u-boot/arch/arm/mach-imx/imx8/cpu.c
Ye Li e8cd1f60d9 imx: imx8: bootaux: Add i.MX8 M4 boot support
1. Implement bootaux for the M4 boot on i.MX8QM and QXP. Users need to download
   M4 image to any DDR address first. Then use the
   "bootaux <M4 download DDR address> [M4 core id]" to boot CM4_0
   or CM4_1, the default core id is 0 for CM4_0.

   Since current M4 only supports running in TCM. The bootaux will copy
   the M4 image from DDR to its TCML.

2. Implment bootaux for HIFI on QXP
   command: bootaux 0x81000000 1

Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2023-07-13 11:29:40 +02:00

850 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018, 2021 NXP
*/
#include <common.h>
#include <clk.h>
#include <cpu.h>
#include <cpu_func.h>
#include <dm.h>
#include <event.h>
#include <init.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <spl.h>
#include <thermal.h>
#include <firmware/imx/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/setup.h>
#include <asm/mach-imx/boot_mode.h>
#include <power-domain.h>
#include <elf.h>
#include <spl.h>
DECLARE_GLOBAL_DATA_PTR;
#define BT_PASSOVER_TAG 0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
struct pass_over_info_t *p =
(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
if (p->barker != BT_PASSOVER_TAG ||
p->len != sizeof(struct pass_over_info_t))
return NULL;
return p;
}
int arch_cpu_init(void)
{
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_RECOVER_DATA_SECTION)
spl_save_restore_data();
#endif
#ifdef CONFIG_SPL_BUILD
struct pass_over_info_t *pass_over;
if (is_soc_rev(CHIP_REV_A)) {
pass_over = get_pass_over_info();
if (pass_over && pass_over->g_ap_mu == 0) {
/*
* When ap_mu is 0, means the U-Boot booted
* from first container
*/
sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
}
}
#endif
return 0;
}
static int imx8_init_mu(void *ctx, struct event *event)
{
struct udevice *devp;
int node, ret;
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
if (ret) {
printf("could not get scu %d\n", ret);
return ret;
}
if (is_imx8qm()) {
ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
SC_PM_PW_MODE_ON);
if (ret)
return ret;
}
return 0;
}
EVENT_SPY(EVT_DM_POST_INIT_F, imx8_init_mu);
#if defined(CONFIG_ARCH_MISC_INIT)
int arch_misc_init(void)
{
if (IS_ENABLED(CONFIG_FSL_CAAM)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(caam_jr), &dev);
if (ret)
printf("Failed to initialize caam_jr: %d\n", ret);
}
return 0;
}
#endif
#ifdef CONFIG_IMX_BOOTAUX
#ifdef CONFIG_IMX8QM
int arch_auxiliary_core_up(u32 core_id, ulong boot_private_data)
{
sc_rsrc_t core_rsrc, mu_rsrc;
sc_faddr_t tcml_addr;
u32 tcml_size = SZ_128K;
ulong addr;
switch (core_id) {
case 0:
core_rsrc = SC_R_M4_0_PID0;
tcml_addr = 0x34FE0000;
mu_rsrc = SC_R_M4_0_MU_1A;
break;
case 1:
core_rsrc = SC_R_M4_1_PID0;
tcml_addr = 0x38FE0000;
mu_rsrc = SC_R_M4_1_MU_1A;
break;
default:
printf("Not support this core boot up, ID:%u\n", core_id);
return -EINVAL;
}
addr = (sc_faddr_t)boot_private_data;
if (addr >= tcml_addr && addr <= tcml_addr + tcml_size) {
printf("Wrong image address 0x%lx, should not in TCML\n",
addr);
return -EINVAL;
}
printf("Power on M4 and MU\n");
if (sc_pm_set_resource_power_mode(-1, core_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
return -EIO;
if (sc_pm_set_resource_power_mode(-1, mu_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
