mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-10 04:08:52 +00:00
8d1f268204
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
1248 lines
31 KiB
C
1248 lines
31 KiB
C
/*
|
|
* arch/ppc/cpu/ppc4xx/44x_spd_ddr.c
|
|
* This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a
|
|
* DDR controller. Those are 440GP/GX/EP/GR.
|
|
*
|
|
* (C) Copyright 2001
|
|
* Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
|
|
*
|
|
* Based on code by:
|
|
*
|
|
* Kenneth Johansson ,Ericsson AB.
|
|
* kenneth.johansson@etx.ericsson.se
|
|
*
|
|
* hacked up by bill hunter. fixed so we could run before
|
|
* serial_init and console_init. previous version avoided this by
|
|
* running out of cache memory during serial/console init, then running
|
|
* this code later.
|
|
*
|
|
* (C) Copyright 2002
|
|
* Jun Gu, Artesyn Technology, jung@artesyncp.com
|
|
* Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
|
|
*
|
|
* (C) Copyright 2005-2007
|
|
* Stefan Roese, DENX Software Engineering, sr@denx.de.
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
/* define DEBUG for debugging output (obviously ;-)) */
|
|
#if 0
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#include <common.h>
|
|
#include <asm/processor.h>
|
|
#include <i2c.h>
|
|
#include <ppc4xx.h>
|
|
#include <asm/mmu.h>
|
|
|
|
#include "ecc.h"
|
|
|
|
#if defined(CONFIG_SPD_EEPROM) && \
|
|
(defined(CONFIG_440GP) || defined(CONFIG_440GX) || \
|
|
defined(CONFIG_440EP) || defined(CONFIG_440GR))
|
|
|
|
/*
|
|
* Set default values
|
|
*/
|
|
#ifndef CONFIG_SYS_I2C_SPEED
|
|
#define CONFIG_SYS_I2C_SPEED 50000
|
|
#endif
|
|
|
|
#define ONE_BILLION 1000000000
|
|
|
|
/*
|
|
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
|
|
*/
|
|
void __spd_ddr_init_hang (void)
|
|
{
|
|
hang ();
|
|
}
|
|
void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
|
|
|
|
/*-----------------------------------------------------------------------------+
|
|
| General Definition
|
|
+-----------------------------------------------------------------------------*/
|
|
#define DEFAULT_SPD_ADDR1 0x53
|
|
#define DEFAULT_SPD_ADDR2 0x52
|
|
#define MAXBANKS 4 /* at most 4 dimm banks */
|
|
#define MAX_SPD_BYTES 256
|
|
#define NUMHALFCYCLES 4
|
|
#define NUMMEMTESTS 8
|
|
#define NUMMEMWORDS 8
|
|
#define MAXBXCR 4
|
|
#define TRUE 1
|
|
#define FALSE 0
|
|
|
|
/*
|
|
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
|
|
* region. Right now the cache should still be disabled in U-Boot because of the
|
|
* EMAC driver, that need it's buffer descriptor to be located in non cached
|
|
* memory.
|
|
*
|
|
* If at some time this restriction doesn't apply anymore, just define
|
|
* CONFIG_4xx_DCACHE in the board config file and this code should setup
|
|
* everything correctly.
|
|
*/
|
|
#ifdef CONFIG_4xx_DCACHE
|
|
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
|
|
#else
|
|
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
|
|
#endif
|
|
|
|
/* bank_parms is used to sort the bank sizes by descending order */
|
|
struct bank_param {
|
|
unsigned long cr;
|
|
unsigned long bank_size_bytes;
|
|
};
|
|
|
|
typedef struct bank_param BANKPARMS;
|
|
|
|
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
|
|
extern const unsigned char cfg_simulate_spd_eeprom[128];
|
|
#endif
|
|
|
|
static unsigned char spd_read(uchar chip, uint addr);
|
|
static void get_spd_info(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void check_mem_type(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void check_volt_type(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void program_cfg0(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void program_cfg1(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void program_rtr(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void program_tr0(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
static void program_tr1(void);
|
|
|
|
static unsigned long program_bxcr(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks);
|
|
|
|
/*
|
|
* This function is reading data from the DIMM module EEPROM over the SPD bus
|
|
* and uses that to program the sdram controller.
|
|
*
|
|
* This works on boards that has the same schematics that the AMCC walnut has.
