / 1000;
/*
* refresh rate to be set is 'tREFI * freq in MHz
* division by 10000 to account for khz and x10 in t_REFI_us_x10
*/
val = addressing->t_REFI_us_x10 * freq_khz / 10000;
ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
return ref_ctrl;
}
static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing)
{
u32 tim1 = 0, val = 0;
val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
tim1 |= val << EMIF_REG_T_WTR_SHIFT;
if (addressing->num_banks == BANKS8)
val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
(4 * (*T_num)) - 1;
else
val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
tim1 |= val << EMIF_REG_T_RRD_SHIFT;
val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
tim1 |= val << EMIF_REG_T_RC_SHIFT;
val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
tim1 |= val << EMIF_REG_T_RAS_SHIFT;
val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
tim1 |= val << EMIF_REG_T_WR_SHIFT;
val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
tim1 |= val << EMIF_REG_T_RCD_SHIFT;
val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
tim1 |= val << EMIF_REG_T_RP_SHIFT;
return tim1;
}
static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
const struct lpddr2_min_tck *min_tck)
{
u32 tim2 = 0, val = 0;
val = max(min_tck->tCKE, timings->tCKE) - 1;
tim2 |= val << EMIF_REG_T_CKE_SHIFT;
val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
tim2 |= val << EMIF_REG_T_RTP_SHIFT;
/*
* tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
* same value
*/
val = ns_2_cycles(timings->tXSR) - 1;
tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
tim2 |= val << EMIF_REG_T_XP_SHIFT;
return tim2;
}
static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing)
{
u32 tim3 = 0, val = 0;
val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
val = ns_2_cycles(timings->tRFCab) - 1;
tim3 |= val << EMIF_REG_T_RFC_SHIFT;
val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
val = ns_2_cycles(timings->tZQCS) - 1;
tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
return tim3;
}
static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
const struct lpddr2_addressing *addressing,
u8 volt_ramp)
{
u32 zq = 0, val = 0;
if (volt_ramp)
val =
EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
addressing->t_REFI_us_x10;
else
val =
EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
addressing->t_REFI_us_x10;
zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
/*
* Assuming that two chipselects have a single calibration resistor
* If there are indeed two calibration resistors, then this flag should
* be enabled to take advantage of dual calibration feature.
* This data should ideally come from board files. But considering
* that none of the boards today have calibration resistors per CS,
* it would be an unnecessary overhead.
*/
zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
return zq;
}
static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
const struct lpddr2_addressing *addressing,
u8 is_derated)
{
u32 alert = 0, interval;
interval =
TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
if (is_derated)
interval *= 4;
alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
return alert;
}
static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
{
u32 idle = 0, val = 0;
if (volt_ramp)
val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
else
/*Maximum value in normal conditions - suggested by hw team */
val = 0x1FF;
idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
return idle;
}
static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
{
u32 phy = 0, val = 0;
phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
if (freq <= 100000000)
val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
else if (freq <= 200000000)
val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
else
val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
/* Other fields are constant magic values. Hardcode them together */
phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
return phy;
}
static u32 get_emif_mem_size(u32 base)
{
u32 size_mbytes = 0, temp;
struct emif_device_details dev_details;
struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
u32 emif_nr = emif_num(base);
emif_reset_phy(base);
dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
&cs0_dev_details);
dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
&cs1_dev_details);
emif_reset_phy(base);
if (dev_details.cs0_device_details) {
temp = dev_details.cs0_device_details->density;