return -EIO;
printf("Copy M4 image from 0x%lx to TCML 0x%lx\n", addr, (ulong)tcml_addr);
if (addr != tcml_addr)
memcpy((void *)tcml_addr, (void *)addr, tcml_size);
printf("Start M4 %u\n", core_id);
if (sc_pm_cpu_start(-1, core_rsrc, true, tcml_addr) != SC_ERR_NONE)
return -EIO;
printf("bootaux complete\n");
return 0;
}
#endif
#ifdef CONFIG_IMX8QXP
int arch_auxiliary_core_up(u32 core_id, ulong boot_private_data)
{
sc_rsrc_t core_rsrc, mu_rsrc = SC_R_NONE;
sc_faddr_t aux_core_ram;
u32 size;
ulong addr;
switch (core_id) {
case 0:
core_rsrc = SC_R_M4_0_PID0;
aux_core_ram = 0x34FE0000;
mu_rsrc = SC_R_M4_0_MU_1A;
size = SZ_128K;
break;
case 1:
core_rsrc = SC_R_DSP;
aux_core_ram = 0x596f8000;
size = SZ_2K;
break;
default:
printf("Not support this core boot up, ID:%u\n", core_id);
return -EINVAL;
}
addr = (sc_faddr_t)boot_private_data;
if (addr >= aux_core_ram && addr <= aux_core_ram + size) {
printf("Wrong image address 0x%lx, should not in aux core ram\n",
addr);
return -EINVAL;
}
printf("Power on aux core %d\n", core_id);
if (sc_pm_set_resource_power_mode(-1, core_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
return -EIO;
if (mu_rsrc != SC_R_NONE) {
if (sc_pm_set_resource_power_mode(-1, mu_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
return -EIO;
}
if (core_id == 1) {
struct power_domain pd;
if (sc_pm_clock_enable(-1, core_rsrc, SC_PM_CLK_PER, true, false) != SC_ERR_NONE) {
printf("Error enable clock\n");
return -EIO;
}
if (!power_domain_lookup_name("audio_sai0", &pd)) {
if (power_domain_on(&pd)) {
printf("Error power on SAI0\n");
return -EIO;
}
}
if (!power_domain_lookup_name("audio_ocram", &pd)) {
if (power_domain_on(&pd)) {
printf("Error power on HIFI RAM\n");
return -EIO;
}
}
}
printf("Copy image from 0x%lx to 0x%lx\n", addr, (ulong)aux_core_ram);
if (core_id == 0) {
/* M4 use bin file */
memcpy((void *)aux_core_ram, (void *)addr, size);
} else {
/* HIFI use elf file */
if (!valid_elf_image(addr))
return -1;
addr = load_elf_image_shdr(addr);
}
printf("Start %s\n", core_id == 0 ? "M4" : "HIFI");
if (sc_pm_cpu_start(-1, core_rsrc, true, aux_core_ram) != SC_ERR_NONE)
return -EIO;
printf("bootaux complete\n");
return 0;
}
#endif
int arch_auxiliary_core_check_up(u32 core_id)
{
sc_rsrc_t core_rsrc;
sc_pm_power_mode_t power_mode;
switch (core_id) {
case 0:
core_rsrc = SC_R_M4_0_PID0;
break;
#ifdef CONFIG_IMX8QM
case 1:
core_rsrc = SC_R_M4_1_PID0;
break;
#endif
default:
printf("Not support this core, ID:%u\n", core_id);
return 0;
}
if (sc_pm_get_resource_power_mode(-1, core_rsrc, &power_mode) != SC_ERR_NONE)
return 0;
if (power_mode != SC_PM_PW_MODE_OFF)
return 1;
return 0;
}
#endif
int print_bootinfo(void)
{
enum boot_device bt_dev = get_boot_device();
puts("Boot: ");
switch (bt_dev) {
case SD1_BOOT:
puts("SD0\n");
break;
case SD2_BOOT:
puts("SD1\n");
break;
case SD3_BOOT:
puts("SD2\n");
break;
case MMC1_BOOT:
puts("MMC0\n");
break;
case MMC2_BOOT:
puts("MMC1\n");
break;
case MMC3_BOOT:
puts("MMC2\n");
break;
case FLEXSPI_BOOT:
puts("FLEXSPI\n");
break;
case SATA_BOOT:
puts("SATA\n");
break;
case NAND_BOOT:
puts("NAND\n");
break;
case USB_BOOT:
puts("USB\n");
break;
default:
printf("Unknown device %u\n", bt_dev);
break;
}
return 0;
}
enum boot_device get_boot_device(void)
{
enum boot_device boot_dev = SD1_BOOT;
sc_rsrc_t dev_rsrc;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
