mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
4a0930069b
The kernel states: ---8<--- The OMAP3 GPMC hardware BCH engine computes remainder polynomials, it does not provide automatic error location and correction: this step is implemented using the BCH library. --->8--- And we do so in u-boot. This implementation uses the same layout for BCH8 but it is fix. The current provided layout does only work with 64 Byte OOB. Signed-off-by: Andreas Bießmann <andreas.devel@googlemail.com> Cc: Tom Rini <trini@ti.com> Cc: Ilya Yanok <ilya.yanok@cogentembedded.com> Cc: Scott Wood <scottwood@freescale.com> Cc: Mansoor Ahamed <mansoor.ahamed@ti.com> Cc: Thomas Weber <thomas.weber.linux@googlemail.com>
968 lines
26 KiB
C
968 lines
26 KiB
C
/*
|
|
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
|
|
* Rohit Choraria <rohitkc@ti.com>
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/arch/mem.h>
|
|
#include <asm/arch/cpu.h>
|
|
#include <asm/omap_gpmc.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/compiler.h>
|
|
#include <nand.h>
|
|
#ifdef CONFIG_AM33XX
|
|
#include <asm/arch/elm.h>
|
|
#endif
|
|
|
|
static uint8_t cs;
|
|
static __maybe_unused struct nand_ecclayout hw_nand_oob =
|
|
GPMC_NAND_HW_ECC_LAYOUT;
|
|
static __maybe_unused struct nand_ecclayout hw_bch8_nand_oob =
|
|
GPMC_NAND_HW_BCH8_ECC_LAYOUT;
|
|
|
|
/*
|
|
* omap_nand_hwcontrol - Set the address pointers corretly for the
|
|
* following address/data/command operation
|
|
*/
|
|
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
|
|
uint32_t ctrl)
|
|
{
|
|
register struct nand_chip *this = mtd->priv;
|
|
|
|
/*
|
|
* Point the IO_ADDR to DATA and ADDRESS registers instead
|
|
* of chip address
|
|
*/
|
|
switch (ctrl) {
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_NCE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
break;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
/* Check wait pin as dev ready indicator */
|
|
int omap_spl_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
return gpmc_cfg->status & (1 << 8);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
|
|
* GPMC controller
|
|
* @mtd: MTD device structure
|
|
*
|
|
*/
|
|
static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
|
|
{
|
|
/*
|
|
* Init ECC Control Register
|
|
* Clear all ECC | Enable Reg1
|
|
*/
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
|
|
}
|
|
|
|
/*
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
* can be used when correcting data read from NAND flash memory core
|
|
*
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* @return: re-formatted ECC value
|
|
*/
|
|
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
|
|
{
|
|
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
|
|
((ecc_buf[2] & 0x0F) << 8);
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data - Compares the ecc read from nand spare area with ECC
|
|
* registers values and corrects one bit error if it has occured
|
|
* Further details can be had from OMAP TRM and the following selected links:
|
|
* http://en.wikipedia.org/wiki/Hamming_code
|
|
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
uint32_t orig_ecc, new_ecc, res, hm;
|
|
uint16_t parity_bits, byte;
|
|
uint8_t bit;
|
|
|
|
/* Regenerate the orginal ECC */
|
|
orig_ecc = gen_true_ecc(read_ecc);
|
|
new_ecc = gen_true_ecc(calc_ecc);
|
|
/* Get the XOR of real ecc */
|
|
res = orig_ecc ^ new_ecc;
|
|
if (res) {
|
|
/* Get the hamming width */
|
|
hm = hweight32(res);
|
|
/* Single bit errors can be corrected! */
|
|
if (hm == 12) {
|
|
/* Correctable data! */
|
|
parity_bits = res >> 16;
|
|
bit = (parity_bits & 0x7);
|
|
byte = (parity_bits >> 3) & 0x1FF;
|
|
/* Flip the bit to correct */
|
|
dat[byte] ^= (0x1 << bit);
|
|
} else if (hm == 1) {
|
|
printf("Error: Ecc is wrong\n");
|
|
/* ECC itself is corrupted */
|
|
return 2;
|
|
} else {
|
|
/*
|
|
* hm distance != parity pairs OR one, could mean 2 bit
|
|
* error OR potentially be on a blank page..
|
|
* orig_ecc: contains spare area data from nand flash.
