mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-14 07:13:03 +00:00
95ce385a4a
Sometimes it is useful to iterate through all devices in a uclass and skip over those which do not work correctly (e.g fail to probe). Add two new functions to provide this feature. The caller must check the return value each time to make sure that the device is valid. But the device pointer is always returned. Signed-off-by: Simon Glass <sjg@chromium.org>
355 lines
12 KiB
C
355 lines
12 KiB
C
/*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*
|
|
* (C) Copyright 2012
|
|
* Pavel Herrmann <morpheus.ibis@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#ifndef _DM_UCLASS_H
|
|
#define _DM_UCLASS_H
|
|
|
|
#include <dm/ofnode.h>
|
|
#include <dm/uclass-id.h>
|
|
#include <linker_lists.h>
|
|
#include <linux/list.h>
|
|
|
|
/**
|
|
* struct uclass - a U-Boot drive class, collecting together similar drivers
|
|
*
|
|
* A uclass provides an interface to a particular function, which is
|
|
* implemented by one or more drivers. Every driver belongs to a uclass even
|
|
* if it is the only driver in that uclass. An example uclass is GPIO, which
|
|
* provides the ability to change read inputs, set and clear outputs, etc.
|
|
* There may be drivers for on-chip SoC GPIO banks, I2C GPIO expanders and
|
|
* PMIC IO lines, all made available in a unified way through the uclass.
|
|
*
|
|
* @priv: Private data for this uclass
|
|
* @uc_drv: The driver for the uclass itself, not to be confused with a
|
|
* 'struct driver'
|
|
* @dev_head: List of devices in this uclass (devices are attached to their
|
|
* uclass when their bind method is called)
|
|
* @sibling_node: Next uclass in the linked list of uclasses
|
|
*/
|
|
struct uclass {
|
|
void *priv;
|
|
struct uclass_driver *uc_drv;
|
|
struct list_head dev_head;
|
|
struct list_head sibling_node;
|
|
};
|
|
|
|
struct driver;
|
|
struct udevice;
|
|
|
|
/* Members of this uclass sequence themselves with aliases */
|
|
#define DM_UC_FLAG_SEQ_ALIAS (1 << 0)
|
|
|
|
/**
|
|
* struct uclass_driver - Driver for the uclass
|
|
*
|
|
* A uclass_driver provides a consistent interface to a set of related
|
|
* drivers.
|
|
*
|
|
* @name: Name of uclass driver
|
|
* @id: ID number of this uclass
|
|
* @post_bind: Called after a new device is bound to this uclass
|
|
* @pre_unbind: Called before a device is unbound from this uclass
|
|
* @pre_probe: Called before a new device is probed
|
|
* @post_probe: Called after a new device is probed
|
|
* @pre_remove: Called before a device is removed
|
|
* @child_post_bind: Called after a child is bound to a device in this uclass
|
|
* @init: Called to set up the uclass
|
|
* @destroy: Called to destroy the uclass
|
|
* @priv_auto_alloc_size: If non-zero this is the size of the private data
|
|
* to be allocated in the uclass's ->priv pointer. If zero, then the uclass
|
|
* driver is responsible for allocating any data required.
|
|
* @per_device_auto_alloc_size: Each device can hold private data owned
|
|
* by the uclass. If required this will be automatically allocated if this
|
|
* value is non-zero.
|
|
* @per_device_platdata_auto_alloc_size: Each device can hold platform data
|
|
* owned by the uclass as 'dev->uclass_platdata'. If the value is non-zero,
|
|
* then this will be automatically allocated.
|
|
* @per_child_auto_alloc_size: Each child device (of a parent in this
|
|
* uclass) can hold parent data for the device/uclass. This value is only
|
|
* used as a falback if this member is 0 in the driver.
|
|
* @per_child_platdata_auto_alloc_size: A bus likes to store information about
|
|
* its children. If non-zero this is the size of this data, to be allocated
|
|
* in the child device's parent_platdata pointer. This value is only used as
|
|
* a falback if this member is 0 in the driver.
|
|
* @ops: Uclass operations, providing the consistent interface to devices
|
|
* within the uclass.
|
|
* @flags: Flags for this uclass (DM_UC_...)