boot_dev = MMC1_BOOT;
break;
case SC_R_SDHC_1:
boot_dev = SD2_BOOT;
break;
case SC_R_SDHC_2:
boot_dev = SD3_BOOT;
break;
case SC_R_NAND:
boot_dev = NAND_BOOT;
break;
case SC_R_FSPI_0:
boot_dev = FLEXSPI_BOOT;
break;
case SC_R_SATA_0:
boot_dev = SATA_BOOT;
break;
case SC_R_USB_0:
case SC_R_USB_1:
case SC_R_USB_2:
boot_dev = USB_BOOT;
break;
default:
break;
}
return boot_dev;
}
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
#define FUSE_UNIQUE_ID_WORD0 16
#define FUSE_UNIQUE_ID_WORD1 17
void get_board_serial(struct tag_serialnr *serialnr)
{
int err;
u32 val1 = 0, val2 = 0;
u32 word1, word2;
if (!serialnr)
return;
word1 = FUSE_UNIQUE_ID_WORD0;
word2 = FUSE_UNIQUE_ID_WORD1;
err = sc_misc_otp_fuse_read(-1, word1, &val1);
if (err) {
printf("%s fuse %d read error: %d\n", __func__, word1, err);
return;
}
err = sc_misc_otp_fuse_read(-1, word2, &val2);
if (err) {
printf("%s fuse %d read error: %d\n", __func__, word2, err);
return;
}
serialnr->low = val1;
serialnr->high = val2;
}
#endif /*CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG*/
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return CONFIG_SYS_MMC_ENV_DEV;
}
int mmc_get_env_dev(void)
{
sc_rsrc_t dev_rsrc;
int devno;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
devno = 0;
break;
case SC_R_SDHC_1:
devno = 1;
break;
case SC_R_SDHC_2:
devno = 2;
break;
default:
/* If not boot from sd/mmc, use default value */
return CONFIG_SYS_MMC_ENV_DEV;
}
return board_mmc_get_env_dev(devno);
}
#endif
#define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */
static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
sc_faddr_t *addr_end)
{
sc_faddr_t start, end;
int ret;
bool owned;
owned = sc_rm_is_memreg_owned(-1, mr);
if (owned) {
ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
if (ret) {
printf("Memreg get info failed, %d\n", ret);
return -EINVAL;
}
debug("0x%llx -- 0x%llx\n", start, end);
*addr_start = start;
*addr_end = end;
return 0;
}
return -EINVAL;
}
__weak void board_mem_get_layout(u64 *phys_sdram_1_start,
u64 *phys_sdram_1_size,
u64 *phys_sdram_2_start,
u64 *phys_sdram_2_size)
{
*phys_sdram_1_start = PHYS_SDRAM_1;
*phys_sdram_1_size = PHYS_SDRAM_1_SIZE;
*phys_sdram_2_start = PHYS_SDRAM_2;
*phys_sdram_2_size = PHYS_SDRAM_2_SIZE;
}
phys_size_t get_effective_memsize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, start_aligned;
u64 phys_sdram_1_start, phys_sdram_1_size;
u64 phys_sdram_2_start, phys_sdram_2_size;
int err;
board_mem_get_layout(&phys_sdram_1_start, &phys_sdram_1_size,
&phys_sdram_2_start, &phys_sdram_2_size);
end1 = (sc_faddr_t)phys_sdram_1_start + phys_sdram_1_size;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start_aligned = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start_aligned > end)
continue;
/* Find the memory region runs the U-Boot */
if (start >= phys_sdram_1_start && start <= end1 &&
(start <= CONFIG_TEXT_BASE &&
end >= CONFIG_TEXT_BASE)) {
if ((end + 1) <=
((sc_faddr_t)phys_sdram_1_start +
phys_sdram_1_size))
return (end - phys_sdram_1_start + 1);
else
return phys_sdram_1_size;
}
}
}
return phys_sdram_1_size;
}
int dram_init(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
u64 phys_sdram_1_start, phys_sdram_1_size;
u64 phys_sdram_2_start, phys_sdram_2_size;
int err;
board_mem_get_layout(&phys_sdram_1_start, &phys_sdram_1_size,
&phys_sdram_2_start, &phys_sdram_2_size);