size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
}
if (dev_details.cs1_device_details) {
temp = dev_details.cs1_device_details->density;
size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
}
/* convert to bytes */
return size_mbytes << 20;
}
/* Gets the encoding corresponding to a given DMM section size */
u32 get_dmm_section_size_map(u32 section_size)
{
/*
* Section size mapping:
* 0x0: 16-MiB section
* 0x1: 32-MiB section
* 0x2: 64-MiB section
* 0x3: 128-MiB section
* 0x4: 256-MiB section
* 0x5: 512-MiB section
* 0x6: 1-GiB section
* 0x7: 2-GiB section
*/
section_size >>= 24; /* divide by 16 MB */
return log_2_n_round_down(section_size);
}
static void emif_calculate_regs(
const struct emif_device_details *emif_dev_details,
u32 freq, struct emif_regs *regs)
{
u32 temp, sys_freq;
const struct lpddr2_addressing *addressing;
const struct lpddr2_ac_timings *timings;
const struct lpddr2_min_tck *min_tck;
const struct lpddr2_device_details *cs0_dev_details =
emif_dev_details->cs0_device_details;
const struct lpddr2_device_details *cs1_dev_details =
emif_dev_details->cs1_device_details;
const struct lpddr2_device_timings *cs0_dev_timings =
emif_dev_details->cs0_device_timings;
emif_assert(emif_dev_details);
emif_assert(regs);
/*
* You can not have a device on CS1 without one on CS0
* So configuring EMIF without a device on CS0 doesn't
* make sense
*/
emif_assert(cs0_dev_details);
emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
/*
* If there is a device on CS1 it should be same type as CS0
* (or NVM. But NVM is not supported in this driver yet)
*/
emif_assert((cs1_dev_details == NULL) ||
(cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
(cs0_dev_details->type == cs1_dev_details->type));
emif_assert(freq <= MAX_LPDDR2_FREQ);
set_ddr_clk_period(freq);
/*
* The device on CS0 is used for all timing calculations
* There is only one set of registers for timings per EMIF. So, if the
* second CS(CS1) has a device, it should have the same timings as the
* device on CS0
*/
timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
emif_assert(timings);
min_tck = cs0_dev_timings->min_tck;
temp = addressing_table_index(cs0_dev_details->type,
cs0_dev_details->density,
cs0_dev_details->io_width);
emif_assert((temp >= 0));
addressing = &(addressing_table[temp]);
emif_assert(addressing);
sys_freq = get_sys_clk_freq();
regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
cs1_dev_details,
addressing, RL_BOOT);
regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
cs1_dev_details,
addressing, RL_FINAL);
regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
regs->temp_alert_config =
get_temp_alert_config(cs1_dev_details, addressing, 0);
regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
LPDDR2_VOLTAGE_STABLE);
regs->emif_ddr_phy_ctlr_1_init =
get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
regs->emif_ddr_phy_ctlr_1 =
get_ddr_phy_ctrl_1(freq, RL_FINAL);
regs->freq = freq;
print_timing_reg(regs->sdram_config_init);
print_timing_reg(regs->sdram_config);
print_timing_reg(regs->ref_ctrl);
print_timing_reg(regs->sdram_tim1);
print_timing_reg(regs->sdram_tim2);
print_timing_reg(regs->sdram_tim3);
print_timing_reg(regs->read_idle_ctrl);
print_timing_reg(regs->temp_alert_config);
print_timing_reg(regs->zq_config);
print_timing_reg(regs->emif_ddr_phy_ctlr_1);
print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
}
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
const char *get_lpddr2_type(u8 type_id)
{
switch (type_id) {
case LPDDR2_TYPE_S4:
return "LPDDR2-S4";
case LPDDR2_TYPE_S2:
return "LPDDR2-S2";
default:
return NULL;
}
}
const char *get_lpddr2_io_width(u8 width_id)
{
switch (width_id) {
case LPDDR2_IO_WIDTH_8:
return "x8";
case LPDDR2_IO_WIDTH_16:
return "x16";
case LPDDR2_IO_WIDTH_32:
return "x32";
default:
return NULL;
}
}
const char *get_lpddr2_manufacturer(u32 manufacturer)
{
switch (manufacturer) {
case LPDDR2_MANUFACTURER_SAMSUNG:
return "Samsung";
case LPDDR2_MANUFACTURER_QIMONDA:
return "Qimonda";
case LPDDR2_MANUFACTURER_ELPIDA:
return "Elpida";
case LPDDR2_MANUFACTURER_ETRON:
return "Etron";
case LPDDR2_MANUFACTURER_NANYA:
return "Nanya";
case LPDDR2_MANUFACTURER_HYNIX:
return "Hynix";
case LPDDR2_MANUFACTURER_MOSEL:
return "Mosel";
case LPDDR2_MANUFACTURER_WINBOND:
return "Winbond";
case LPDDR2_MANUFACTURER_ESMT:
return "ESMT";
case LPDDR2_MANUFACTURER_SPANSION:
return "Spansion";
case LPDDR2_MANUFACTURER_SST:
return "SST";
case LPDDR2_MANUFACTURER_ZMOS:
return "ZMOS";
case LPDDR2_MANUFACTURER_INTEL:
return "Intel";
case LPDDR2_MANUFACTURER_NUMONYX:
return "Numonyx";
case LPDDR2_MANUFACTURER_MICRON:
return "Micron";
default:
return NULL;
}
}
static void display_sdram_details(u32 emif_nr, u32 cs,
struct lpddr2_device_details *device)
{
const char *mfg_str;
const char *type_str;
char density_str[10];
u32 density;
debug("EMIF%d CS%d\t", emif_nr, cs);
if (!device) {
debug("None\n");
return;
}
mfg_str = get_lpddr2_manufacturer(device->manufacturer);
type_str = get_lpddr2_type(device->type);
density = lpddr2_density_2_size_in_mbytes[device->density];
if ((density / 1024 * 1024) == density) {
density /= 1024;
sprintf(density_str, "%d GB", density);
} else
sprintf(density_str, "%d MB", density);
if (mfg_str && type_str)
debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
}
static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
struct lpddr2_device_details *lpddr2_device)
{
u32 mr = 0, temp;
mr = get_mr(base, cs, LPDDR2_MR0);
if (mr > 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
if (temp) {
/* Not SDRAM */
return 0;
}
temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
if (temp) {
/* DNV supported - But DNV is only supported for NVM */
return 0;
}
mr = get_mr(base, cs, LPDDR2_MR4);
if (mr > 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
mr = get_mr(base, cs, LPDDR2_MR5);
if (mr > 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
if (!get_lpddr2_manufacturer(mr)) {
/* Manufacturer not identified */
return 0;
}
lpddr2_device->manufacturer = mr;
mr = get_mr(base, cs, LPDDR2_MR6);
if (mr >= 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
mr = get_mr(base, cs, LPDDR2_MR7);
if (mr >= 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
mr = get_mr(base, cs, LPDDR2_MR8);
if (mr >= 0xFF) {
/* Mode register value bigger than 8 bit */
return 0;
}
temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
if (!get_lpddr2_type(temp)) {
/* Not SDRAM */
return 0;
}
lpddr2_device->type = temp;
temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
if (temp > LPDDR2_DENSITY_32Gb) {
/* Density not supported */
return 0;
}
lpddr2_device->density = temp;
temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
if (!get_lpddr2_io_width(temp)) {
/* IO width unsupported value */
return 0;
}
lpddr2_device->io_width = temp;
/*
* If all the above tests pass we should
* have a device on this chip-select
*/
return 1;
}
struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
struct lpddr2_device_details *lpddr2_dev_details)
{
u32 phy;
u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
if (!lpddr2_dev_details)
return NULL;
/* Do the minimum init for mode register accesses */
if (!(running_from_sdram() || warm_reset())) {
phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
writel(phy, &emif->emif_ddr_phy_ctrl_1);
}
if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
return NULL;
display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
return lpddr2_dev_details;
}
#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
static void do_sdram_init(u32 base)
{
const struct emif_regs *regs;
u32 in_sdram, emif_nr;
debug(">>do_sdram_init() %x\n", base);
in_sdram = running_from_sdram();
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
emif_get_reg_dump(emif_nr, &regs);
if (!regs) {
debug("EMIF: reg dump not provided\n");
return;
}
#else
/*
* The user has not provided the register values. We need to
* calculate it based on the timings and the DDR frequency
*/
struct emif_device_details dev_details;
struct emif_regs calculated_regs;
/*
* Get device details:
* - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
* - Obtained from user otherwise
*/
struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
emif_reset_phy(base);
dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
&cs0_dev_details);
dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
&cs1_dev_details);
emif_reset_phy(base);
/* Return if no devices on this EMIF */
if (!dev_details.cs0_device_details &&
!dev_details.cs1_device_details) {
return;
}
/*
* Get device timings:
* - Default timings specified by JESD209-2 if
* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
* - Obtained from user otherwise
*/
emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
&dev_details.cs1_device_timings);
/* Calculate the register values */
emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
regs = &calculated_regs;
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
/*
* Initializing the DDR device can not happen from SDRAM.