|
|
*
|
|
* BUG: Don't handle ECC memory
|
|
* BUG: A few values in the TR register is currently hardcoded
|
|
*/
|
|
long int spd_sdram(void) {
|
|
unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
|
|
unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
|
|
unsigned long total_size;
|
|
unsigned long cfg0;
|
|
unsigned long mcsts;
|
|
unsigned long num_dimm_banks; /* on board dimm banks */
|
|
|
|
num_dimm_banks = sizeof(iic0_dimm_addr);
|
|
|
|
/*
|
|
* Make sure I2C controller is initialized
|
|
* before continuing.
|
|
*/
|
|
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
|
|
|
|
/*
|
|
* Read the SPD information using I2C interface. Check to see if the
|
|
* DIMM slots are populated.
|
|
*/
|
|
get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* Check the memory type for the dimms plugged.
|
|
*/
|
|
check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* Check the voltage type for the dimms plugged.
|
|
*/
|
|
check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
#if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR)
|
|
/*
|
|
* Soft-reset SDRAM controller.
|
|
*/
|
|
mtsdr(SDR0_SRST, SDR0_SRST_DMC);
|
|
mtsdr(SDR0_SRST, 0x00000000);
|
|
#endif
|
|
|
|
/*
|
|
* program 440GP SDRAM controller options (SDRAM0_CFG0)
|
|
*/
|
|
program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* program 440GP SDRAM controller options (SDRAM0_CFG1)
|
|
*/
|
|
program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* program SDRAM refresh register (SDRAM0_RTR)
|
|
*/
|
|
program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* program SDRAM Timing Register 0 (SDRAM0_TR0)
|
|
*/
|
|
program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
/*
|
|
* program the BxCR registers to find out total sdram installed
|
|
*/
|
|
total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
|
|
num_dimm_banks);
|
|
|
|
#ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */
|
|
/* and program tlb entries for this size (dynamic) */
|
|
program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE);
|
|
#endif
|
|
|
|
/*
|
|
* program SDRAM Clock Timing Register (SDRAM0_CLKTR)
|
|
*/
|
|
mtsdram(SDRAM0_CLKTR, 0x40000000);
|
|
|
|
/*
|
|
* delay to ensure 200 usec has elapsed
|
|
*/
|
|
udelay(400);
|
|
|
|
/*
|
|
* enable the memory controller
|
|
*/
|
|
mfsdram(SDRAM0_CFG0, cfg0);
|
|
mtsdram(SDRAM0_CFG0, cfg0 | SDRAM_CFG0_DCEN);
|
|
|
|
/*
|
|
* wait for SDRAM_CFG0_DC_EN to complete
|
|
*/
|
|
while (1) {
|
|
mfsdram(SDRAM0_MCSTS, mcsts);
|
|
if ((mcsts & SDRAM_MCSTS_MRSC) != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* program SDRAM Timing Register 1, adding some delays
|
|
*/
|
|
program_tr1();
|
|
|
|
#ifdef CONFIG_DDR_ECC
|
|
/*
|
|
* If ecc is enabled, initialize the parity bits.
|
|
*/
|
|
ecc_init(CONFIG_SYS_SDRAM_BASE, total_size);
|
|
#endif
|
|
|
|
return total_size;
|
|
}
|
|
|
|
static unsigned char spd_read(uchar chip, uint addr)
|
|
{
|
|
unsigned char data[2];
|
|
|
|
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
|
|
if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) {
|
|
/*
|
|
* Onboard spd eeprom requested -> simulate values
|
|
*/
|
|
return cfg_simulate_spd_eeprom[addr];
|
|
}
|
|
#endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */
|
|
|
|
if (i2c_probe(chip) == 0) {
|
|
if (i2c_read(chip, addr, 1, data, 1) == 0) {
|
|
return data[0];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_spd_info(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long dimm_found;
|
|
unsigned char num_of_bytes;
|
|
unsigned char total_size;