end1 = (sc_faddr_t)phys_sdram_1_start + phys_sdram_1_size;
end2 = (sc_faddr_t)phys_sdram_2_start + phys_sdram_2_size;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
if (start >= phys_sdram_1_start && start <= end1) {
if ((end + 1) <= end1)
gd->ram_size += end - start + 1;
else
gd->ram_size += end1 - start;
} else if (start >= phys_sdram_2_start &&
start <= end2) {
if ((end + 1) <= end2)
gd->ram_size += end - start + 1;
else
gd->ram_size += end2 - start;
}
}
}
/* If error, set to the default value */
if (!gd->ram_size) {
gd->ram_size = phys_sdram_1_size;
gd->ram_size += phys_sdram_2_size;
}
return 0;
}
static void dram_bank_sort(int current_bank)
{
phys_addr_t start;
phys_size_t size;
while (current_bank > 0) {
if (gd->bd->bi_dram[current_bank - 1].start >
gd->bd->bi_dram[current_bank].start) {
start = gd->bd->bi_dram[current_bank - 1].start;
size = gd->bd->bi_dram[current_bank - 1].size;
gd->bd->bi_dram[current_bank - 1].start =
gd->bd->bi_dram[current_bank].start;
gd->bd->bi_dram[current_bank - 1].size =
gd->bd->bi_dram[current_bank].size;
gd->bd->bi_dram[current_bank].start = start;
gd->bd->bi_dram[current_bank].size = size;
}
current_bank--;
}
}
int dram_init_banksize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int i = 0;
u64 phys_sdram_1_start, phys_sdram_1_size;
u64 phys_sdram_2_start, phys_sdram_2_size;
int err;
board_mem_get_layout(&phys_sdram_1_start, &phys_sdram_1_size,
&phys_sdram_2_start, &phys_sdram_2_size);
end1 = (sc_faddr_t)phys_sdram_1_start + phys_sdram_1_size;
end2 = (sc_faddr_t)phys_sdram_2_start + phys_sdram_2_size;
for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
if (start > end) /* Small memory region, no use it */
continue;
if (start >= phys_sdram_1_start && start <= end1) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end1)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end1 - start;
dram_bank_sort(i);
i++;
} else if (start >= phys_sdram_2_start && start <= end2) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end2)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end2 - start;
dram_bank_sort(i);
i++;
}
}
}
/* If error, set to the default value */
if (!i) {
gd->bd->bi_dram[0].start = phys_sdram_1_start;
gd->bd->bi_dram[0].size = phys_sdram_1_size;
gd->bd->bi_dram[1].start = phys_sdram_2_start;
gd->bd->bi_dram[1].size = phys_sdram_2_size;
}
return 0;
}
static u64 get_block_attrs(sc_faddr_t addr_start)
{
u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
u64 phys_sdram_1_start, phys_sdram_1_size;
u64 phys_sdram_2_start, phys_sdram_2_size;
board_mem_get_layout(&phys_sdram_1_start, &phys_sdram_1_size,
&phys_sdram_2_start, &phys_sdram_2_size);
if ((addr_start >= phys_sdram_1_start &&
addr_start <= ((sc_faddr_t)phys_sdram_1_start + phys_sdram_1_size)) ||
(addr_start >= phys_sdram_2_start &&
addr_start <= ((sc_faddr_t)phys_sdram_2_start + phys_sdram_2_size)))
return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
return attr;
}
static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
sc_faddr_t end1, end2;
u64 phys_sdram_1_start, phys_sdram_1_size;
u64 phys_sdram_2_start, phys_sdram_2_size;
board_mem_get_layout(&phys_sdram_1_start, &phys_sdram_1_size,
&phys_sdram_2_start, &phys_sdram_2_size);
end1 = (sc_faddr_t)phys_sdram_1_start + phys_sdram_1_size;
end2 = (sc_faddr_t)phys_sdram_2_start + phys_sdram_2_size;
