u-boot/drivers/ddr/marvell/a38x/mv_ddr4_training_leveling.c
Tony Dinh 54a08c4139 ddr: marvell: a38x: Add support for DDR4 from Marvell mv-ddr-marvell repository
This syncs drivers/ddr/marvell/a38x/ with the master branch of repository
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git

up to the commit "mv_ddr: a3700: Use the right size for memset to not overflow"
d5acc10c287e40cc2feeb28710b92e45c93c702c

This patch was created by following steps:

	1. Replace all a38x files in U-Boot tree by files from upstream github
	Marvell mv-ddr-marvell repository.

	2. Run following command to omit portions not relevant for a38x, ddr3, and ddr4:

	files=drivers/ddr/marvell/a38x/*
	unifdef -m -UMV_DDR -UMV_DDR_ATF -UCONFIG_APN806 \
		-UCONFIG_MC_STATIC -UCONFIG_MC_STATIC_PRINT -UCONFIG_PHY_STATIC \
		-UCONFIG_PHY_STATIC_PRINT -UCONFIG_CUSTOMER_BOARD_SUPPORT \
		-UCONFIG_A3700 -UA3900 -UA80X0 -UA70X0 -DCONFIG_ARMADA_38X -UCONFIG_ARMADA_39X \
		-UCONFIG_64BIT $files

	3. Manually change license to SPDX-License-Identifier
	(upstream license in  upstream github repository contains long license
	texts and U-Boot is using just SPDX-License-Identifier.

After applying this patch, a38x, ddr3, and ddr4 code in upstream Marvell github
repository and in U-Boot would be fully identical. So in future applying
above steps could be used to sync code again.

The only change in this patch are:
	1. Some fixes with include files.
	2. Some function return and basic type defines changes in
	mv_ddr_plat.c (to correct Marvell bug).
	3. Remove of dead code in newly copied files (as a result of the
	filter script stripping out everything other than a38x, dd3, and ddr4).

Reference:
    "ddr: marvell: a38x: Sync code with Marvell mv-ddr-marvell repository"
    107c3391b9

Signed-off-by: Tony Dinh <mibodhi@gmail.com>
Reviewed-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
2023-01-26 07:30:20 +01:00