* Changing the timing registers in EMIF can happen(going from one
* OPP to another)
*/
if (!in_sdram && (!warm_reset() || is_dra7xx())) {
if (emif_sdram_type(regs->sdram_config) ==
EMIF_SDRAM_TYPE_LPDDR2)
lpddr2_init(base, regs);
#ifndef CONFIG_OMAP44XX
else
ddr3_init(base, regs);
#endif
}
#ifdef CONFIG_OMAP54X
if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
set_lpmode_selfrefresh(base);
emif_reset_phy(base);
omap5_ddr3_leveling(base, regs);
}
#endif
/* Write to the shadow registers */
emif_update_timings(base, regs);
debug("<<do_sdram_init() %x\n", base);
}
void emif_post_init_config(u32 base)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 omap_rev = omap_revision();
/* reset phy on ES2.0 */
if (omap_rev == OMAP4430_ES2_0)
emif_reset_phy(base);
/* Put EMIF back in smart idle on ES1.0 */
if (omap_rev == OMAP4430_ES1_0)
writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
}
void dmm_init(u32 base)
{
const struct dmm_lisa_map_regs *lisa_map_regs;
u32 i, section, valid;
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
emif_get_dmm_regs(&lisa_map_regs);
#else
u32 emif1_size, emif2_size, mapped_size, section_map = 0;
u32 section_cnt, sys_addr;
struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
mapped_size = 0;
section_cnt = 3;
sys_addr = CONFIG_SYS_SDRAM_BASE;
emif1_size = get_emif_mem_size(EMIF1_BASE);
emif2_size = get_emif_mem_size(EMIF2_BASE);
debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
if (!emif1_size && !emif2_size)
return;
/* symmetric interleaved section */
if (emif1_size && emif2_size) {
mapped_size = min(emif1_size, emif2_size);
section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
/* only MSB */
section_map |= (sys_addr >> 24) <<
EMIF_SYS_ADDR_SHIFT;
section_map |= get_dmm_section_size_map(mapped_size * 2)
<< EMIF_SYS_SIZE_SHIFT;
lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
emif1_size -= mapped_size;
emif2_size -= mapped_size;
sys_addr += (mapped_size * 2);
section_cnt--;
}
/*
* Single EMIF section(we can have a maximum of 1 single EMIF
* section- either EMIF1 or EMIF2 or none, but not both)
*/
if (emif1_size) {
section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
section_map |= get_dmm_section_size_map(emif1_size)
<< EMIF_SYS_SIZE_SHIFT;
/* only MSB */
section_map |= (mapped_size >> 24) <<
EMIF_SDRC_ADDR_SHIFT;
/* only MSB */
section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
section_cnt--;
}
if (emif2_size) {
section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
section_map |= get_dmm_section_size_map(emif2_size) <<
EMIF_SYS_SIZE_SHIFT;
/* only MSB */
section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
/* only MSB */
section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
section_cnt--;
}
if (section_cnt == 2) {
/* Only 1 section - either symmetric or single EMIF */
lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
lis_map_regs_calculated.dmm_lisa_map_2 = 0;
lis_map_regs_calculated.dmm_lisa_map_1 = 0;
} else {
/* 2 sections - 1 symmetric, 1 single EMIF */
lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
lis_map_regs_calculated.dmm_lisa_map_1 = 0;
}
/* TRAP for invalid TILER mappings in section 0 */
lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
if (omap_revision() >= OMAP4460_ES1_0)
lis_map_regs_calculated.is_ma_present = 1;
lisa_map_regs = &lis_map_regs_calculated;
#endif
struct dmm_lisa_map_regs *hw_lisa_map_regs =
(struct dmm_lisa_map_regs *)base;
writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
writel(lisa_map_regs->dmm_lisa_map_3,
&hw_lisa_map_regs->dmm_lisa_map_3);
writel(lisa_map_regs->dmm_lisa_map_2,
&hw_lisa_map_regs->dmm_lisa_map_2);
writel(lisa_map_regs->dmm_lisa_map_1,
&hw_lisa_map_regs->dmm_lisa_map_1);
writel(lisa_map_regs->dmm_lisa_map_0,
&hw_lisa_map_regs->dmm_lisa_map_0);
if (lisa_map_regs->is_ma_present) {
hw_lisa_map_regs =
(struct dmm_lisa_map_regs *)MA_BASE;
writel(lisa_map_regs->dmm_lisa_map_3,
&hw_lisa_map_regs->dmm_lisa_map_3);
writel(lisa_map_regs->dmm_lisa_map_2,
&hw_lisa_map_regs->dmm_lisa_map_2);
writel(lisa_map_regs->dmm_lisa_map_1,
&hw_lisa_map_regs->dmm_lisa_map_1);
writel(lisa_map_regs->dmm_lisa_map_0,
&hw_lisa_map_regs->dmm_lisa_map_0);
setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
}
/*
* EMIF should be configured only when
* memory is mapped on it. Using emif1_enabled
* and emif2_enabled variables for this.