|
|
|
|
dimm_found = FALSE;
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
num_of_bytes = 0;
|
|
total_size = 0;
|
|
|
|
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
|
|
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
|
|
|
|
if ((num_of_bytes != 0) && (total_size != 0)) {
|
|
dimm_populated[dimm_num] = TRUE;
|
|
dimm_found = TRUE;
|
|
debug("DIMM slot %lu: populated\n", dimm_num);
|
|
} else {
|
|
dimm_populated[dimm_num] = FALSE;
|
|
debug("DIMM slot %lu: Not populated\n", dimm_num);
|
|
}
|
|
}
|
|
|
|
if (dimm_found == FALSE) {
|
|
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
}
|
|
|
|
static void check_mem_type(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned char dimm_type;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
|
|
switch (dimm_type) {
|
|
case 7:
|
|
debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
|
|
break;
|
|
default:
|
|
printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
|
|
dimm_num);
|
|
printf("Only DDR SDRAM DIMMs are supported.\n");
|
|
printf("Replace the DIMM module with a supported DIMM.\n\n");
|
|
spd_ddr_init_hang ();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void check_volt_type(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long voltage_type;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
|
|
if (voltage_type != 0x04) {
|
|
printf("ERROR: DIMM %lu with unsupported voltage level.\n",
|
|
dimm_num);
|
|
spd_ddr_init_hang ();
|
|
} else {
|
|
debug("DIMM %lu voltage level supported.\n", dimm_num);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void program_cfg0(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long cfg0;
|
|
unsigned long ecc_enabled;
|
|
unsigned char ecc;
|
|
unsigned char attributes;
|
|
unsigned long data_width;
|
|
unsigned long dimm_32bit;
|
|
unsigned long dimm_64bit;
|
|
|
|
/*
|
|
* get Memory Controller Options 0 data
|
|
*/
|
|
mfsdram(SDRAM0_CFG0, cfg0);
|
|
|
|
/*
|
|
* clear bits
|
|
*/
|
|
cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
|
|
SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
|
|
SDRAM_CFG0_DMWD_MASK |
|
|
SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
|
|
|
|
|
|
/*
|
|
* FIXME: assume the DDR SDRAMs in both banks are the same
|
|
*/
|
|
ecc_enabled = TRUE;
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
|
|
if (ecc != 0x02) {
|
|
ecc_enabled = FALSE;
|
|
}
|
|
|
|
/*
|
|
* program Registered DIMM Enable
|
|
*/
|
|
attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
|
|
if ((attributes & 0x02) != 0x00) {
|
|
cfg0 |= SDRAM_CFG0_RDEN;
|
|
}
|
|
|
|
/*
|
|
* program DDR SDRAM Data Width
|
|
*/
|
|
data_width =
|
|
(unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
|
|
(((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
|
|
if (data_width == 64 || data_width == 72) {
|
|
dimm_64bit = TRUE;
|
|
cfg0 |= SDRAM_CFG0_DMWD_64;
|
|
} else if (data_width == 32 || data_width == 40) {
|
|
dimm_32bit = TRUE;
|
|
cfg0 |= SDRAM_CFG0_DMWD_32;
|
|
} else {
|
|
printf("WARNING: DIMM with datawidth of %lu bits.\n",
|
|
data_width);
|
|
printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* program Memory Data Error Checking
|
|
*/
|
|
if (ecc_enabled == TRUE) {
|
|
cfg0 |= SDRAM_CFG0_MCHK_GEN;
|
|
} else {
|
|
cfg0 |= SDRAM_CFG0_MCHK_NON;
|
|
}
|
|
|
|
/*
|
|
* program Page Management Unit (0 == enabled)
|
|
*/
|
|
cfg0 &= ~SDRAM_CFG0_PMUD;
|
|
|
|
/*
|
|
* program Memory Controller Options 0
|
|
* Note: DCEN must be enabled after all DDR SDRAM controller
|
|
* configuration registers get initialized.