|
|
* new_ecc: generated ecc while reading data area.
|
|
* Note: if the ecc = 0, all data bits from which it was
|
|
* generated are 0xFF.
|
|
* The 3 byte(24 bits) ecc is generated per 512byte
|
|
* chunk of a page. If orig_ecc(from spare area)
|
|
* is 0xFF && new_ecc(computed now from data area)=0x0,
|
|
* this means that data area is 0xFF and spare area is
|
|
* 0xFF. A sure sign of a erased page!
|
|
*/
|
|
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
|
|
return 0;
|
|
printf("Error: Bad compare! failed\n");
|
|
/* detected 2 bit error */
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* omap_calculate_ecc - Generate non-inverted ECC bytes.
|
|
*
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as
|
|
* long nobody is trying to write data on the seemingly unused page.
|
|
* Reading an erased page will produce an ECC mismatch between
|
|
* generated and read ECC bytes that has to be dealt with separately.
|
|
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
* is used, the result of read will be 0x0 while the ECC offsets of the
|
|
* spare area will be 0xFF which will result in an ECC mismatch.
|
|
* @mtd: MTD structure
|
|
* @dat: unused
|
|
* @ecc_code: ecc_code buffer
|
|
*/
|
|
static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
|
|
const uint8_t *dat, uint8_t *ecc_code)
|
|
{
|
|
u_int32_t val;
|
|
|
|
/* Start Reading from HW ECC1_Result = 0x200 */
|
|
val = readl(&gpmc_cfg->ecc1_result);
|
|
|
|
ecc_code[0] = val & 0xFF;
|
|
ecc_code[1] = (val >> 16) & 0xFF;
|
|
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
|
|
/*
|
|
* Stop reading anymore ECC vals and clear old results
|
|
* enable will be called if more reads are required
|
|
*/
|
|
writel(0x000, &gpmc_cfg->ecc_config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* omap_enable_ecc - This function enables the hardware ecc functionality
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
case NAND_ECC_WRITE:
|
|
/* Clear the ecc result registers, select ecc reg as 1 */
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
/*
|
|
* Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
|
|
* tell all regs to generate size0 sized regs
|
|
* we just have a single ECC engine for all CS
|
|
*/
|
|
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
|
|
&gpmc_cfg->ecc_size_config);
|
|
val = (dev_width << 7) | (cs << 1) | (0x1);
|
|
writel(val, &gpmc_cfg->ecc_config);
|
|
break;
|
|
default:
|
|
printf("Error: Unrecognized Mode[%d]!\n", mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generic BCH interface
|
|
*/
|
|
struct nand_bch_priv {
|
|
uint8_t mode;
|
|
uint8_t type;
|
|
uint8_t nibbles;
|
|
struct bch_control *control;
|
|
};
|
|
|
|
/* bch types */
|
|
#define ECC_BCH4 0
|
|
#define ECC_BCH8 1
|
|
#define ECC_BCH16 2
|
|
|
|
/* GPMC ecc engine settings */
|
|
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
|
|
/* BCH nibbles for diff bch levels */
|
|
#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
|
|
#define ECC_BCH4_NIBBLES 13
|
|
#define ECC_BCH8_NIBBLES 26
|
|
#define ECC_BCH16_NIBBLES 52
|
|
|
|
/*
|
|
* This can be a single instance cause all current users have only one NAND
|
|
* with nearly the same setup (BCH8, some with ELM and others with sw BCH
|
|
* library).
|
|
* When some users with other BCH strength will exists this have to change!
|
|
*/
|
|
static __maybe_unused struct nand_bch_priv bch_priv = {
|
|
.mode = NAND_ECC_HW_BCH,
|
|
.type = ECC_BCH8,
|
|
.nibbles = ECC_BCH8_NIBBLES,
|
|
.control = NULL
|
|
};
|
|
|
|
/*
|
|
* omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
|
|
* GPMC controller
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
__maybe_unused
|
|
static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
|
|
{
|
|
uint32_t val;
|
|
uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
#ifdef CONFIG_AM33XX
|
|
uint32_t unused_length = 0;
|
|
#endif
|
|
uint32_t wr_mode = BCH_WRAPMODE_6;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
|
|
/* Clear the ecc result registers, select ecc reg as 1 */
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
#ifdef CONFIG_AM33XX
|
|
wr_mode = BCH_WRAPMODE_1;
|
|
|
|
switch (bch->nibbles) {
|
|
case ECC_BCH4_NIBBLES:
|
|
unused_length = 3;
|
|
break;
|
|
case ECC_BCH8_NIBBLES:
|
|
unused_length = 2;
|
|
break;
|
|
case ECC_BCH16_NIBBLES:
|
|
unused_length = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is ecc_size_config for ELM mode.