|
|
*/
|
|
struct uclass_driver {
|
|
const char *name;
|
|
enum uclass_id id;
|
|
int (*post_bind)(struct udevice *dev);
|
|
int (*pre_unbind)(struct udevice *dev);
|
|
int (*pre_probe)(struct udevice *dev);
|
|
int (*post_probe)(struct udevice *dev);
|
|
int (*pre_remove)(struct udevice *dev);
|
|
int (*child_post_bind)(struct udevice *dev);
|
|
int (*child_pre_probe)(struct udevice *dev);
|
|
int (*init)(struct uclass *class);
|
|
int (*destroy)(struct uclass *class);
|
|
int priv_auto_alloc_size;
|
|
int per_device_auto_alloc_size;
|
|
int per_device_platdata_auto_alloc_size;
|
|
int per_child_auto_alloc_size;
|
|
int per_child_platdata_auto_alloc_size;
|
|
const void *ops;
|
|
uint32_t flags;
|
|
};
|
|
|
|
/* Declare a new uclass_driver */
|
|
#define UCLASS_DRIVER(__name) \
|
|
ll_entry_declare(struct uclass_driver, __name, uclass)
|
|
|
|
/**
|
|
* uclass_get() - Get a uclass based on an ID, creating it if needed
|
|
*
|
|
* Every uclass is identified by an ID, a number from 0 to n-1 where n is
|
|
* the number of uclasses. This function allows looking up a uclass by its
|
|
* ID.
|
|
*
|
|
* @key: ID to look up
|
|
* @ucp: Returns pointer to uclass (there is only one per ID)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get(enum uclass_id key, struct uclass **ucp);
|
|
|
|
/**
|
|
* uclass_get_name() - Get the name of a uclass driver
|
|
*
|
|
* @id: ID to look up
|
|
* @returns the name of the uclass driver for that ID, or NULL if none
|
|
*/
|
|
const char *uclass_get_name(enum uclass_id id);
|
|
|
|
/**
|
|
* uclass_get_device() - Get a uclass device based on an ID and index
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @index: Device number within that uclass (0=first)
|
|
* @devp: Returns pointer to device (there is only one per for each ID)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device(enum uclass_id id, int index, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_name() - Get a uclass device by its name
|
|
*
|
|
* This searches the devices in the uclass for one with the exactly given name.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @name: name of a device to get
|
|
* @devp: Returns pointer to device (the first one with the name)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device_by_name(enum uclass_id id, const char *name,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_seq() - Get a uclass device based on an ID and sequence
|
|
*
|
|
* If an active device has this sequence it will be returned. If there is no
|
|
* such device then this will check for a device that is requesting this
|
|
* sequence.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @seq: Sequence number to find (0=first)
|
|
* @devp: Returns pointer to device (there is only one for each seq)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device_by_seq(enum uclass_id id, int seq, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_of_offset() - Get a uclass device by device tree node
|
|
*
|
|
* This searches the devices in the uclass for one attached to the given
|
|
* device tree node.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @node: Device tree offset to search for (if -ve then -ENODEV is returned)
|
|
* @devp: Returns pointer to device (there is only one for each node)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device_by_of_offset(enum uclass_id id, int node,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_ofnode() - Get a uclass device by device tree node
|
|
*
|
|
* This searches the devices in the uclass for one attached to the given
|
|
* device tree node.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @np: Device tree node to search for (if NULL then -ENODEV is returned)
|
|
* @devp: Returns pointer to device (there is only one for each node)
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device_by_ofnode(enum uclass_id id, ofnode node,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_phandle() - Get a uclass device by phandle
|
|
*
|
|
* This searches the devices in the uclass for one with the given phandle.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: uclass ID to look up
|
|
* @parent: Parent device containing the phandle pointer
|
|
* @name: Name of property in the parent device node
|
|
* @devp: Returns pointer to device (there is only one for each node)
|
|
* @return 0 if OK, -ENOENT if there is no @name present in the node, other
|
|
* -ve on error
|
|
*/
|
|
int uclass_get_device_by_phandle(enum uclass_id id, struct udevice *parent,
|
|
const char *name, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_get_device_by_driver() - Get a uclass device for a driver
|
|
*
|
|
* This searches the devices in the uclass for one that uses the given
|
|
* driver. Use DM_GET_DRIVER(name) for the @drv argument, where 'name' is
|
|
* the driver name - as used in U_BOOT_DRIVER(name).