|
|
*/
|
|
mtsdram(SDRAM0_CFG0, cfg0);
|
|
}
|
|
|
|
static void program_cfg1(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long cfg1;
|
|
mfsdram(SDRAM0_CFG1, cfg1);
|
|
|
|
/*
|
|
* Self-refresh exit, disable PM
|
|
*/
|
|
cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
|
|
|
|
/*
|
|
* program Memory Controller Options 1
|
|
*/
|
|
mtsdram(SDRAM0_CFG1, cfg1);
|
|
}
|
|
|
|
static void program_rtr(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long bus_period_x_10;
|
|
unsigned long refresh_rate = 0;
|
|
unsigned char refresh_rate_type;
|
|
unsigned long refresh_interval;
|
|
unsigned long sdram_rtr;
|
|
PPC4xx_SYS_INFO sys_info;
|
|
|
|
/*
|
|
* get the board info
|
|
*/
|
|
get_sys_info(&sys_info);
|
|
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
|
|
switch (refresh_rate_type) {
|
|
case 0x00:
|
|
refresh_rate = 15625;
|
|
break;
|
|
case 0x01:
|
|
refresh_rate = 15625/4;
|
|
break;
|
|
case 0x02:
|
|
refresh_rate = 15625/2;
|
|
break;
|
|
case 0x03:
|
|
refresh_rate = 15626*2;
|
|
break;
|
|
case 0x04:
|
|
refresh_rate = 15625*4;
|
|
break;
|
|
case 0x05:
|
|
refresh_rate = 15625*8;
|
|
break;
|
|
default:
|
|
printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
|
|
dimm_num);
|
|
printf("Replace the DIMM module with a supported DIMM.\n");
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
refresh_interval = refresh_rate * 10 / bus_period_x_10;
|
|
sdram_rtr = (refresh_interval & 0x3ff8) << 16;
|
|
|
|
/*
|
|
* program Refresh Timer Register (SDRAM0_RTR)
|
|
*/
|
|
mtsdram(SDRAM0_RTR, sdram_rtr);
|
|
}
|
|
|
|
static void program_tr0(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long tr0;
|
|
unsigned char wcsbc;
|
|
unsigned char t_rp_ns;
|
|
unsigned char t_rcd_ns;
|
|
unsigned char t_ras_ns;
|
|
unsigned long t_rp_clk;
|
|
unsigned long t_ras_rcd_clk;
|
|
unsigned long t_rcd_clk;
|
|
unsigned long t_rfc_clk;
|
|
unsigned long plb_check;
|
|
unsigned char cas_bit;
|
|
unsigned long cas_index;
|
|
unsigned char cas_2_0_available;
|
|
unsigned char cas_2_5_available;
|
|
unsigned char cas_3_0_available;
|
|
unsigned long cycle_time_ns_x_10[3];
|
|
unsigned long tcyc_3_0_ns_x_10;
|
|
unsigned long tcyc_2_5_ns_x_10;
|
|
unsigned long tcyc_2_0_ns_x_10;
|
|
unsigned long tcyc_reg;
|
|
unsigned long bus_period_x_10;
|
|
PPC4xx_SYS_INFO sys_info;
|
|
unsigned long residue;
|
|
|
|
/*
|
|
* get the board info
|
|
*/
|
|
get_sys_info(&sys_info);
|
|
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
|
|
|
|
/*
|
|
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
|
|
*/
|
|
mfsdram(SDRAM0_TR0, tr0);
|
|
tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
|
|
SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
|
|
SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
|
|
SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
|
|
|
|
/*
|
|
* initialization
|
|
*/
|
|
wcsbc = 0;
|
|
t_rp_ns = 0;
|
|
t_rcd_ns = 0;
|
|
t_ras_ns = 0;
|
|
cas_2_0_available = TRUE;
|
|
cas_2_5_available = TRUE;
|
|
cas_3_0_available = TRUE;
|
|
tcyc_2_0_ns_x_10 = 0;
|
|
tcyc_2_5_ns_x_10 = 0;
|
|
tcyc_3_0_ns_x_10 = 0;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
|
|
t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
|
|
t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
|
|
t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
|
|
cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
|
|
|
|
for (cas_index = 0; cas_index < 3; cas_index++) {
|
|
switch (cas_index) {
|
|
case 0:
|
|
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
|
|
break;
|
|
case 1:
|
|
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
|
|
break;
|
|
default:
|
|
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
|
|
break;
|
|
}
|
|
|
|
if ((tcyc_reg & 0x0F) >= 10) {
|
|
printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
|
|
dimm_num);
|
|
spd_ddr_init_hang ();
|
|
}
|
|
|
|
cycle_time_ns_x_10[cas_index] =
|
|
(((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
|
|
}
|
|
|
|
cas_index = 0;
|
|
|
|
if ((cas_bit & 0x80) != 0) {
|
|
cas_index += 3;
|
|
} else if ((cas_bit & 0x40) != 0) {
|
|
cas_index += 2;
|
|
} else if ((cas_bit & 0x20) != 0) {
|
|
cas_index += 1;
|
|
}
|
|
|
|