|
|
* Here we are using different settings for read and write access and
|
|
* also depending on BCH strength.
|
|
*/
|
|
switch (mode) {
|
|
case NAND_ECC_WRITE:
|
|
/* write access only setup eccsize1 config */
|
|
val = ((unused_length + bch->nibbles) << 22);
|
|
break;
|
|
|
|
case NAND_ECC_READ:
|
|
default:
|
|
/*
|
|
* by default eccsize0 selected for ecc1resultsize
|
|
* eccsize0 config.
|
|
*/
|
|
val = (bch->nibbles << 12);
|
|
/* eccsize1 config */
|
|
val |= (unused_length << 22);
|
|
break;
|
|
}
|
|
#else
|
|
/*
|
|
* This ecc_size_config setting is for BCH sw library.
|
|
*
|
|
* Note: we only support BCH8 currently with BCH sw library!
|
|
* Should be really easy to adobt to BCH4, however some omap3 have
|
|
* flaws with BCH4.
|
|
*
|
|
* Here we are using wrapping mode 6 both for reading and writing, with:
|
|
* size0 = 0 (no additional protected byte in spare area)
|
|
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
|
|
*/
|
|
val = (32 << 22) | (0 << 12);
|
|
#endif
|
|
/* ecc size configuration */
|
|
writel(val, &gpmc_cfg->ecc_size_config);
|
|
|
|
/*
|
|
* Configure the ecc engine in gpmc
|
|
* We assume 512 Byte sector pages for access to NAND.
|
|
*/
|
|
val = (1 << 16); /* enable BCH mode */
|
|
val |= (bch->type << 12); /* setup BCH type */
|
|
val |= (wr_mode << 8); /* setup wrapping mode */
|
|
val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
|
|
val |= (cs << 1); /* setup chip select to work on */
|
|
debug("set ECC_CONFIG=0x%08x\n", val);
|
|
writel(val, &gpmc_cfg->ecc_config);
|
|
}
|
|
|
|
/*
|
|
* omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
__maybe_unused
|
|
static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
omap_hwecc_init_bch(chip, mode);
|
|
/* enable ecc */
|
|
writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
|
|
}
|
|
|
|
/*
|
|
* omap_ecc_disable - Disable H/W ECC calculation
|
|
*
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
|
|
{
|
|
writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
|
|
}
|
|
|
|
/*
|
|
* BCH8 support (needs ELM and thus AM33xx-only)
|
|
*/
|
|
#ifdef CONFIG_AM33XX
|
|
/*
|
|
* omap_read_bch8_result - Read BCH result for BCH8 level
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @big_endian: When set read register 3 first
|
|
* @ecc_code: Read syndrome from BCH result registers
|
|
*/
|
|
static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
|
|
uint8_t *ecc_code)
|
|
{
|
|
uint32_t *ptr;
|
|
int8_t i = 0, j;
|
|
|
|
if (big_endian) {
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
ptr--;
|
|
for (j = 0; j < 3; j++) {
|
|
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
ptr--;
|
|
}
|
|
} else {
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
|
|
for (j = 0; j < 3; j++) {
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
ptr++;
|
|
}
|
|
ecc_code[i++] = readl(ptr) & 0xFF;
|
|
ecc_code[i++] = 0; /* 14th byte is always zero */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* omap_rotate_ecc_bch - Rotate the syndrome bytes
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @calc_ecc: ECC read from ECC registers
|
|
* @syndrome: Rotated syndrome will be retuned in this array
|
|
*
|
|
*/
|
|
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
|
|
uint8_t *syndrome)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
uint8_t n_bytes = 0;
|
|
int8_t i, j;
|
|
|
|
switch (bch->type) {
|
|
case ECC_BCH4:
|
|
n_bytes = 8;
|
|
break;
|
|
|
|
case ECC_BCH16:
|
|
n_bytes = 28;
|
|
break;
|
|
|
|
case ECC_BCH8:
|
|
default:
|
|
n_bytes = 13;
|
|
break;
|
|
}
|
|
|
|
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
|
|
syndrome[i] = calc_ecc[j];
|
|
}
|
|
|
|
/*
|
|
* omap_calculate_ecc_bch - Read BCH ECC result
|
|
*
|
|
* @mtd: MTD structure
|
|
* @dat: unused
|
|
* @ecc_code: ecc_code buffer
|
|
*/
|
|
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
|
|
uint8_t *ecc_code)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
uint8_t big_endian = 1;
|
|
int8_t ret = 0;
|
|
|
|
if (bch->type == ECC_BCH8)
|
|
omap_read_bch8_result(mtd, big_endian, ecc_code);
|
|
else /* BCH4 and BCH16 currently not supported */
|
|
ret = -1;
|
|
|
|
/*
|
|
* Stop reading anymore ECC vals and clear old results
|
|
