mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
3a6591a86a
Jz4740 NAND flash controller can support: * MLC NAND as well as SLC NAND * all 8-bit/16-bit NAND flash devices * HAMMING and RS hardware ECC * automatic boot up from NAND flash devices nand_ecclayout is set up for 2GiB NAND chip mounted in Qi LB60. We'll bring up boot-from-NAND support in nand_spl/ in the future. Signed-off-by: Xiangfu Liu <xiangfu@openmobilefree.net> Acked-by: Daniel <zpxu@ingenic.cn> Signed-off-by: Shinya Kuribayashi <skuribay@pobox.com>
261 lines
6.1 KiB
C
261 lines
6.1 KiB
C
/*
|
|
* Platform independend driver for JZ4740.
|
|
*
|
|
* Copyright (c) 2007 Ingenic Semiconductor Inc.
|
|
* Author: <jlwei@ingenic.cn>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*/
|
|
#include <common.h>
|
|
|
|
#include <nand.h>
|
|
#include <asm/io.h>
|
|
#include <asm/jz4740.h>
|
|
|
|
#define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000)
|
|
#define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000)
|
|
#define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000)
|
|
|
|
#define BIT(x) (1 << (x))
|
|
#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
|
|
#define JZ_NAND_ECC_CTRL_RS BIT(2)
|
|
#define JZ_NAND_ECC_CTRL_RESET BIT(1)
|
|
#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
|
|
|
|
#define EMC_SMCR1_OPT_NAND 0x094c4400
|
|
/* Optimize the timing of nand */
|
|
|
|
static struct jz4740_emc * emc = (struct jz4740_emc *)JZ4740_EMC_BASE;
|
|
|
|
static struct nand_ecclayout qi_lb60_ecclayout_2gb = {
|
|
.eccbytes = 72,
|
|
.eccpos = {
|
|
12, 13, 14, 15, 16, 17, 18, 19,
|
|
20, 21, 22, 23, 24, 25, 26, 27,
|
|
28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43,
|
|
44, 45, 46, 47, 48, 49, 50, 51,
|
|
52, 53, 54, 55, 56, 57, 58, 59,
|
|
60, 61, 62, 63, 64, 65, 66, 67,
|
|
68, 69, 70, 71, 72, 73, 74, 75,
|
|
76, 77, 78, 79, 80, 81, 82, 83 },
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 10 },
|
|
{.offset = 84,
|
|
.length = 44 } }
|
|
};
|
|
|
|
static int is_reading;
|
|
|
|
static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
uint32_t reg;
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
if (ctrl & NAND_ALE)
|
|
this->IO_ADDR_W = JZ_NAND_ADDR_ADDR;
|
|
else if (ctrl & NAND_CLE)
|
|
this->IO_ADDR_W = JZ_NAND_CMD_ADDR;
|
|
else
|
|
this->IO_ADDR_W = JZ_NAND_DATA_ADDR;
|
|
|
|
reg = readl(&emc->nfcsr);
|
|
if (ctrl & NAND_NCE)
|
|
reg |= EMC_NFCSR_NFCE1;
|
|
else
|
|
reg &= ~EMC_NFCSR_NFCE1;
|
|
writel(reg, &emc->nfcsr);
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
static int jz_nand_device_ready(struct mtd_info *mtd)
|
|
{
|
|
return (readl(GPIO_PXPIN(2)) & 0x40000000) ? 1 : 0;
|
|
}
|
|
|
|
void board_nand_select_device(struct nand_chip *nand, int chip)
|
|
{
|
|
/*
|
|
* Don't use "chip" to address the NAND device,
|
|
* generate the cs from the address where it is encoded.