if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
|
|
tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
|
|
cas_index++;
|
|
} else {
|
|
if (cas_index != 0) {
|
|
cas_index++;
|
|
}
|
|
cas_3_0_available = FALSE;
|
|
}
|
|
|
|
if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
|
|
tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
|
|
cas_index++;
|
|
} else {
|
|
if (cas_index != 0) {
|
|
cas_index++;
|
|
}
|
|
cas_2_5_available = FALSE;
|
|
}
|
|
|
|
if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
|
|
tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
|
|
cas_index++;
|
|
} else {
|
|
if (cas_index != 0) {
|
|
cas_index++;
|
|
}
|
|
cas_2_0_available = FALSE;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Program SD_WR and SD_WCSBC fields
|
|
*/
|
|
tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
|
|
switch (wcsbc) {
|
|
case 0:
|
|
tr0 |= SDRAM_TR0_SDWD_0_CLK;
|
|
break;
|
|
default:
|
|
tr0 |= SDRAM_TR0_SDWD_1_CLK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Program SD_CASL field
|
|
*/
|
|
if ((cas_2_0_available == TRUE) &&
|
|
(bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
|
|
tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
|
|
} else if ((cas_2_5_available == TRUE) &&
|
|
(bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
|
|
tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
|
|
} else if ((cas_3_0_available == TRUE) &&
|
|
(bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
|
|
tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
|
|
} else {
|
|
printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
|
|
printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
|
|
printf("Make sure the PLB speed is within the supported range.\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
|
|
/*
|
|
* Calculate Trp in clock cycles and round up if necessary
|
|
* Program SD_PTA field
|
|
*/
|
|
t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
|
|
plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
|
|
if (sys_info.freqPLB != plb_check) {
|
|
t_rp_clk++;
|
|
}
|
|
switch ((unsigned long)t_rp_clk) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
tr0 |= SDRAM_TR0_SDPA_2_CLK;
|
|
break;
|
|
case 3:
|
|
tr0 |= SDRAM_TR0_SDPA_3_CLK;
|
|
break;
|
|
default:
|
|
tr0 |= SDRAM_TR0_SDPA_4_CLK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Program SD_CTP field
|
|
*/
|
|
t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
|
|
plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
|
|
if (sys_info.freqPLB != plb_check) {
|
|
t_ras_rcd_clk++;
|
|
}
|
|
switch (t_ras_rcd_clk) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
tr0 |= SDRAM_TR0_SDCP_2_CLK;
|
|
break;
|
|
case 3:
|
|
tr0 |= SDRAM_TR0_SDCP_3_CLK;
|
|
break;
|
|
case 4:
|
|
tr0 |= SDRAM_TR0_SDCP_4_CLK;
|
|
break;
|
|
default:
|
|
tr0 |= SDRAM_TR0_SDCP_5_CLK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Program SD_LDF field
|
|
*/
|
|
tr0 |= SDRAM_TR0_SDLD_2_CLK;
|
|
|
|
/*
|
|
* Program SD_RFTA field
|
|
* FIXME tRFC hardcoded as 75 nanoseconds
|
|
*/
|
|
t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
|
|
residue = sys_info.freqPLB % (ONE_BILLION / 75);
|
|
if (residue >= (ONE_BILLION / 150)) {
|
|
t_rfc_clk++;
|
|
}
|
|
switch (t_rfc_clk) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
tr0 |= SDRAM_TR0_SDRA_6_CLK;
|
|
break;
|
|
case 7:
|
|
tr0 |= SDRAM_TR0_SDRA_7_CLK;
|
|
break;
|
|
case 8:
|
|
tr0 |= SDRAM_TR0_SDRA_8_CLK;
|
|
break;
|
|
case 9:
|
|
tr0 |= SDRAM_TR0_SDRA_9_CLK;
|
|
break;
|
|
case 10:
|
|
tr0 |= SDRAM_TR0_SDRA_10_CLK;
|
|
break;
|
|
case 11:
|
|
tr0 |= SDRAM_TR0_SDRA_11_CLK;
|
|
break;
|
|
case 12:
|
|
tr0 |= SDRAM_TR0_SDRA_12_CLK;
|
|
break;
|
|
default:
|
|
tr0 |= SDRAM_TR0_SDRA_13_CLK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Program SD_RCD field
|
|
*/
|
|
t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
|
|
plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
|
|
if (sys_info.freqPLB != plb_check) {
|
|
t_rcd_clk++;
|
|
}
|
|
switch (t_rcd_clk) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
tr0 |= SDRAM_TR0_SDRD_2_CLK;
|
|
break;
|
|
case 3:
|
|
tr0 |= SDRAM_TR0_SDRD_3_CLK;
|
|
break;
|
|
default:
|
|
