mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-21 09:34:25 +00:00
290ffe5788
I was trying to employ lpddr4_mr_read() to something similar to what the imx8mm-cl-iot-gate board is doing for auto-detecting the RAM type. However, the version in drivers/ddr/imx/imx8m/ddrphy_utils.c differs from the private one used by that board in how it extracts the byte value, and I was only getting zeroes. Adding a bit of debug printf'ing gives me tmp = 0x00ffff00 tmp = 0x00070700 tmp = 0x00000000 tmp = 0x00101000 and indeed I was expecting a (combined) value of 0xff070010 (0xff being Manufacturer ID for Micron). I can't find any documentation that says how the values are supposed to be read, but clearly the iot-gate definition is the right one, both for its use case as well as my imx8mp-based board. So lift the private definition of lpddr4_mr_read() from the imx8mm-cl-iot-gate board code to ddrphy_utils.c, and add a declaration in the ddr.h header where e.g. get_trained_CDD() is already declared. This has only been compile-tested for the imx8mm-cl-iot-gate board (since I don't have the hardware), but since I've merely moved its definition of lpddr4_mr_read(), I'd be surprised if it changed anything for that board. Signed-off-by: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Tested-by: Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org> Reviewed-by: Fabio Estevam <festevam@denx.de>
369 lines
9.4 KiB
C
369 lines
9.4 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2018 NXP
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/ddr.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/ddr.h>
|
|
#include <asm/arch/lpddr4_define.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
|
|
static unsigned int g_cdd_rr_max[4];
|
|
static unsigned int g_cdd_rw_max[4];
|
|
static unsigned int g_cdd_wr_max[4];
|
|
static unsigned int g_cdd_ww_max[4];
|
|
|
|
static inline void poll_pmu_message_ready(void)
|
|
{
|
|
unsigned int reg;
|
|
|
|
do {
|
|
reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0004);
|
|
} while (reg & 0x1);
|
|
}
|
|
|
|
static inline void ack_pmu_message_receive(void)
|
|
{
|
|
unsigned int reg;
|
|
|
|
reg32_write(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0031, 0x0);
|
|
|
|
do {
|
|
reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0004);
|
|
} while (!(reg & 0x1));
|
|
|
|
reg32_write(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0031, 0x1);
|
|
}
|
|
|
|
static inline unsigned int get_mail(void)
|
|
{
|
|
unsigned int reg;
|
|
|
|
poll_pmu_message_ready();
|
|
|
|
reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0032);
|
|
|
|
ack_pmu_message_receive();
|
|
|
|
return reg;
|
|
}
|
|
|
|
static inline unsigned int get_stream_message(void)
|
|
{
|
|
unsigned int reg, reg2;
|
|
|
|
poll_pmu_message_ready();
|
|
|
|
reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0032);
|
|
|
|
reg2 = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0034);
|
|
|
|
reg2 = (reg2 << 16) | reg;
|
|
|
|
ack_pmu_message_receive();
|
|
|
|
return reg2;
|
|
}
|
|
|
|
static inline void decode_major_message(unsigned int mail)
|
|
{
|
|
debug("[PMU Major message = 0x%08x]\n", mail);
|
|
}
|
|
|
|
static inline void decode_streaming_message(void)
|
|
{
|
|
unsigned int string_index, arg __maybe_unused;
|
|
int i = 0;
|
|
|
|
string_index = get_stream_message();
|
|
debug("PMU String index = 0x%08x\n", string_index);
|
|
while (i < (string_index & 0xffff)) {
|
|
arg = get_stream_message();
|
|
debug("arg[%d] = 0x%08x\n", i, arg);
|
|
i++;
|
|
}
|
|
|
|
debug("\n");
|
|
}
|
|
|
|
int wait_ddrphy_training_complete(void)
|
|
{
|
|
unsigned int mail;
|
|
|
|
while (1) {
|
|
mail = get_mail();
|
|
decode_major_message(mail);
|
|
if (mail == 0x08) {
|
|
decode_streaming_message();
|
|
} else if (mail == 0x07) {
|
|
debug("Training PASS\n");
|
|
return 0;
|
|
} else if (mail == 0xff) {
|
|
debug("Training FAILED\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ddrphy_init_set_dfi_clk(unsigned int drate)
|
|
{
|
|
switch (drate) {
|
|
case 4000:
|
|
dram_pll_init(MHZ(1000));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 3732:
|
|
dram_pll_init(MHZ(933));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 3200:
|
|
dram_pll_init(MHZ(800));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 3000:
|
|
dram_pll_init(MHZ(750));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 2400:
|
|
dram_pll_init(MHZ(600));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 1600:
|
|
dram_pll_init(MHZ(400));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 1066:
|
|
dram_pll_init(MHZ(266));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 667:
|
|
dram_pll_init(MHZ(167));
|
|
dram_disable_bypass();
|
|
break;
|
|
case 400:
|
|
dram_enable_bypass(MHZ(400));
|
|
break;
|
|
case 100:
|
|
dram_enable_bypass(MHZ(100));
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ddrphy_init_read_msg_block(enum fw_type type)
|
|
{
|
|
}
|
|
|
|
void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr,
|
|
unsigned int mr_data)
|
|
{
|
|
unsigned int tmp;
|
|
/*
|
|
* 1. Poll MRSTAT.mr_wr_busy until it is 0.
|
|
* This checks that there is no outstanding MR transaction.
|
|
* No writes should be performed to MRCTRL0 and MRCTRL1 if
|
|
* MRSTAT.mr_wr_busy = 1.
