u-boot/arch/arm/mach-tegra/ivc.c
Stephen Warren 49626ea801 ARM: tegra: add IVC protocol implementation
IVC (Inter-VM Communication) protocol is a Tegra-specific IPC (Inter
Processor Communication) framework. Within the context of U-Boot, it is
typically used for communication between the main CPU and various
auxiliary processors. In particular, it will be used to communicate with
the BPMP (Boot and Power Management Processor) on Tegra186 in order to
manipulate clocks and reset signals.

Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
2016-07-21 09:31:30 -07:00

553 lines
15 KiB
C

/*
* Copyright (c) 2016, NVIDIA CORPORATION.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch-tegra/ivc.h>
#define TEGRA_IVC_ALIGN 64
/*
* IVC channel reset protocol.
*
* Each end uses its tx_channel.state to indicate its synchronization state.
*/
enum ivc_state {
/*
* This value is zero for backwards compatibility with services that
* assume channels to be initially zeroed. Such channels are in an
* initially valid state, but cannot be asynchronously reset, and must
* maintain a valid state at all times.
*
* The transmitting end can enter the established state from the sync or
* ack state when it observes the receiving endpoint in the ack or
* established state, indicating that has cleared the counters in our
* rx_channel.
*/
ivc_state_established = 0,
/*
* If an endpoint is observed in the sync state, the remote endpoint is
* allowed to clear the counters it owns asynchronously with respect to
* the current endpoint. Therefore, the current endpoint is no longer
* allowed to communicate.
*/
ivc_state_sync,
/*
* When the transmitting end observes the receiving end in the sync
* state, it can clear the w_count and r_count and transition to the ack
* state. If the remote endpoint observes us in the ack state, it can
* return to the established state once it has cleared its counters.
*/
ivc_state_ack
};
/*
* This structure is divided into two-cache aligned parts, the first is only
* written through the tx_channel pointer, while the second is only written
* through the rx_channel pointer. This delineates ownership of the cache lines,
* which is critical to performance and necessary in non-cache coherent
* implementations.
*/
struct tegra_ivc_channel_header {
union {
/* fields owned by the transmitting end */
struct {
uint32_t w_count;
uint32_t state;
};
uint8_t w_align[TEGRA_IVC_ALIGN];
};
union {
/* fields owned by the receiving end */
uint32_t r_count;
uint8_t r_align[TEGRA_IVC_ALIGN];
};
};
static inline void tegra_ivc_invalidate_counter(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *h,
ulong offset)
{
ulong base = ((ulong)h) + offset;
invalidate_dcache_range(base, base + TEGRA_IVC_ALIGN);
}
static inline void tegra_ivc_flush_counter(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *h,
ulong offset)
{
ulong base = ((ulong)h) + offset;
flush_dcache_range(base, base + TEGRA_IVC_ALIGN);
}
static inline ulong tegra_ivc_frame_addr(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *h,
uint32_t frame)
{
BUG_ON(frame >= ivc->nframes);
return ((ulong)h) + sizeof(struct tegra_ivc_channel_header) +
(ivc->frame_size * frame);
}
static inline void *tegra_ivc_frame_pointer(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *ch,
uint32_t frame)
{
return (void *)tegra_ivc_frame_addr(ivc, ch, frame);
}
static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *h,
unsigned frame)
{
ulong base = tegra_ivc_frame_addr(ivc, h, frame);
invalidate_dcache_range(base, base + ivc->frame_size);
}
static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *h,
unsigned frame)
{
ulong base = tegra_ivc_frame_addr(ivc, h, frame);
flush_dcache_range(base, base + ivc->frame_size);
}
static inline int tegra_ivc_channel_empty(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *ch)
{
/*
* This function performs multiple checks on the same values with
* security implications, so create snapshots with ACCESS_ONCE() to
* ensure that these checks use the same values.
*/
uint32_t w_count = ACCESS_ONCE(ch->w_count);
uint32_t r_count = ACCESS_ONCE(ch->r_count);
/*
* Perform an over-full check to prevent denial of service attacks where
* a server could be easily fooled into believing that there's an
* extremely large number of frames ready, since receivers are not
* expected to check for full or over-full conditions.
