u-boot/test/dm/scmi.c
Marek Vasut fa847bb409 test: Wrap assert macros in ({ ... }) and fix missing semicolons
Wrap the assert macros in ({ ... }) so they can be safely used both as
right side argument as well as in conditionals without curly brackets
around them. In the process, find a bunch of missing semicolons, fix
them.

Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
2023-03-14 16:08:51 -06:00

257 lines
7.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020, Linaro Limited
*
* Tests scmi_agent uclass and the SCMI drivers implemented in other
* uclass devices probe when a SCMI server exposes resources.
*
* Note in test.dts the protocol@10 node in scmi node. Protocol 0x10 is not
* implemented in U-Boot SCMI components but the implementation is expected
* to not complain on unknown protocol IDs, as long as it is not used. Note
* in test.dts tests that SCMI drivers probing does not fail for such an
* unknown SCMI protocol ID.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <reset.h>
#include <asm/scmi_test.h>
#include <dm/device-internal.h>
#include <dm/test.h>
#include <linux/kconfig.h>
#include <power/regulator.h>
#include <test/ut.h>
static int ut_assert_scmi_state_preprobe(struct unit_test_state *uts)
{
struct sandbox_scmi_service *scmi_ctx = sandbox_scmi_service_ctx();
ut_assertnonnull(scmi_ctx);
ut_assertnull(scmi_ctx->agent);
return 0;
}
static int ut_assert_scmi_state_postprobe(struct unit_test_state *uts,
struct udevice *dev)
{
struct sandbox_scmi_devices *scmi_devices;
struct sandbox_scmi_service *scmi_ctx;
struct sandbox_scmi_agent *agent;
/* Device references to check context against test sequence */
scmi_devices = sandbox_scmi_devices_ctx(dev);
ut_assertnonnull(scmi_devices);
ut_asserteq(2, scmi_devices->clk_count);
ut_asserteq(1, scmi_devices->reset_count);
ut_asserteq(2, scmi_devices->regul_count);
/* State of the simulated SCMI server exposed */
scmi_ctx = sandbox_scmi_service_ctx();
ut_assertnonnull(scmi_ctx);
agent = scmi_ctx->agent;
ut_assertnonnull(agent);
ut_asserteq(3, agent->clk_count);
ut_assertnonnull(agent->clk);
ut_asserteq(1, agent->reset_count);
ut_assertnonnull(agent->reset);
ut_asserteq(2, agent->voltd_count);
ut_assertnonnull(agent->voltd);
return 0;
}
static int load_sandbox_scmi_test_devices(struct unit_test_state *uts,
struct udevice **dev)
{
int ret;
ret = ut_assert_scmi_state_preprobe(uts);
if (ret)
return ret;
ut_assertok(uclass_get_device_by_name(UCLASS_MISC, "sandbox_scmi",
dev));
ut_assertnonnull(*dev);
return ut_assert_scmi_state_postprobe(uts, *dev);
}
static int release_sandbox_scmi_test_devices(struct unit_test_state *uts,
struct udevice *dev)
{
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
/* Not sure test devices are fully removed, agent may not be visible */
return 0;
}
/*
* Test SCMI states when loading and releasing resources
* related to SCMI drivers.
*/
static int dm_test_scmi_sandbox_agent(struct unit_test_state *uts)
{
struct udevice *dev = NULL;
int ret;
ret = load_sandbox_scmi_test_devices(uts, &dev);
if (!ret)
ret = release_sandbox_scmi_test_devices(uts, dev);
return ret;
}
DM_TEST(dm_test_scmi_sandbox_agent, UT_TESTF_SCAN_FDT);
static int dm_test_scmi_clocks(struct unit_test_state *uts)
{
struct sandbox_scmi_devices *scmi_devices;
struct sandbox_scmi_service *scmi_ctx;
struct sandbox_scmi_agent *agent;
struct udevice *dev;
int ret_dev;
int ret;
ret = load_sandbox_scmi_test_devices(uts, &dev);
if (ret)
return ret;
scmi_devices = sandbox_scmi_devices_ctx(dev);
ut_assertnonnull(scmi_devices);
scmi_ctx = sandbox_scmi_service_ctx();
ut_assertnonnull(scmi_ctx);
agent = scmi_ctx->agent;
ut_assertnonnull(agent);
/* Test SCMI clocks rate manipulation */
ut_asserteq(333, agent->clk[0].rate);
ut_asserteq(200, agent->clk[1].rate);
ut_asserteq(1000, agent->clk[2].rate);