tr0 |= SDRAM_TR0_SDRD_4_CLK;
|
|
break;
|
|
}
|
|
|
|
debug("tr0: %x\n", tr0);
|
|
mtsdram(SDRAM0_TR0, tr0);
|
|
}
|
|
|
|
static int short_mem_test(void)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long bxcr_num;
|
|
unsigned long *membase;
|
|
const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
|
|
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
|
|
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
|
|
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
|
|
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
|
|
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
|
|
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
|
|
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
|
|
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
|
|
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
|
|
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
|
|
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
|
|
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
|
|
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
|
|
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}};
|
|
|
|
for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
|
|
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bxcr_num << 2));
|
|
if ((mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
|
|
/* Bank is enabled */
|
|
membase = (unsigned long*)
|
|
(mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBA_MASK);
|
|
|
|
/*
|
|
* Run the short memory test
|
|
*/
|
|
for (i = 0; i < NUMMEMTESTS; i++) {
|
|
for (j = 0; j < NUMMEMWORDS; j++) {
|
|
/* printf("bank enabled base:%x\n", &membase[j]); */
|
|
membase[j] = test[i][j];
|
|
ppcDcbf((unsigned long)&(membase[j]));
|
|
}
|
|
|
|
for (j = 0; j < NUMMEMWORDS; j++) {
|
|
if (membase[j] != test[i][j]) {
|
|
ppcDcbf((unsigned long)&(membase[j]));
|
|
return 0;
|
|
}
|
|
ppcDcbf((unsigned long)&(membase[j]));
|
|
}
|
|
|
|
if (j < NUMMEMWORDS)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* see if the rdclt value passed
|
|
*/
|
|
if (i < NUMMEMTESTS)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void program_tr1(void)
|
|
{
|
|
unsigned long tr0;
|
|
unsigned long tr1;
|
|
unsigned long cfg0;
|
|
unsigned long ecc_temp;
|
|
unsigned long dlycal;
|
|
unsigned long dly_val;
|
|
unsigned long k;
|
|
unsigned long max_pass_length;
|
|
unsigned long current_pass_length;
|
|
unsigned long current_fail_length;
|
|
unsigned long current_start;
|
|
unsigned long rdclt;
|
|
unsigned long rdclt_offset;
|
|
long max_start;
|
|
long max_end;
|
|
long rdclt_average;
|
|
unsigned char window_found;
|
|
unsigned char fail_found;
|
|
unsigned char pass_found;
|
|
PPC4xx_SYS_INFO sys_info;
|
|
|
|
/*
|
|
* get the board info
|
|
*/
|
|
get_sys_info(&sys_info);
|
|
|
|
/*
|
|
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
|
|
*/
|
|
mfsdram(SDRAM0_TR1, tr1);
|
|
tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
|
|
SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
|
|
|
|
mfsdram(SDRAM0_TR0, tr0);
|
|
if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
|
|
(sys_info.freqPLB > 100000000)) {
|
|
tr1 |= SDRAM_TR1_RDSS_TR2;
|
|
tr1 |= SDRAM_TR1_RDSL_STAGE3;
|
|
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
|
|
} else {
|
|
tr1 |= SDRAM_TR1_RDSS_TR1;
|
|
tr1 |= SDRAM_TR1_RDSL_STAGE2;
|
|
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
|
|
}
|
|
|
|
/*
|
|
* save CFG0 ECC setting to a temporary variable and turn ECC off
|
|
*/
|
|
mfsdram(SDRAM0_CFG0, cfg0);
|
|
ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
|
|
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
|
|
|
|
/*
|
|
* get the delay line calibration register value
|
|
*/
|
|
mfsdram(SDRAM0_DLYCAL, dlycal);
|
|
dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
|
|
|
|
max_pass_length = 0;
|
|
max_start = 0;
|
|
max_end = 0;
|
|
current_pass_length = 0;
|
|
current_fail_length = 0;
|
|
current_start = 0;
|
|
rdclt_offset = 0;
|
|
window_found = FALSE;
|
|
fail_found = FALSE;
|
|
pass_found = FALSE;
|
|
debug("Starting memory test ");
|
|
|
|
for (k = 0; k < NUMHALFCYCLES; k++) {
|
|
for (rdclt = 0; rdclt < dly_val; rdclt++) {
|
|
/*
|
|
* Set the timing reg for the test.