* enable will be called if more reads are required
|
|
*/
|
|
omap_ecc_disable(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* omap_fix_errors_bch - Correct bch error in the data
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @data: Data read from flash
|
|
* @error_count:Number of errors in data
|
|
* @error_loc: Locations of errors in the data
|
|
*
|
|
*/
|
|
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
|
|
uint32_t error_count, uint32_t *error_loc)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
uint8_t count = 0;
|
|
uint32_t error_byte_pos;
|
|
uint32_t error_bit_mask;
|
|
uint32_t last_bit = (bch->nibbles * 4) - 1;
|
|
|
|
/* Flip all bits as specified by the error location array. */
|
|
/* FOR( each found error location flip the bit ) */
|
|
for (count = 0; count < error_count; count++) {
|
|
if (error_loc[count] > last_bit) {
|
|
/* Remove the ECC spare bits from correction. */
|
|
error_loc[count] -= (last_bit + 1);
|
|
/* Offset bit in data region */
|
|
error_byte_pos = ((512 * 8) -
|
|
(error_loc[count]) - 1) / 8;
|
|
/* Error Bit mask */
|
|
error_bit_mask = 0x1 << (error_loc[count] % 8);
|
|
/* Toggle the error bit to make the correction. */
|
|
data[error_byte_pos] ^= error_bit_mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
* with ECC registers values and corrects one bit error if it has occured
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash (ignored)
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
uint8_t syndrome[28];
|
|
uint32_t error_count = 0;
|
|
uint32_t error_loc[8];
|
|
uint32_t i, ecc_flag;
|
|
|
|
ecc_flag = 0;
|
|
for (i = 0; i < chip->ecc.bytes; i++)
|
|
if (read_ecc[i] != 0xff)
|
|
ecc_flag = 1;
|
|
|
|
if (!ecc_flag)
|
|
return 0;
|
|
|
|
elm_reset();
|
|
elm_config((enum bch_level)(bch->type));
|
|
|
|
/*
|
|
* while reading ECC result we read it in big endian.
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
*/
|
|
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
|
|
|
|
/* use elm module to check for errors */
|
|
if (elm_check_error(syndrome, bch->nibbles, &error_count,
|
|
error_loc) != 0) {
|
|
printf("ECC: uncorrectable.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* correct bch error */
|
|
if (error_count > 0)
|
|
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_read_page_bch - hardware ecc based page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @page: page number to read
|
|
*
|
|
*/
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint32_t data_pos;
|
|
uint32_t oob_pos;
|
|
|
|
data_pos = 0;
|
|
/* oob area start */
|
|
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
|
|
oob += chip->ecc.layout->eccpos[0];
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
|
|
oob += eccbytes) {
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
/* read data */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
/* read respective ecc from oob area */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
|
|
chip->read_buf(mtd, oob, eccbytes);
|
|
/* read syndrome */
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
data_pos += eccsize;
|
|
oob_pos += eccbytes;
|
|
}
|
|
|
|
for (i = 0; i < chip->ecc.total; i++)
|
|
ecc_code[i] = chip->oob_poi[eccpos[i]];
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_AM33XX */
|
|
|
|
/*
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
*/
|
|
#ifdef CONFIG_NAND_OMAP_BCH8
|
|
/*
|
|
* omap_calculate_ecc_bch - Read BCH ECC result
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed (unused here)
|
|
* @ecc: The ECC output buffer
|
|
*/
|
|
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
|
|
uint8_t *ecc)
|
|
{
|
|
int ret = 0;
|
|
size_t i;
|
|
unsigned long nsectors, val1, val2, val3, val4;
|
|
|
|
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
for (i = 0; i < nsectors; i++) {
|
|
/* Read hw-computed remainder */
|
|
val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
|
|
val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
|
|
val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
|
|
val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
|
|
|
|
/*
|
|
* Add constant polynomial to remainder, in order to get an ecc
|
|
* sequence of 0xFFs for a buffer filled with 0xFFs.