*
* Although the channel isn't empty, this is an invalid case caused by
* a potentially malicious peer, so returning empty is safer, because it
* gives the impression that the channel has gone silent.
*/
if (w_count - r_count > ivc->nframes)
return 1;
return w_count == r_count;
}
static inline int tegra_ivc_channel_full(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *ch)
{
/*
* Invalid cases where the counters indicate that the queue is over
* capacity also appear full.
*/
return (ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)) >=
ivc->nframes;
}
static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
{
ACCESS_ONCE(ivc->rx_channel->r_count) =
ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
if (ivc->r_pos == ivc->nframes - 1)
ivc->r_pos = 0;
else
ivc->r_pos++;
}
static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
{
ACCESS_ONCE(ivc->tx_channel->w_count) =
ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
if (ivc->w_pos == ivc->nframes - 1)
ivc->w_pos = 0;
else
ivc->w_pos++;
}
static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
{
ulong offset;
/*
* tx_channel->state is set locally, so it is not synchronized with
* state from the remote peer. The remote peer cannot reset its
* transmit counters until we've acknowledged its synchronization
* request, so no additional synchronization is required because an
* asynchronous transition of rx_channel->state to ivc_state_ack is not
* allowed.
*/
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
/*
* Avoid unnecessary invalidations when performing repeated accesses to
* an IVC channel by checking the old queue pointers first.
* Synchronization is only necessary when these pointers indicate empty
* or full.
*/
if (!tegra_ivc_channel_empty(ivc, ivc->rx_channel))
return 0;
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
return tegra_ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
}
static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
{
ulong offset;
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
if (!tegra_ivc_channel_full(ivc, ivc->tx_channel))
return 0;
offset = offsetof(struct tegra_ivc_channel_header, r_count);
tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
return tegra_ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
}
static inline uint32_t tegra_ivc_channel_avail_count(struct tegra_ivc *ivc,
struct tegra_ivc_channel_header *ch)
{
/*
* This function isn't expected to be used in scenarios where an
* over-full situation can lead to denial of service attacks. See the
* comment in tegra_ivc_channel_empty() for an explanation about
* special over-full considerations.
*/
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
}
int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, void **frame)
{
int result = tegra_ivc_check_read(ivc);
if (result < 0)
return result;
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
mb();
tegra_ivc_invalidate_frame(ivc, ivc->rx_channel, ivc->r_pos);
*frame = tegra_ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
return 0;
}
int tegra_ivc_read_advance(struct tegra_ivc *ivc)
{
ulong offset;
int result;
/*
* No read barriers or synchronization here: the caller is expected to
* have already observed the channel non-empty. This check is just to
* catch programming errors.
*/
result = tegra_ivc_check_read(ivc);
if (result)
return result;
tegra_ivc_advance_rx(ivc);
offset = offsetof(struct tegra_ivc_channel_header, r_count);
tegra_ivc_flush_counter(ivc, ivc->rx_channel, offset);
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
mb();
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
if (tegra_ivc_channel_avail_count(ivc, ivc->rx_channel) ==
ivc->nframes - 1)
ivc->notify(ivc);
return 0;
}
int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, void **frame)
{
int result = tegra_ivc_check_write(ivc);
if (result)
return result;
*frame = tegra_ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
return 0;
}
int tegra_ivc_write_advance(struct tegra_ivc *ivc)
{
ulong offset;
int result;
result = tegra_ivc_check_write(ivc);
if (result)
return result;
tegra_ivc_flush_frame(ivc, ivc->tx_channel, ivc->w_pos);
/*
* Order any possible stores to the frame before update of w_pos.