|
|
*/
|
|
do {
|
|
tmp = reg32_read(DDRC_MRSTAT(0));
|
|
} while (tmp & 0x1);
|
|
/*
|
|
* 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and
|
|
* (for MRWs) MRCTRL1.mr_data to define the MR transaction.
|
|
*/
|
|
reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4));
|
|
reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data);
|
|
reg32setbit(DDRC_MRCTRL0(0), 31);
|
|
}
|
|
|
|
unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr)
|
|
{
|
|
unsigned int tmp;
|
|
|
|
reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1);
|
|
do {
|
|
tmp = reg32_read(DDRC_MRSTAT(0));
|
|
} while (tmp & 0x1);
|
|
|
|
reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1);
|
|
reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8));
|
|
reg32setbit(DDRC_MRCTRL0(0), 31);
|
|
do {
|
|
tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0));
|
|
} while ((tmp & 0x8) == 0);
|
|
tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0));
|
|
reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4);
|
|
while (tmp) { //try to find a significant byte in the word
|
|
if (tmp & 0xff) {
|
|
tmp &= 0xff;
|
|
break;
|
|
}
|
|
tmp >>= 8;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
unsigned int look_for_max(unsigned int data[],
|
|
unsigned int addr_start, unsigned int addr_end)
|
|
{
|
|
unsigned int i, imax = 0;
|
|
|
|
for (i = addr_start; i <= addr_end; i++) {
|
|
if (((data[i] >> 7) == 0) && (data[i] > imax))
|
|
imax = data[i];
|
|
}
|
|
|
|
return imax;
|
|
}
|
|
|
|
void get_trained_CDD(u32 fsp)
|
|
{
|
|
unsigned int i, ddr_type, tmp;
|
|
unsigned int cdd_cha[12], cdd_chb[12];
|
|
unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
|
|
unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;
|
|
|
|
ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
|
|
if (ddr_type == 0x20) {
|
|
for (i = 0; i < 6; i++) {
|
|
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54013 + i) * 4);
|
|
cdd_cha[i * 2] = tmp & 0xff;
|
|
cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
|
|
}
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x5402c + i) * 4);
|
|
if (i == 0) {
|
|
cdd_cha[0] = (tmp >> 8) & 0xff;
|
|
} else if (i == 6) {
|
|
cdd_cha[11] = tmp & 0xff;
|
|
} else {
|
|
cdd_chb[i * 2 - 1] = tmp & 0xff;
|
|
cdd_chb[i * 2] = (tmp >> 8) & 0xff;
|
|
}
|
|
}
|
|
|
|
cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
|
|
cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
|
|
cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
|
|
cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
|
|
cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
|
|
cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
|
|
cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
|
|
cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
|
|
g_cdd_rr_max[fsp] = cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
|
|
g_cdd_rw_max[fsp] = cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
|
|
g_cdd_wr_max[fsp] = cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
|
|
g_cdd_ww_max[fsp] = cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
|
|
} else {
|
|
unsigned int ddr4_cdd[64];
|
|
|
|
for (i = 0; i < 29; i++) {
|
|
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54012 + i) * 4);
|
|
ddr4_cdd[i * 2] = tmp & 0xff;
|
|
ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff;
|
|
}
|
|
|
|
g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12);
|
|
g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24);
|
|
g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40);
|
|
g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56);
|
|
}
|
|
}
|
|
|
|
void update_umctl2_rank_space_setting(unsigned int pstat_num)
|
|
{
|
|
unsigned int i, ddr_type;
|
|
unsigned int addr_slot, rdata, tmp, tmp_t;
|
|
unsigned int ddrc_w2r, ddrc_r2w, ddrc_wr_gap, ddrc_rd_gap;
|
|
|
|
ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
|
|
for (i = 0; i < pstat_num; i++) {
|
|
addr_slot = i ? (i + 1) * 0x1000 : 0;
|
|
if (ddr_type == 0x20) {
|
|
/* update r2w:[13:8], w2r:[5:0] */
|
|
rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
|
|
ddrc_w2r = rdata & 0x3f;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
|
|
ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
|
|
|
|
ddrc_r2w = (rdata >> 8) & 0x3f;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
|
|
ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
|
|
|
|
tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r;
|
|
reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
|
|
} else {
|
|
/* update w2r:[5:0] */
|
|
rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot);
|
|
ddrc_w2r = rdata & 0x3f;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
|
|
ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
|
|
tmp_t = (rdata & 0xffffffc0) | ddrc_w2r;
|
|
reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t);
|
|
|
|
/* update r2w:[13:8] */
|
|
rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
|
|
ddrc_r2w = (rdata >> 8) & 0x3f;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
|
|
ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
|
|
|
|
tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8);
|
|
reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
|
|
}
|
|
|
|
if (!is_imx8mq()) {
|
|
/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
|
|
rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot);
|
|
ddrc_wr_gap = (rdata >> 8) & 0xf;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1;
|
|
ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
|
|
|
|
ddrc_rd_gap = (rdata >> 4) & 0xf;
|
|
if (is_imx8mp())
|
|
tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1);
|
|
else
|
|
tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1;
|
|
ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
|
|
|
|
tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
|
|
reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t);
|
|
}
|
|
}
|
|
|
|
if (is_imx8mq()) {
|
|
/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
|
|
rdata = reg32_read(DDRC_RANKCTL(0));
|
|
ddrc_wr_gap = (rdata >> 8) & 0xf;
|
|
tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1;
|
|
ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
|
|
|
|
ddrc_rd_gap = (rdata >> 4) & 0xf;
|
|
tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1;
|
|
ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
|
|
|
|
tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
|
|
reg32_write(DDRC_RANKCTL(0), tmp_t);
|
|
}
|
|
}
|