mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-27 15:12:21 +00:00
72a087e047
Patch by Haavard Skinnemoen, 06 Sep 2006 This patch adds support for the AT32AP CPU family and the AT32AP7000 chip, which is the first chip implementing the AVR32 architecture. The AT32AP CPU core is a high-performance implementation featuring a 7-stage pipeline, separate instruction- and data caches, and a MMU. For more information, please see the "AVR32 AP Technical Reference": http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf In addition to this, the AT32AP7000 chip comes with a large set of integrated peripherals, many of which are shared with the AT91 series of ARM-based microcontrollers from Atmel. Full data sheet is available here: http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
163 lines
4.5 KiB
C
163 lines
4.5 KiB
C
/*
|
|
* Copyright (C) 2006 Atmel Corporation
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
#include <common.h>
|
|
|
|
#ifdef CFG_POWER_MANAGER
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/arch/memory-map.h>
|
|
#include <asm/arch/platform.h>
|
|
|
|
#include "sm.h"
|
|
|
|
/* Sanity checks */
|
|
#if (CFG_CLKDIV_CPU > CFG_CLKDIV_HSB) \
|
|
|| (CFG_CLKDIV_HSB > CFG_CLKDIV_PBA) \
|
|
|| (CFG_CLKDIV_HSB > CFG_CLKDIV_PBB)
|
|
# error Constraint fCPU >= fHSB >= fPB{A,B} violated
|
|
#endif
|
|
#if defined(CONFIG_PLL) && ((CFG_PLL0_MUL < 1) || (CFG_PLL0_DIV < 1))
|
|
# error Invalid PLL multiplier and/or divider
|
|
#endif
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
struct clock_domain_state {
|
|
const struct device *bridge;
|
|
unsigned long freq;
|
|
u32 mask;
|
|
};
|
|
static struct clock_domain_state ckd_state[NR_CLOCK_DOMAINS];
|
|
|
|
int pm_enable_clock(enum clock_domain_id id, unsigned int index)
|
|
{
|
|
const struct clock_domain *ckd = &chip_clock[id];
|
|
struct clock_domain_state *state = &ckd_state[id];
|
|
|
|
if (ckd->bridge != NO_DEVICE) {
|
|
state->bridge = get_device(ckd->bridge);
|
|
if (!state->bridge)
|
|
return -EBUSY;
|
|
}
|
|
|
|
state->mask |= 1 << index;
|
|
if (gd->sm)
|
|
writel(state->mask, gd->sm->regs + ckd->reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pm_disable_clock(enum clock_domain_id id, unsigned int index)
|
|
{
|
|
const struct clock_domain *ckd = &chip_clock[id];
|
|
struct clock_domain_state *state = &ckd_state[id];
|
|
|
|
state->mask &= ~(1 << index);
|
|
if (gd->sm)
|
|
writel(state->mask, gd->sm->regs + ckd->reg);
|
|
|
|
if (ckd->bridge)
|
|
put_device(state->bridge);
|
|
}
|
|
|
|
unsigned long pm_get_clock_freq(enum clock_domain_id domain)
|
|
{
|
|
return ckd_state[domain].freq;
|
|
}
|
|
|
|
void pm_init(void)
|
|
{
|
|
uint32_t cksel = 0;
|
|
unsigned long main_clock;
|
|
|
|
/* Make sure we don't disable any device we're already using */
|
|
get_device(DEVICE_HRAMC);
|
|
get_device(DEVICE_HEBI);
|
|
|
|
/* Enable the PICO as well */
|
|
ckd_state[CLOCK_CPU].mask |= 1;
|
|
|
|
gd->sm = get_device(DEVICE_SM);
|
|
if (!gd->sm)
|
|
panic("Unable to claim system manager device!\n");
|
|
|
|
/* Disable any devices that haven't been explicitly claimed */
|
|
sm_writel(gd->sm, PM_PBB_MASK, ckd_state[CLOCK_PBB].mask);
|
|
sm_writel(gd->sm, PM_PBA_MASK, ckd_state[CLOCK_PBA].mask);
|
|
sm_writel(gd->sm, PM_HSB_MASK, ckd_state[CLOCK_HSB].mask);
|
|
sm_writel(gd->sm, PM_CPU_MASK, ckd_state[CLOCK_CPU].mask);
|
|
|
|
#ifdef CONFIG_PLL
|
|
/* Initialize the PLL */
|
|
main_clock = (CFG_OSC0_HZ / CFG_PLL0_DIV) * CFG_PLL0_MUL;
|
|
|
|
sm_writel(gd->sm, PM_PLL0, (SM_BF(PLLCOUNT, CFG_PLL0_SUPPRESS_CYCLES)
|
|
| SM_BF(PLLMUL, CFG_PLL0_MUL - 1)
|
|
| SM_BF(PLLDIV, CFG_PLL0_DIV - 1)
|
|
| SM_BF(PLLOPT, CFG_PLL0_OPT)
|
|
| SM_BF(PLLOSC, 0)
|
|
| SM_BIT(PLLEN)));
|
|
|
|
/* Wait for lock */
|
|
while (!(sm_readl(gd->sm, PM_ISR) & SM_BIT(LOCK0))) ;
|
|
#else
|
|
main_clock = CFG_OSC0_HZ;
|
|
#endif
|
|
|
|
/* Set up clocks for the CPU and all peripheral buses */
|
|
if (CFG_CLKDIV_CPU) {
|
|
cksel |= SM_BIT(CPUDIV) | SM_BF(CPUSEL, CFG_CLKDIV_CPU - 1);
|
|
ckd_state[CLOCK_CPU].freq = main_clock / (1 << CFG_CLKDIV_CPU);
|
|
} else {
|
|
ckd_state[CLOCK_CPU].freq = main_clock;
|
|
}
|
|
if (CFG_CLKDIV_HSB) {
|
|
cksel |= SM_BIT(HSBDIV) | SM_BF(HSBSEL, CFG_CLKDIV_HSB - 1);
|
|
ckd_state[CLOCK_HSB].freq = main_clock / (1 << CFG_CLKDIV_HSB);
|
|
} else {
|
|
ckd_state[CLOCK_HSB].freq = main_clock;
|
|
}
|
|
if (CFG_CLKDIV_PBA) {
|
|
cksel |= SM_BIT(PBADIV) | SM_BF(PBASEL, CFG_CLKDIV_PBA - 1);
|
|
ckd_state[CLOCK_PBA].freq = main_clock / (1 << CFG_CLKDIV_PBA);
|
|
} else {
|
|
ckd_state[CLOCK_PBA].freq = main_clock;
|
|
}
|
|
if (CFG_CLKDIV_PBB) {
|
|
cksel |= SM_BIT(PBBDIV) | SM_BF(PBBSEL, CFG_CLKDIV_PBB - 1);
|
|
ckd_state[CLOCK_PBB].freq = main_clock / (1 << CFG_CLKDIV_PBB);
|
|
} else {
|
|
ckd_state[CLOCK_PBB].freq = main_clock;
|
|
}
|
|
sm_writel(gd->sm, PM_CKSEL, cksel);
|
|
|
|
/* CFG_HZ currently depends on cpu_hz */
|
|
gd->cpu_hz = ckd_state[CLOCK_CPU].freq;
|
|
|
|
#ifdef CONFIG_PLL
|
|
/* Use PLL0 as main clock */
|
|
sm_writel(gd->sm, PM_MCCTRL, SM_BIT(PLLSEL));
|
|
#endif
|
|
}
|
|
|
|
#endif /* CFG_POWER_MANAGER */
|