441 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#if defined(CONFIG_DDR4)
#include "ddr3_init.h"
#include "mv_ddr_regs.h"
static int mv_ddr4_dynamic_pb_wl_supp(u32 dev_num, enum mv_wl_supp_mode ecc_mode);
/* compare test for ddr4 write leveling supplementary */
#define MV_DDR4_COMP_TEST_NO_RESULT 0
#define MV_DDR4_COMP_TEST_RESULT_0 1
#define MV_DDR4_XSB_COMP_PATTERNS_NUM 8
static u8 mv_ddr4_xsb_comp_test(u32 dev_num, u32 subphy_num, u32 if_id,
enum mv_wl_supp_mode ecc_mode)
{
u32 wl_invert;
u8 pb_key, bit, bit_max, word;
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 subphy_max = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
uint64_t read_pattern_64[MV_DDR4_XSB_COMP_PATTERNS_NUM] = {0};
/*
* FIXME: the pattern below is used for writing to the memory
* by the cpu. it was changed to be written through the odpg.
* for a workaround
* uint64_t pattern_test_table_64[MV_DDR4_XSB_COMP_PATTERNS_NUM] = {
* 0xffffffffffffffff,
* 0xffffffffffffffff,
* 0x0000000000000000,
* 0x0000000000000000,
* 0x0000000000000000,
* 0x0000000000000000,
* 0xffffffffffffffff,
* 0xffffffffffffffff};
*/
u32 read_pattern[MV_DDR4_XSB_COMP_PATTERNS_NUM];
/*u32 pattern_test_table[MV_DDR4_XSB_COMP_PATTERNS_NUM] = {
0xffffffff,
0xffffffff,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0xffffffff,
0xffffffff}; TODO: use pattern_table_get_word */
int i, status;
uint64_t data64;
uintptr_t addr64;
int ecc_running = 0;
u32 ecc_read_subphy_num = 0; /* FIXME: change ecc read subphy num to be configurable */
u8 bit_counter = 0;
int edge = 0;
/* write and read data */
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask)) {
status = ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
effective_cs << ODPG_DATA_CS_OFFS,
ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
if (status != MV_OK)
return status;
addr64 = (uintptr_t)pattern_table[PATTERN_TEST].start_addr;
/*
* FIXME: changed the load pattern to memory through the odpg
* this change is needed to be validate
* this change is done due to un calibrated dm at this stage
* the below code is the code for loading the pattern directly
* to the memory
*
* for (i = 0; i < MV_DDR4_XSB_COMP_PATTERNS_NUM; i++) {
* data64 = pattern_test_table_64[i];
* writeq(addr64, data64);
* addr64 += sizeof(uint64_t);
*}
* FIXME: the below code loads the pattern to the memory through the odpg
* it loads it twice to due supplementary failure, need to check it
*/
int j;
for (j = 0; j < 2; j++)
ddr3_tip_load_pattern_to_mem(dev_num, PATTERN_TEST);
} else if (MV_DDR_IS_32BIT_IN_64BIT_DRAM_MODE(tm->bus_act_mask, subphy_max)) {
status = ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
effective_cs << ODPG_DATA_CS_OFFS,
ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
if (status != MV_OK)
return status;
/*
* FIXME: changed the load pattern to memory through the odpg
* this change is needed to be validate
* this change is done due to un calibrated dm at this stage
* the below code is the code for loading the pattern directly
* to the memory
*/
int j;
for (j = 0; j < 2; j++)
ddr3_tip_load_pattern_to_mem(dev_num, PATTERN_TEST);
} else {
/*
* FIXME: changed the load pattern to memory through the odpg
* this change is needed to be validate
* this change is done due to un calibrated dm at this stage
* the below code is the code for loading the pattern directly
* to the memory
*/
int j;
for (j = 0; j < 2; j++)
ddr3_tip_load_pattern_to_mem(dev_num, PATTERN_TEST);
}
if ((ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP4) ||
(ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP3 ||
ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8)) {
/* disable ecc write mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x100);
if (status != MV_OK)
return status;
/* enable read data ecc mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x3, 0x3);
if (status != MV_OK)
return status;
/* unset training start bit */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_REG, 0x80000000, 0x80000000);
if (status != MV_OK)
return status;
ecc_running = 1;
ecc_read_subphy_num = ECC_READ_BUS_0;
}
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask)) {
status = ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
effective_cs << ODPG_DATA_CS_OFFS,
ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
if (status != MV_OK)
return status;
/*
* in case of reading the pattern read it from the address x 8
* the odpg multiply by 8 the addres to read from
*/
addr64 = ((uintptr_t)pattern_table[PATTERN_TEST].start_addr) << 3;
for (i = 0; i < MV_DDR4_XSB_COMP_PATTERNS_NUM; i++) {