*/
emif1_enabled = 0;
emif2_enabled = 0;
for (i = 0; i < 4; i++) {
section = __raw_readl(DMM_BASE + i*4);
valid = (section & EMIF_SDRC_MAP_MASK) >>
(EMIF_SDRC_MAP_SHIFT);
if (valid == 3) {
emif1_enabled = 1;
emif2_enabled = 1;
break;
}
if (valid == 1)
emif1_enabled = 1;
if (valid == 2)
emif2_enabled = 1;
}
}
static void do_bug0039_workaround(u32 base)
{
u32 val, i, clkctrl;
struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
const struct read_write_regs *bug_00339_regs;
u32 iterations;
u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
if (is_dra7xx())
phy_status_base++;
bug_00339_regs = get_bug_regs(&iterations);
/* Put EMIF in to idle */
clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
/* Copy the phy status registers in to phy ctrl shadow registers */
for (i = 0; i < iterations; i++) {
val = __raw_readl(phy_status_base +
bug_00339_regs[i].read_reg - 1);
__raw_writel(val, phy_ctrl_base +
((bug_00339_regs[i].write_reg - 1) << 1));
__raw_writel(val, phy_ctrl_base +
(bug_00339_regs[i].write_reg << 1) - 1);
}
/* Disable leveling */
writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
__raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
}
/*
* SDRAM initialization:
* SDRAM initialization has two parts:
* 1. Configuring the SDRAM device
* 2. Update the AC timings related parameters in the EMIF module
* (1) should be done only once and should not be done while we are
* running from SDRAM.
* (2) can and should be done more than once if OPP changes.
* Particularly, this may be needed when we boot without SPL and
* and using Configuration Header(CH). ROM code supports only at 50% OPP
* at boot (low power boot). So u-boot has to switch to OPP100 and update
* the frequency. So,
* Doing (1) and (2) makes sense - first time initialization
* Doing (2) and not (1) makes sense - OPP change (when using CH)
* Doing (1) and not (2) doen't make sense
* See do_sdram_init() for the details
*/
void sdram_init(void)
{
u32 in_sdram, size_prog, size_detect;
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
debug(">>sdram_init()\n");
if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
return;
in_sdram = running_from_sdram();
debug("in_sdram = %d\n", in_sdram);
if (!in_sdram) {
if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
bypass_dpll((*prcm)->cm_clkmode_dpll_core);
else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
}
if (!in_sdram)
dmm_init(DMM_BASE);
if (emif1_enabled)
do_sdram_init(EMIF1_BASE);
if (emif2_enabled)
do_sdram_init(EMIF2_BASE);
if (!(in_sdram || warm_reset())) {
if (emif1_enabled)
emif_post_init_config(EMIF1_BASE);
if (emif2_enabled)
emif_post_init_config(EMIF2_BASE);
}
/* for the shadow registers to take effect */
if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
freq_update_core();
/* Do some testing after the init */
if (!in_sdram) {
size_prog = omap_sdram_size();
size_prog = log_2_n_round_down(size_prog);
size_prog = (1 << size_prog);
size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
size_prog);
/* Compare with the size programmed */
if (size_detect != size_prog) {
printf("SDRAM: identified size not same as expected"
" size identified: %x expected: %x\n",
size_detect,
size_prog);
} else
debug("get_ram_size() successful");
}
if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
(!in_sdram && !warm_reset()) && (!is_dra7xx())) {
if (emif1_enabled)
do_bug0039_workaround(EMIF1_BASE);
if (emif2_enabled)
do_bug0039_workaround(EMIF2_BASE);
}
debug("<<sdram_init()\n");
}