|
|
*/
|
|
mtsdram(SDRAM0_TR1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
|
|
|
|
if (short_mem_test()) {
|
|
if (fail_found == TRUE) {
|
|
pass_found = TRUE;
|
|
if (current_pass_length == 0) {
|
|
current_start = rdclt_offset + rdclt;
|
|
}
|
|
|
|
current_fail_length = 0;
|
|
current_pass_length++;
|
|
|
|
if (current_pass_length > max_pass_length) {
|
|
max_pass_length = current_pass_length;
|
|
max_start = current_start;
|
|
max_end = rdclt_offset + rdclt;
|
|
}
|
|
}
|
|
} else {
|
|
current_pass_length = 0;
|
|
current_fail_length++;
|
|
|
|
if (current_fail_length >= (dly_val>>2)) {
|
|
if (fail_found == FALSE) {
|
|
fail_found = TRUE;
|
|
} else if (pass_found == TRUE) {
|
|
window_found = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
debug(".");
|
|
|
|
if (window_found == TRUE) {
|
|
break;
|
|
}
|
|
|
|
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
|
|
rdclt_offset += dly_val;
|
|
}
|
|
debug("\n");
|
|
|
|
/*
|
|
* make sure we find the window
|
|
*/
|
|
if (window_found == FALSE) {
|
|
printf("ERROR: Cannot determine a common read delay.\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
|
|
/*
|
|
* restore the orignal ECC setting
|
|
*/
|
|
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
|
|
|
|
/*
|
|
* set the SDRAM TR1 RDCD value
|
|
*/
|
|
tr1 &= ~SDRAM_TR1_RDCD_MASK;
|
|
if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
|
|
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
|
|
} else {
|
|
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
|
|
}
|
|
|
|
/*
|
|
* set the SDRAM TR1 RDCLT value
|
|
*/
|
|
tr1 &= ~SDRAM_TR1_RDCT_MASK;
|
|
while (max_end >= (dly_val << 1)) {
|
|
max_end -= (dly_val << 1);
|
|
max_start -= (dly_val << 1);
|
|
}
|
|
|
|
rdclt_average = ((max_start + max_end) >> 1);
|
|
|
|
if (rdclt_average < 0) {
|
|
rdclt_average = 0;
|
|
}
|
|
|
|
if (rdclt_average >= dly_val) {
|
|
rdclt_average -= dly_val;
|
|
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
|
|
}
|
|
tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
|
|
|
|
debug("tr1: %x\n", tr1);
|
|
|
|
/*
|
|
* program SDRAM Timing Register 1 TR1
|
|
*/
|
|
mtsdram(SDRAM0_TR1, tr1);
|
|
}
|
|
|
|
static unsigned long program_bxcr(unsigned long *dimm_populated,
|
|
unsigned char *iic0_dimm_addr,
|
|
unsigned long num_dimm_banks)
|
|
{
|
|
unsigned long dimm_num;
|
|
unsigned long bank_base_addr;
|
|
unsigned long cr;
|
|
unsigned long i;
|
|
unsigned long j;
|
|
unsigned long temp;
|
|
unsigned char num_row_addr;
|
|
unsigned char num_col_addr;
|
|
unsigned char num_banks;
|
|
unsigned char bank_size_id;
|
|
unsigned long ctrl_bank_num[MAXBANKS];
|
|
unsigned long bx_cr_num;
|
|
unsigned long largest_size_index;
|
|
unsigned long largest_size;
|
|
unsigned long current_size_index;
|
|
BANKPARMS bank_parms[MAXBXCR];
|
|
unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */
|
|
unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/
|
|
|
|
/*
|
|
* Set the BxCR regs. First, wipe out the bank config registers.
|
|
*/
|
|
for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
|
|
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bx_cr_num << 2));
|
|
mtdcr(SDRAM0_CFGDATA, 0x00000000);
|
|
bank_parms[bx_cr_num].bank_size_bytes = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BAMBOO
|
|
/*
|
|
* This next section is hardware dependent and must be programmed
|
|
* to match the hardware. For bamboo, the following holds...