|
|
*/
|
|
}
|
|
|
|
static int jz_nand_rs_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
uint32_t status;
|
|
int i;
|
|
|
|
if (is_reading)
|
|
return 0;
|
|
|
|
do {
|
|
status = readl(&emc->nfints);
|
|
} while (!(status & EMC_NFINTS_ENCF));
|
|
|
|
/* disable ecc */
|
|
writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
|
|
|
|
for (i = 0; i < 9; i++)
|
|
ecc_code[i] = readb(&emc->nfpar[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
|
|
{
|
|
uint32_t reg;
|
|
|
|
writel(0, &emc->nfints);
|
|
reg = readl(&emc->nfecr);
|
|
reg |= JZ_NAND_ECC_CTRL_RESET;
|
|
reg |= JZ_NAND_ECC_CTRL_ENABLE;
|
|
reg |= JZ_NAND_ECC_CTRL_RS;
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
|
|
is_reading = 1;
|
|
break;
|
|
case NAND_ECC_WRITE:
|
|
reg |= JZ_NAND_ECC_CTRL_ENCODING;
|
|
is_reading = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
writel(reg, &emc->nfecr);
|
|
}
|
|
|
|
/* Correct 1~9-bit errors in 512-bytes data */
|
|
static void jz_rs_correct(unsigned char *dat, int idx, int mask)
|
|
{
|
|
int i;
|
|
|
|
idx--;
|
|
|
|
i = idx + (idx >> 3);
|
|
if (i >= 512)
|
|
return;
|
|
|
|
mask <<= (idx & 0x7);
|
|
|
|
dat[i] ^= mask & 0xff;
|
|
if (i < 511)
|
|
dat[i + 1] ^= (mask >> 8) & 0xff;
|
|
}
|
|
|
|
static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
int k;
|
|
uint32_t errcnt, index, mask, status;
|
|
|
|
/* Set PAR values */
|
|
const uint8_t all_ff_ecc[] = {
|
|
0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f };
|
|
|
|
if (read_ecc[0] == 0xff && read_ecc[1] == 0xff &&
|
|
read_ecc[2] == 0xff && read_ecc[3] == 0xff &&
|
|
read_ecc[4] == 0xff && read_ecc[5] == 0xff &&
|
|
read_ecc[6] == 0xff && read_ecc[7] == 0xff &&
|
|
read_ecc[8] == 0xff) {
|
|
for (k = 0; k < 9; k++)
|
|
writeb(all_ff_ecc[k], &emc->nfpar[k]);
|
|
} else {
|
|
for (k = 0; k < 9; k++)
|
|
writeb(read_ecc[k], &emc->nfpar[k]);
|
|
}
|
|
/* Set PRDY */
|
|
writel(readl(&emc->nfecr) | EMC_NFECR_PRDY, &emc->nfecr);
|
|
|
|
/* Wait for completion */
|
|
do {
|
|
status = readl(&emc->nfints);
|
|
} while (!(status & EMC_NFINTS_DECF));
|
|
|
|
/* disable ecc */
|
|
writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
|
|
|
|
/* Check decoding */
|
|
if (!(status & EMC_NFINTS_ERR))
|
|
return 0;
|
|
|
|
if (status & EMC_NFINTS_UNCOR) {
|
|
printf("uncorrectable ecc\n");
|
|
return -1;
|
|
}
|
|
|
|
errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
|
|
|
|
switch (errcnt) {
|
|
case 4:
|
|
index = (readl(&emc->nferr[3]) & EMC_NFERR_INDEX_MASK) >>
|
|
EMC_NFERR_INDEX_BIT;
|
|
mask = (readl(&emc->nferr[3]) & EMC_NFERR_MASK_MASK) >>
|
|
EMC_NFERR_MASK_BIT;
|
|
jz_rs_correct(dat, index, mask);
|
|
case 3:
|
|
index = (readl(&emc->nferr[2]) & EMC_NFERR_INDEX_MASK) >>
|
|
EMC_NFERR_INDEX_BIT;
|
|
mask = (readl(&emc->nferr[2]) & EMC_NFERR_MASK_MASK) >>
|
|
EMC_NFERR_MASK_BIT;
|
|
jz_rs_correct(dat, index, mask);
|
|
case 2:
|
|
index = (readl(&emc->nferr[1]) & EMC_NFERR_INDEX_MASK) >>
|
|
EMC_NFERR_INDEX_BIT;
|
|
mask = (readl(&emc->nferr[1]) & EMC_NFERR_MASK_MASK) >>
|
|
EMC_NFERR_MASK_BIT;
|
|
jz_rs_correct(dat, index, mask);
|
|
case 1:
|
|
index = (readl(&emc->nferr[0]) & EMC_NFERR_INDEX_MASK) >>
|
|
EMC_NFERR_INDEX_BIT;
|
|
mask = (readl(&emc->nferr[0]) & EMC_NFERR_MASK_MASK) >>
|
|
EMC_NFERR_MASK_BIT;
|
|
jz_rs_correct(dat, index, mask);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return errcnt;
|
|
}
|
|
|
|
/*
|
|
* Main initialization routine
|
|
*/
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = readl(&emc->nfcsr);
|
|
reg |= EMC_NFCSR_NFE1; /* EMC setup, Set NFE bit */
|
|
writel(reg, &emc->nfcsr);
|
|
|
|
writel(EMC_SMCR1_OPT_NAND, &emc->smcr[1]);
|
|
|
|
nand->IO_ADDR_R = JZ_NAND_DATA_ADDR;
|
|
nand->IO_ADDR_W = JZ_NAND_DATA_ADDR;
|
|
nand->cmd_ctrl = jz_nand_cmd_ctrl;
|
|
nand->dev_ready = jz_nand_device_ready;
|
|
nand->ecc.hwctl = jz_nand_hwctl;
|
|
nand->ecc.correct = jz_nand_rs_correct_data;
|
|
nand->ecc.calculate = jz_nand_rs_calculate_ecc;
|
|
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
|
|
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
|
|
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
nand->ecc.layout = &qi_lb60_ecclayout_2gb;
|
|
nand->chip_delay = 50;
|
|
nand->options = NAND_USE_FLASH_BBT;
|
|
|
|
return 0;
|
|
}
|