*/
mb();
tegra_ivc_advance_tx(ivc);
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
mb();
offset = offsetof(struct tegra_ivc_channel_header, r_count);
tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
if (tegra_ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
ivc->notify(ivc);
return 0;
}
/*
* ===============================================================
* IVC State Transition Table - see tegra_ivc_channel_notified()
* ===============================================================
*
* local remote action
* ----- ------ -----------------------------------
* SYNC EST <none>
* SYNC ACK reset counters; move to EST; notify
* SYNC SYNC reset counters; move to ACK; notify
* ACK EST move to EST; notify
* ACK ACK move to EST; notify
* ACK SYNC reset counters; move to ACK; notify
* EST EST <none>
* EST ACK <none>
* EST SYNC reset counters; move to ACK; notify
*
* ===============================================================
*/
int tegra_ivc_channel_notified(struct tegra_ivc *ivc)
{
ulong offset;
enum ivc_state peer_state;
/* Copy the receiver's state out of shared memory. */
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
peer_state = ACCESS_ONCE(ivc->rx_channel->state);
if (peer_state == ivc_state_sync) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
mb();
/*
* Reset tx_channel counters. The remote end is in the SYNC
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
mb();
/*
* Move to ACK state. We have just cleared our counters, so it
* is now safe for the remote end to start using these values.
*/
ivc->tx_channel->state = ivc_state_ack;
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_sync &&
peer_state == ivc_state_ack) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
mb();
/*
* Reset tx_channel counters. The remote end is in the ACK
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
mb();
/*
* Move to ESTABLISHED state. We know that the remote end has
* already cleared its counters, so it is safe to start
* writing/reading on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_ack) {
/*
* At this point, we have observed the peer to be in either
* the ACK or ESTABLISHED state. Next, order observation of
* peer state before storing to tx_channel.
*/
mb();
/*
* Move to ESTABLISHED state. We know that we have previously
* cleared our counters, and we know that the remote end has
* cleared its counters, so it is safe to start writing/reading
* on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else {
/*
* There is no need to handle any further action. Either the
* channel is already fully established, or we are waiting for
* the remote end to catch up with our current state. Refer
* to the diagram in "IVC State Transition Table" above.
*/
}
if (ivc->tx_channel->state != ivc_state_established)
return -EAGAIN;
return 0;
}
void tegra_ivc_channel_reset(struct tegra_ivc *ivc)
{
ulong offset;
ivc->tx_channel->state = ivc_state_sync;
offset = offsetof(struct tegra_ivc_channel_header, w_count);
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
ivc->notify(ivc);
}
static int check_ivc_params(ulong qbase1, ulong qbase2, uint32_t nframes,
uint32_t frame_size)
{
int ret = 0;
BUG_ON(offsetof(struct tegra_ivc_channel_header, w_count) &
(TEGRA_IVC_ALIGN - 1));
BUG_ON(offsetof(struct tegra_ivc_channel_header, r_count) &
(TEGRA_IVC_ALIGN - 1));
BUG_ON(sizeof(struct tegra_ivc_channel_header) &
(TEGRA_IVC_ALIGN - 1));
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
error("tegra_ivc: nframes * frame_size overflows\n");
return -EINVAL;
}
/*
* The headers must at least be aligned enough for counters
* to be accessed atomically.
*/
if ((qbase1 & (TEGRA_IVC_ALIGN - 1)) ||
(qbase2 & (TEGRA_IVC_ALIGN - 1))) {
error("tegra_ivc: channel start not aligned\n");
return -EINVAL;
}
if (frame_size & (TEGRA_IVC_ALIGN - 1)) {
error("tegra_ivc: frame size not adequately aligned\n");
return -EINVAL;
}
if (qbase1 < qbase2) {
if (qbase1 + frame_size * nframes > qbase2)
ret = -EINVAL;
} else {
if (qbase2 + frame_size * nframes > qbase1)
ret = -EINVAL;
}
if (ret) {
error("tegra_ivc: queue regions overlap\n");
return ret;
}
return 0;
}
int tegra_ivc_init(struct tegra_ivc *ivc, ulong rx_base, ulong tx_base,
uint32_t nframes, uint32_t frame_size,
void (*notify)(struct tegra_ivc *))
{
int ret;
if (!ivc)
return -EINVAL;
ret = check_ivc_params(rx_base, tx_base, nframes, frame_size);
if (ret)
return ret;
ivc->rx_channel = (struct tegra_ivc_channel_header *)rx_base;
ivc->tx_channel = (struct tegra_ivc_channel_header *)tx_base;
ivc->w_pos = 0;
ivc->r_pos = 0;
ivc->nframes = nframes;
ivc->frame_size = frame_size;
ivc->notify = notify;
return 0;
}