if (addr_start >= phys_sdram_1_start && addr_start <= end1) {
if ((addr_end + 1) > end1)
return end1 - addr_start;
} else if (addr_start >= phys_sdram_2_start && addr_start <= end2) {
if ((addr_end + 1) > end2)
return end2 - addr_start;
}
return (addr_end - addr_start + 1);
}
#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16
static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;
void enable_caches(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end;
int err, i;
/* Create map for registers access from 0x1c000000 to 0x80000000*/
imx8_mem_map[0].virt = 0x1c000000UL;
imx8_mem_map[0].phys = 0x1c000000UL;
imx8_mem_map[0].size = 0x64000000UL;
imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
i = 1;
for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
imx8_mem_map[i].virt = start;
imx8_mem_map[i].phys = start;
imx8_mem_map[i].size = get_block_size(start, end);
imx8_mem_map[i].attrs = get_block_attrs(start);
i++;
}
}
if (i < MAX_MEM_MAP_REGIONS) {
imx8_mem_map[i].size = 0;
imx8_mem_map[i].attrs = 0;
} else {
puts("Error, need more MEM MAP REGIONS reserved\n");
icache_enable();
return;
}
for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
imx8_mem_map[i].size, imx8_mem_map[i].attrs);
}
icache_enable();
dcache_enable();
}
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
/*
* For each memory region, the max table size:
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
*/
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
#endif
#if defined(CONFIG_IMX8QM)
#define FUSE_MAC0_WORD0 452
#define FUSE_MAC0_WORD1 453
#define FUSE_MAC1_WORD0 454
#define FUSE_MAC1_WORD1 455
#elif defined(CONFIG_IMX8QXP)
#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711
#endif
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 word[2], val[2] = {};
int i, ret;
if (dev_id == 0) {
word[0] = FUSE_MAC0_WORD0;
word[1] = FUSE_MAC0_WORD1;
} else {
word[0] = FUSE_MAC1_WORD0;
word[1] = FUSE_MAC1_WORD1;
}
for (i = 0; i < 2; i++) {
ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
if (ret < 0)
goto err;
}
mac[0] = val[0];
mac[1] = val[0] >> 8;
mac[2] = val[0] >> 16;
mac[3] = val[0] >> 24;
mac[4] = val[1];
mac[5] = val[1] >> 8;
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
err:
printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}
u32 get_cpu_rev(void)
{
u32 id = 0, rev = 0;
int ret;
ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
if (ret)
return 0;
rev = (id >> 5) & 0xf;
id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */
return (id << 12) | rev;
}
void board_boot_order(u32 *spl_boot_list)
{
spl_boot_list[0] = spl_boot_device();
if (spl_boot_list[0] == BOOT_DEVICE_SPI) {
/* Check whether we own the flexspi0, if not, use NOR boot */
if (!sc_rm_is_resource_owned(-1, SC_R_FSPI_0))
spl_boot_list[0] = BOOT_DEVICE_NOR;
}
}
bool m4_parts_booted(void)
{
sc_rm_pt_t m4_parts[2];
int err;
err = sc_rm_get_resource_owner(-1, SC_R_M4_0_PID0, &m4_parts[0]);
if (err) {
printf("%s get resource [%d] owner error: %d\n", __func__,
SC_R_M4_0_PID0, err);
return false;
}
if (sc_pm_is_partition_started(-1, m4_parts[0]))
return true;
if (is_imx8qm()) {
err = sc_rm_get_resource_owner(-1, SC_R_M4_1_PID0, &m4_parts[1]);
if (err) {
printf("%s get resource [%d] owner error: %d\n",
__func__, SC_R_M4_1_PID0, err);
return false;
}
if (sc_pm_is_partition_started(-1, m4_parts[1]))
return true;
}
return false;
}