data64 = readq(addr64);
addr64 += sizeof(uint64_t);
read_pattern_64[i] = data64;
}
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("xsb comp: if %d bus id %d\n", 0, subphy_num));
for (edge = 0; edge < 8; edge++)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("0x%16llx\n", (unsigned long long)read_pattern_64[edge]));
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("\n"));
} else if (MV_DDR_IS_32BIT_IN_64BIT_DRAM_MODE(tm->bus_act_mask, subphy_max)) {
status = ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
effective_cs << ODPG_DATA_CS_OFFS,
ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
if (status != MV_OK)
return status;
status = ddr3_tip_ext_read(dev_num, if_id, pattern_table[PATTERN_TEST].start_addr << 3,
1, read_pattern);
if (status != MV_OK)
return status;
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("xsb comp: if %d bus id %d\n", 0, subphy_num));
for (edge = 0; edge < 8; edge++)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("0x%16x\n", read_pattern[edge]));
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("\n"));
} else {
status = ddr3_tip_ext_read(dev_num, if_id, ((pattern_table[PATTERN_TEST].start_addr << 3) +
((SDRAM_CS_SIZE + 1) * effective_cs)), 1, read_pattern);
if (status != MV_OK)
return status;
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("xsb comp: if %d bus id %d\n", 0, subphy_num));
for (edge = 0; edge < 8; edge++)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("0x%16x\n", read_pattern[edge]));
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("\n"));
}
/* read centralization result to decide on half phase by inverse bit */
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
CTX_PHY_REG(0), &wl_invert);
if (status != MV_OK)
return status;
if ((wl_invert & 0x20) != 0)
wl_invert = 1;
else
wl_invert = 0;
/* for ecc, read from the "read" subphy (usualy subphy 0) */
if (ecc_running)
subphy_num = ecc_read_subphy_num;
/* per bit loop*/
bit_max = subphy_num * BUS_WIDTH_IN_BITS + BUS_WIDTH_IN_BITS;
for (bit = subphy_num * BUS_WIDTH_IN_BITS; bit < bit_max; bit++) {
/* get per bit pattern key (value of the same bit in the pattern) */
pb_key = 0;
for (word = 0; word < MV_DDR4_XSB_COMP_PATTERNS_NUM; word++) {
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask)) {
if ((read_pattern_64[word] & ((uint64_t)1 << bit)) != 0)
pb_key |= (1 << word);
} else {
if ((read_pattern[word] & (1 << bit)) != 0)
pb_key |= (1 << word);
}
}
/* find the key value and make decision */
switch (pb_key) {
/* case(s) for 0 */
case 0b11000011: /* nominal */
case 0b10000011: /* sample at start of UI sample at the dqvref TH */
case 0b10000111: /* sample at start of UI sample at the dqvref TH */
case 0b11000001: /* sample at start of UI sample at the dqvref TH */
case 0b11100001: /* sample at start of UI sample at the dqvref TH */
case 0b11100011: /* sample at start of UI sample at the dqvref TH */
case 0b11000111: /* sample at start of UI sample at the dqvref TH */
bit_counter++;
break;
} /* end of switch */
} /* end of per bit loop */
/* check all bits in the current subphy has met the switch condition above */
if (bit_counter == BUS_WIDTH_IN_BITS)
return MV_DDR4_COMP_TEST_RESULT_0;
else {
DEBUG_LEVELING(
DEBUG_LEVEL_INFO,
("different supplementary results (%d -> %d)\n",
MV_DDR4_COMP_TEST_NO_RESULT, MV_DDR4_COMP_TEST_RESULT_0));
return MV_DDR4_COMP_TEST_NO_RESULT;
}
}
int mv_ddr4_dynamic_wl_supp(u32 dev_num)
{
int status = MV_OK;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask) ||
DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask) ||
DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask)) {
if (DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask))
status = mv_ddr4_dynamic_pb_wl_supp(dev_num, WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP4);
else if (DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask))
status = mv_ddr4_dynamic_pb_wl_supp(dev_num, WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP3);
else /* WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8 */
status = mv_ddr4_dynamic_pb_wl_supp(dev_num, WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8);
if (status != MV_OK)
return status;
status = mv_ddr4_dynamic_pb_wl_supp(dev_num, WRITE_LEVELING_SUPP_ECC_MODE_DATA_PUPS);
} else { /* regular supplementary for data subphys in non-ecc mode */
status = mv_ddr4_dynamic_pb_wl_supp(dev_num, WRITE_LEVELING_SUPP_REG_MODE);
}
return status;
}
/* dynamic per bit write leveling supplementary */
static int mv_ddr4_dynamic_pb_wl_supp(u32 dev_num, enum mv_wl_supp_mode ecc_mode)
{
u32 if_id;