|
|
* 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard)
|
|
* 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1
|
|
* 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1
|
|
* 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3
|
|
* ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM
|
|
*/
|
|
ctrl_bank_num[0] = 0;
|
|
ctrl_bank_num[1] = 1;
|
|
ctrl_bank_num[2] = 3;
|
|
#else
|
|
/*
|
|
* Ocotea, Ebony and the other IBM/AMCC eval boards have
|
|
* 2 DIMM slots with each max 2 banks
|
|
*/
|
|
ctrl_bank_num[0] = 0;
|
|
ctrl_bank_num[1] = 2;
|
|
#endif
|
|
|
|
/*
|
|
* reset the bank_base address
|
|
*/
|
|
bank_base_addr = CONFIG_SYS_SDRAM_BASE;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
if (dimm_populated[dimm_num] == TRUE) {
|
|
num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
|
|
num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
|
|
num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
|
|
bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
|
|
debug("DIMM%d: row=%d col=%d banks=%d\n", dimm_num,
|
|
num_row_addr, num_col_addr, num_banks);
|
|
|
|
/*
|
|
* Set the SDRAM0_BxCR regs
|
|
*/
|
|
cr = 0;
|
|
switch (bank_size_id) {
|
|
case 0x02:
|
|
cr |= SDRAM_BXCR_SDSZ_8;
|
|
break;
|
|
case 0x04:
|
|
cr |= SDRAM_BXCR_SDSZ_16;
|
|
break;
|
|
case 0x08:
|
|
cr |= SDRAM_BXCR_SDSZ_32;
|
|
break;
|
|
case 0x10:
|
|
cr |= SDRAM_BXCR_SDSZ_64;
|
|
break;
|
|
case 0x20:
|
|
cr |= SDRAM_BXCR_SDSZ_128;
|
|
break;
|
|
case 0x40:
|
|
cr |= SDRAM_BXCR_SDSZ_256;
|
|
break;
|
|
case 0x80:
|
|
cr |= SDRAM_BXCR_SDSZ_512;
|
|
break;
|
|
default:
|
|
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
|
|
dimm_num);
|
|
printf("ERROR: Unsupported value for the banksize: %d.\n",
|
|
bank_size_id);
|
|
printf("Replace the DIMM module with a supported DIMM.\n\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
|
|
switch (num_col_addr) {
|
|
case 0x08:
|
|
cr |= SDRAM_BXCR_SDAM_1;
|
|
break;
|
|
case 0x09:
|
|
cr |= SDRAM_BXCR_SDAM_2;
|
|
break;
|
|
case 0x0A:
|
|
cr |= SDRAM_BXCR_SDAM_3;
|
|
break;
|
|
case 0x0B:
|
|
cr |= SDRAM_BXCR_SDAM_4;
|
|
break;
|
|
default:
|
|
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
|
|
dimm_num);
|
|
printf("ERROR: Unsupported value for number of "
|
|
"column addresses: %d.\n", num_col_addr);
|
|
printf("Replace the DIMM module with a supported DIMM.\n\n");
|
|
spd_ddr_init_hang ();
|
|
}
|
|
|
|
/*
|
|
* enable the bank
|
|
*/
|
|
cr |= SDRAM_BXCR_SDBE;
|
|
|
|
for (i = 0; i < num_banks; i++) {
|
|
bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes =
|
|
(4 << 20) * bank_size_id;
|
|
bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr;
|
|
debug("DIMM%d-bank %d (SDRAM0_B%dCR): bank_size_bytes=%d\n",
|
|
dimm_num, i, ctrl_bank_num[dimm_num]+i,
|
|
bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize sort tables */
|
|
for (i = 0; i < MAXBXCR; i++) {
|
|
sorted_bank_num[i] = i;
|
|
sorted_bank_size[i] = bank_parms[i].bank_size_bytes;
|
|
}
|
|
|
|
for (i = 0; i < MAXBXCR-1; i++) {
|
|
largest_size = sorted_bank_size[i];
|
|
largest_size_index = 255;
|
|
|
|
/* Find the largest remaining value */
|
|
for (j = i + 1; j < MAXBXCR; j++) {
|
|
if (sorted_bank_size[j] > largest_size) {
|
|
/* Save largest remaining value and its index */
|
|
largest_size = sorted_bank_size[j];
|
|
largest_size_index = j;
|
|
}
|
|
}
|
|
|
|
if (largest_size_index != 255) {
|
|
/* Swap the current and largest values */
|
|
current_size_index = sorted_bank_num[largest_size_index];
|
|
sorted_bank_size[largest_size_index] = sorted_bank_size[i];
|
|
sorted_bank_size[i] = largest_size;
|
|
sorted_bank_num[largest_size_index] = sorted_bank_num[i];
|
|
sorted_bank_num[i] = current_size_index;
|
|
}
|
|
}
|
|
|
|
/* Set the SDRAM0_BxCR regs thanks to sort tables */
|
|
for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
|
|
if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) {
|
|
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (sorted_bank_num[bx_cr_num] << 2));
|
|
temp = mfdcr(SDRAM0_CFGDATA) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK |
|
|
SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE);
|
|
temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) |
|
|
bank_parms[sorted_bank_num[bx_cr_num]].cr;
|
|
mtdcr(SDRAM0_CFGDATA, temp);
|
|
bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes;
|
|
debug("SDRAM0_B%dCR=0x%08lx\n", sorted_bank_num[bx_cr_num], temp);
|
|
}
|
|
}
|
|
|
|
return(bank_base_addr);
|
|
}
|
|
#endif /* CONFIG_SPD_EEPROM */
|