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @id: ID to look up
|
|
* @drv: Driver to look for
|
|
* @devp: Returns pointer to the first device with that driver
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int uclass_get_device_by_driver(enum uclass_id id, const struct driver *drv,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_first_device() - Get the first device in a uclass
|
|
*
|
|
* The device returned is probed if necessary, and ready for use
|
|
*
|
|
* This function is useful to start iterating through a list of devices which
|
|
* are functioning correctly and can be probed.
|
|
*
|
|
* @id: Uclass ID to look up
|
|
* @devp: Returns pointer to the first device in that uclass if no error
|
|
* occurred, or NULL if there is no first device, or an error occurred with
|
|
* that device.
|
|
* @return 0 if OK (found or not found), other -ve on error
|
|
*/
|
|
int uclass_first_device(enum uclass_id id, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_first_device_err() - Get the first device in a uclass
|
|
*
|
|
* The device returned is probed if necessary, and ready for use
|
|
*
|
|
* @id: Uclass ID to look up
|
|
* @devp: Returns pointer to the first device in that uclass, or NULL if none
|
|
* @return 0 if found, -ENODEV if not found, other -ve on error
|
|
*/
|
|
int uclass_first_device_err(enum uclass_id id, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_next_device() - Get the next device in a uclass
|
|
*
|
|
* The device returned is probed if necessary, and ready for use
|
|
*
|
|
* This function is useful to start iterating through a list of devices which
|
|
* are functioning correctly and can be probed.
|
|
*
|
|
* @devp: On entry, pointer to device to lookup. On exit, returns pointer
|
|
* to the next device in the uclass if no error occurred, or NULL if there is
|
|
* no next device, or an error occurred with that next device.
|
|
* @return 0 if OK (found or not found), other -ve on error
|
|
*/
|
|
int uclass_next_device(struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_first_device() - Get the first device in a uclass
|
|
*
|
|
* The device returned is probed if necessary, and ready for use
|
|
*
|
|
* This function is useful to start iterating through a list of devices which
|
|
* are functioning correctly and can be probed.
|
|
*
|
|
* @id: Uclass ID to look up
|
|
* @devp: Returns pointer to the first device in that uclass, or NULL if there
|
|
* is no first device
|
|
* @return 0 if OK (found or not found), other -ve on error. If an error occurs
|
|
* it is still possible to move to the next device.
|
|
*/
|
|
int uclass_first_device_check(enum uclass_id id, struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_next_device() - Get the next device in a uclass
|
|
*
|
|
* The device returned is probed if necessary, and ready for use
|
|
*
|
|
* This function is useful to start iterating through a list of devices which
|
|
* are functioning correctly and can be probed.
|
|
*
|
|
* @devp: On entry, pointer to device to lookup. On exit, returns pointer
|
|
* to the next device in the uclass if any
|
|
* @return 0 if OK (found or not found), other -ve on error. If an error occurs
|
|
* it is still possible to move to the next device.
|
|
*/
|
|
int uclass_next_device_check(struct udevice **devp);
|
|
|
|
/**
|
|
* uclass_resolve_seq() - Resolve a device's sequence number
|
|
*
|
|
* On entry dev->seq is -1, and dev->req_seq may be -1 (to allocate a
|
|
* sequence number automatically, or >= 0 to select a particular number.
|
|
* If the requested sequence number is in use, then this device will
|
|
* be allocated another one.
|
|
*
|
|
* Note that the device's seq value is not changed by this function.
|
|
*
|
|
* @dev: Device for which to allocate sequence number
|
|
* @return sequence number allocated, or -ve on error
|
|
*/
|
|
int uclass_resolve_seq(struct udevice *dev);
|
|
|
|
/**
|
|
* uclass_foreach_dev() - Helper function to iteration through devices
|
|
*
|
|
* This creates a for() loop which works through the available devices in
|
|
* a uclass in order from start to end.
|
|
*
|
|
* @pos: struct udevice * to hold the current device. Set to NULL when there
|
|
* are no more devices.
|
|
* @uc: uclass to scan
|
|
*/
|
|
#define uclass_foreach_dev(pos, uc) \
|
|
list_for_each_entry(pos, &uc->dev_head, uclass_node)
|
|
|
|
/**
|
|
* uclass_foreach_dev_safe() - Helper function to safely iteration through devs
|
|
*
|
|
* This creates a for() loop which works through the available devices in
|
|
* a uclass in order from start to end. Inside the loop, it is safe to remove
|
|
* @pos if required.
|
|
*
|
|
* @pos: struct udevice * to hold the current device. Set to NULL when there
|
|
* are no more devices.
|
|
* @next: struct udevice * to hold the next next
|
|
* @uc: uclass to scan
|
|
*/
|
|
#define uclass_foreach_dev_safe(pos, next, uc) \
|
|
list_for_each_entry_safe(pos, next, &uc->dev_head, uclass_node)
|
|
|
|
#endif
|