u32 subphy_start, subphy_end;
u32 subphy_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
u8 compare_result = 0;
u32 orig_phase;
u32 rd_data, wr_data = 0;
u32 flag, step;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 ecc_phy_access_id;
int status;
if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP4 ||
ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP3 ||
ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8) {
/* enable ecc write mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x100, 0x100);
if (status != MV_OK)
return status;
/* disable read data ecc mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x3);
if (status != MV_OK)
return status;
/* unset training start bit */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_REG, 0x0, 0x80000000);
if (status != MV_OK)
return status;
if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP3)
ecc_phy_access_id = ECC_PHY_ACCESS_3;
else if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP4)
ecc_phy_access_id = ECC_PHY_ACCESS_4;
else /* ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8 */
ecc_phy_access_id = ECC_PHY_ACCESS_8;
subphy_start = ecc_phy_access_id;
subphy_end = subphy_start + 1;
} else if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_DATA_PUPS) {
/* disable ecc write mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x100);
if (status != MV_OK)
return status;
/* disable ecc mode*/
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0, 0x40000);
if (status != MV_OK)
return status;
subphy_start = 0;
if (MV_DDR_IS_HALF_BUS_DRAM_MODE(tm->bus_act_mask, subphy_num))
subphy_end = (subphy_num - 1) / 2;
else
subphy_end = subphy_num - 1;
} else { /* ecc_mode == WRITE_LEVELING_SUPP_REG_MODE */
subphy_start = 0;
/* remove ecc subphy prior to algorithm's start */
subphy_end = subphy_num - 1; /* TODO: check it */
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = subphy_start; subphy_num < subphy_end; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
flag = 1;
step = 0;
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), &rd_data);
if (status != MV_OK)
return status;
orig_phase = (rd_data >> 6) & 0x7;
while (flag != 0) {
/* get decision for subphy */
compare_result = mv_ddr4_xsb_comp_test(dev_num, subphy_num, if_id, ecc_mode);
if (compare_result == MV_DDR4_COMP_TEST_RESULT_0) {
flag = 0;
} else { /* shift phase to -1 */
step++;
if (step == 1) { /* set phase (0x0[6-8]) to -2 */
if (orig_phase > 1)
wr_data = (rd_data & ~0x1c0) | ((orig_phase - 2) << 6);
else if (orig_phase == 1)
wr_data = (rd_data & ~0x1df);
if (orig_phase >= 1)
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA,
WL_PHY_REG(effective_cs), wr_data);
} else if (step == 2) { /* shift phase to +1 */
if (orig_phase <= 5) {
wr_data = (rd_data & ~0x1c0) | ((orig_phase + 2) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA,
WL_PHY_REG(effective_cs), wr_data);
}
} else if (step == 3) {
if (orig_phase <= 3) {
wr_data = (rd_data & ~0x1c0) | ((orig_phase + 4) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA,
WL_PHY_REG(effective_cs), wr_data);
}
} else { /* error */
flag = 0;
compare_result = MV_DDR4_COMP_TEST_NO_RESULT;
training_result[training_stage][if_id] = TEST_FAILED;
}
}
}
}
if ((training_result[training_stage][if_id] == NO_TEST_DONE) ||
(training_result[training_stage][if_id] == TEST_SUCCESS))
training_result[training_stage][if_id] = TEST_SUCCESS;
}
if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_DATA_PUPS) {
/* enable ecc write mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x100, 0x100);
if (status != MV_OK)
return status;
/* enable ecc mode*/
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0x40000, 0x40000);
if (status != MV_OK)
return status;
} else if (ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP4 ||
ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP3 ||
ecc_mode == WRITE_LEVELING_SUPP_ECC_MODE_ECC_PUP8) {
/* enable ecc write mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x100, 0x100);
if (status != MV_OK)
return status;
/* disable read data ecc mux */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x3);
if (status != MV_OK)
return status;
/* unset training start bit */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_REG, 0x0, 0x80000000);
if (status != MV_OK)
return status;
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, 0x1 << 16, 0x1 << 16);
if (status != MV_OK)
return status;
} else {
/* do nothing for WRITE_LEVELING_SUPP_REG_MODE */;
}
if (training_result[training_stage][0] == TEST_SUCCESS)
return MV_OK;
else
return MV_FAIL;
}
#endif /* CONFIG_DDR4 */