|
|
*/
|
|
*ecc++ = 0xef ^ (val4 & 0xFF);
|
|
*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
|
|
*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
|
|
*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
|
|
*ecc++ = 0xed ^ (val3 & 0xFF);
|
|
*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
|
|
*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
|
|
*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
|
|
*ecc++ = 0x97 ^ (val2 & 0xFF);
|
|
*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
|
|
*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
|
|
*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
|
|
*ecc++ = 0xb5 ^ (val1 & 0xFF);
|
|
}
|
|
|
|
/*
|
|
* Stop reading anymore ECC vals and clear old results
|
|
* enable will be called if more reads are required
|
|
*/
|
|
omap_ecc_disable(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* omap_correct_data_bch - Decode received data and correct errors
|
|
* @mtd: MTD device structure
|
|
* @data: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*/
|
|
static int omap_correct_data_bch(struct mtd_info *mtd, u_char *data,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
int i, count;
|
|
/* cannot correct more than 8 errors */
|
|
unsigned int errloc[8];
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *chip_priv = chip->priv;
|
|
struct bch_control *bch = chip_priv->control;
|
|
|
|
count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
|
|
if (count > 0) {
|
|
/* correct errors */
|
|
for (i = 0; i < count; i++) {
|
|
/* correct data only, not ecc bytes */
|
|
if (errloc[i] < 8*512)
|
|
data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
|
|
printf("corrected bitflip %u\n", errloc[i]);
|
|
#ifdef DEBUG
|
|
puts("read_ecc: ");
|
|
/*
|
|
* BCH8 have 13 bytes of ECC; BCH4 needs adoption
|
|
* here!
|
|
*/
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", read_ecc[i]);
|
|
puts("\n");
|
|
puts("calc_ecc: ");
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", calc_ecc[i]);
|
|
puts("\n");
|
|
#endif
|
|
}
|
|
} else if (count < 0) {
|
|
puts("ecc unrecoverable error\n");
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* omap_free_bch - Release BCH ecc resources
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *chip_priv = chip->priv;
|
|
struct bch_control *bch = NULL;
|
|
|
|
if (chip_priv)
|
|
bch = chip_priv->control;
|
|
|
|
if (bch) {
|
|
free_bch(bch);
|
|
chip_priv->control = NULL;
|
|
}
|
|
}
|
|
#endif /* CONFIG_NAND_OMAP_BCH8 */
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* omap_nand_switch_ecc - switch the ECC operation between different engines
|
|
* (h/w and s/w) and different algorithms (hamming and BCHx)
|
|
*
|
|
* @hardware - true if one of the HW engines should be used
|
|
* @eccstrength - the number of bits that could be corrected
|
|
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
|
|
*/
|
|
void omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
|
|
{
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
|
|
if (nand_curr_device < 0 ||
|
|
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
|
|
!nand_info[nand_curr_device].name) {
|
|
printf("Error: Can't switch ecc, no devices available\n");
|
|
return;
|
|
}
|
|
|
|
mtd = &nand_info[nand_curr_device];
|
|
nand = mtd->priv;
|
|
|
|
nand->options |= NAND_OWN_BUFFERS;
|
|
|
|
/* Reset ecc interface */
|
|
nand->ecc.mode = NAND_ECC_NONE;
|
|
nand->ecc.read_page = NULL;
|
|
nand->ecc.write_page = NULL;
|
|
nand->ecc.read_oob = NULL;
|
|
nand->ecc.write_oob = NULL;
|
|
nand->ecc.hwctl = NULL;
|
|
nand->ecc.correct = NULL;
|
|
nand->ecc.calculate = NULL;
|
|
|
|
/* Setup the ecc configurations again */
|
|
if (hardware) {
|
|
if (eccstrength == 1) {
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.layout = &hw_nand_oob;
|
|
nand->ecc.size = 512;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
omap_hwecc_init(nand);
|
|
printf("1-bit hamming HW ECC selected\n");
|
|
}
|
|
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
|
|
else if (eccstrength == 8) {
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.layout = &hw_bch8_nand_oob;