ut_asserteq(1000, clk_get_rate(&scmi_devices->clk[0]));
ut_asserteq(333, clk_get_rate(&scmi_devices->clk[1]));
ret_dev = clk_set_rate(&scmi_devices->clk[1], 1088);
ut_assert(!ret_dev || ret_dev == 1088);
ut_asserteq(1088, agent->clk[0].rate);
ut_asserteq(200, agent->clk[1].rate);
ut_asserteq(1000, agent->clk[2].rate);
ut_asserteq(1000, clk_get_rate(&scmi_devices->clk[0]));
ut_asserteq(1088, clk_get_rate(&scmi_devices->clk[1]));
/* restore original rate for further tests */
ret_dev = clk_set_rate(&scmi_devices->clk[1], 333);
ut_assert(!ret_dev || ret_dev == 333);
/* Test SCMI clocks gating manipulation */
ut_assert(!agent->clk[0].enabled);
ut_assert(!agent->clk[1].enabled);
ut_assert(!agent->clk[2].enabled);
ut_asserteq(0, clk_enable(&scmi_devices->clk[1]));
ut_assert(agent->clk[0].enabled);
ut_assert(!agent->clk[1].enabled);
ut_assert(!agent->clk[2].enabled);
ut_assertok(clk_disable(&scmi_devices->clk[1]));
ut_assert(!agent->clk[0].enabled);
ut_assert(!agent->clk[1].enabled);
ut_assert(!agent->clk[2].enabled);
return release_sandbox_scmi_test_devices(uts, dev);
}
DM_TEST(dm_test_scmi_clocks, UT_TESTF_SCAN_FDT);
static int dm_test_scmi_resets(struct unit_test_state *uts)
{
struct sandbox_scmi_devices *scmi_devices;
struct sandbox_scmi_service *scmi_ctx;
struct sandbox_scmi_agent *agent;
struct udevice *dev = NULL;
int ret;
ret = load_sandbox_scmi_test_devices(uts, &dev);
if (ret)
return ret;
scmi_devices = sandbox_scmi_devices_ctx(dev);
ut_assertnonnull(scmi_devices);
scmi_ctx = sandbox_scmi_service_ctx();
ut_assertnonnull(scmi_ctx);
agent = scmi_ctx->agent;
ut_assertnonnull(agent);
/* Test SCMI resect controller manipulation */
ut_assert(!agent->reset[0].asserted);
ut_assertok(reset_assert(&scmi_devices->reset[0]));
ut_assert(agent->reset[0].asserted);
ut_assertok(reset_deassert(&scmi_devices->reset[0]));
ut_assert(!agent->reset[0].asserted);
return release_sandbox_scmi_test_devices(uts, dev);
}
DM_TEST(dm_test_scmi_resets, UT_TESTF_SCAN_FDT);
static int dm_test_scmi_voltage_domains(struct unit_test_state *uts)
{
struct sandbox_scmi_devices *scmi_devices;
struct sandbox_scmi_service *scmi_ctx;
struct sandbox_scmi_agent *agent;
struct dm_regulator_uclass_plat *uc_pdata;
struct udevice *dev;
struct udevice *regul0_dev;
ut_assertok(load_sandbox_scmi_test_devices(uts, &dev));
scmi_devices = sandbox_scmi_devices_ctx(dev);
ut_assertnonnull(scmi_devices);
scmi_ctx = sandbox_scmi_service_ctx();
ut_assertnonnull(scmi_ctx);
agent = scmi_ctx->agent;
ut_assertnonnull(agent);
/* Set/Get an SCMI voltage domain level */
regul0_dev = scmi_devices->regul[0];
ut_assert(regul0_dev);
uc_pdata = dev_get_uclass_plat(regul0_dev);
ut_assert(uc_pdata);
ut_assertok(regulator_set_value(regul0_dev, uc_pdata->min_uV));
ut_asserteq(agent->voltd[0].voltage_uv, uc_pdata->min_uV);
ut_assert(regulator_get_value(regul0_dev) == uc_pdata->min_uV);
ut_assertok(regulator_set_value(regul0_dev, uc_pdata->max_uV));
ut_asserteq(agent->voltd[0].voltage_uv, uc_pdata->max_uV);
ut_assert(regulator_get_value(regul0_dev) == uc_pdata->max_uV);
/* Enable/disable SCMI voltage domains */
ut_assertok(regulator_set_enable(scmi_devices->regul[0], false));
ut_assertok(regulator_set_enable(scmi_devices->regul[1], false));
ut_assert(!agent->voltd[0].enabled);
ut_assert(!agent->voltd[1].enabled);
ut_assertok(regulator_set_enable(scmi_devices->regul[0], true));
ut_assert(agent->voltd[0].enabled);
ut_assert(!agent->voltd[1].enabled);
ut_assertok(regulator_set_enable(scmi_devices->regul[1], true));
ut_assert(agent->voltd[0].enabled);
ut_assert(agent->voltd[1].enabled);
ut_assertok(regulator_set_enable(scmi_devices->regul[0], false));
ut_assert(!agent->voltd[0].enabled);
ut_assert(agent->voltd[1].enabled);
return release_sandbox_scmi_test_devices(uts, dev);
}
DM_TEST(dm_test_scmi_voltage_domains, UT_TESTF_SCAN_FDT);