|
|
nand->ecc.size = 512;
|
|
#ifdef CONFIG_AM33XX
|
|
nand->ecc.bytes = 14;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
#else
|
|
nand->ecc.bytes = 13;
|
|
#endif
|
|
nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
omap_hwecc_init_bch(nand, NAND_ECC_READ);
|
|
printf("8-bit BCH HW ECC selected\n");
|
|
}
|
|
#endif
|
|
} else {
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
/* Use mtd default settings */
|
|
nand->ecc.layout = NULL;
|
|
nand->ecc.size = 0;
|
|
printf("SW ECC selected\n");
|
|
}
|
|
|
|
/* Update NAND handling after ECC mode switch */
|
|
nand_scan_tail(mtd);
|
|
|
|
nand->options &= ~NAND_OWN_BUFFERS;
|
|
}
|
|
#endif /* CONFIG_SPL_BUILD */
|
|
|
|
/*
|
|
* Board-specific NAND initialization. The following members of the
|
|
* argument are board-specific:
|
|
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device
|
|
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device
|
|
* - cmd_ctrl: hardwarespecific function for accesing control-lines
|
|
* - waitfunc: hardwarespecific function for accesing device ready/busy line
|
|
* - ecc.hwctl: function to enable (reset) hardware ecc generator
|
|
* - ecc.mode: mode of ecc, see defines
|
|
* - chip_delay: chip dependent delay for transfering data from array to
|
|
* read regs (tR)
|
|
* - options: various chip options. They can partly be set to inform
|
|
* nand_scan about special functionality. See the defines for further
|
|
* explanation
|
|
*/
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
int32_t gpmc_config = 0;
|
|
cs = 0;
|
|
|
|
/*
|
|
* xloader/Uboot's gpmc configuration would have configured GPMC for
|
|
* nand type of memory. The following logic scans and latches on to the
|
|
* first CS with NAND type memory.
|
|
* TBD: need to make this logic generic to handle multiple CS NAND
|
|
* devices.
|
|
*/
|
|
while (cs < GPMC_MAX_CS) {
|
|
/* Check if NAND type is set */
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
|
|
/* Found it!! */
|
|
break;
|
|
}
|
|
cs++;
|
|
}
|
|
if (cs >= GPMC_MAX_CS) {
|
|
printf("NAND: Unable to find NAND settings in "
|
|
"GPMC Configuration - quitting\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
gpmc_config = readl(&gpmc_cfg->config);
|
|
/* Disable Write protect */
|
|
gpmc_config |= 0x10;
|
|
writel(gpmc_config, &gpmc_cfg->config);
|
|
|
|
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
|
|
nand->cmd_ctrl = omap_nand_hwcontrol;
|
|
nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
|
|
/* If we are 16 bit dev, our gpmc config tells us that */
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
|
|
nand->chip_delay = 100;
|
|
|
|
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
|
|
#ifdef CONFIG_AM33XX
|
|
/* AM33xx uses the ELM */
|
|
/* required in case of BCH */
|
|
elm_init();
|
|
#else
|
|
/*
|
|
* Whereas other OMAP based SoC do not have the ELM, they use the BCH
|
|
* SW library.
|
|
*/
|
|
bch_priv.control = init_bch(13, 8, 0x201b /* hw polynominal */);
|
|
if (!bch_priv.control) {
|
|
puts("Could not init_bch()\n");
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
/* BCH info that will be correct for SPL or overridden otherwise. */
|
|
nand->priv = &bch_priv;
|
|
#endif
|
|
|
|
/* Default ECC mode */
|
|
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.layout = &hw_bch8_nand_oob;
|
|
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
|
|
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
#ifdef CONFIG_AM33XX
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
#endif
|
|
omap_hwecc_init_bch(nand, NAND_ECC_READ);
|
|
#else
|
|
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
#else
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.layout = &hw_nand_oob;
|
|
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
|
|
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
omap_hwecc_init(nand);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
nand->read_buf = nand_read_buf16;
|
|
else
|
|
nand->read_buf = nand_read_buf;
|
|
nand->dev_ready = omap_spl_dev_ready;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|