mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-25 04:23:46 +00:00
5d88902401
The EFI subsystem accesses the real time clock and is enabled by default. So we should drop any CONFIG_CMD_DATE dependency from the real time clock drivers. Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Signed-off-by: Alexander Graf <agraf@suse.de>
237 lines
6.4 KiB
C
237 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2007
|
|
* Larry Johnson, lrj@acm.org
|
|
*
|
|
* based on rtc/m41t11.c which is ...
|
|
*
|
|
* (C) Copyright 2002
|
|
* Andrew May, Viasat Inc, amay@viasat.com
|
|
*/
|
|
|
|
/*
|
|
* STMicroelectronics M41T60 serial access real-time clock
|
|
*/
|
|
|
|
/* #define DEBUG 1 */
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <rtc.h>
|
|
#include <i2c.h>
|
|
|
|
/*
|
|
* Convert between century and "century bits" (CB1 and CB0). These routines
|
|
* assume years are in the range 1900 - 2299.
|
|
*/
|
|
|
|
static unsigned char year2cb(unsigned const year)
|
|
{
|
|
if (year < 1900 || year >= 2300)
|
|
printf("M41T60 RTC: year %d out of range\n", year);
|
|
|
|
return (year / 100) & 0x3;
|
|
}
|
|
|
|
static unsigned cb2year(unsigned const cb)
|
|
{
|
|
return 1900 + 100 * ((cb + 1) & 0x3);
|
|
}
|
|
|
|
/*
|
|
* These are simple defines for the chip local to here so they aren't too
|
|
* verbose. DAY/DATE aren't nice but that is how they are on the data sheet.
|
|
*/
|
|
#define RTC_SEC 0x0
|
|
#define RTC_MIN 0x1
|
|
#define RTC_HOUR 0x2
|
|
#define RTC_DAY 0x3
|
|
#define RTC_DATE 0x4
|
|
#define RTC_MONTH 0x5
|
|
#define RTC_YEAR 0x6
|
|
|
|
#define RTC_REG_CNT 7
|
|
|
|
#define RTC_CTRL 0x7
|
|
|
|
#if defined(DEBUG)
|
|
static void rtc_dump(char const *const label)
|
|
{
|
|
uchar data[8];
|
|
|
|
if (i2c_read(CONFIG_SYS_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) {
|
|
printf("I2C read failed in rtc_dump()\n");
|
|
return;
|
|
}
|
|
printf("RTC dump %s: %02X-%02X-%02X-%02X-%02X-%02X-%02X-%02X\n",
|
|
label, data[0], data[1], data[2], data[3],
|
|
data[4], data[5], data[6], data[7]);
|
|
}
|
|
#else
|
|
#define rtc_dump(label)
|
|
#endif
|
|
|
|
static uchar *rtc_validate(void)
|
|
{
|
|
/*
|
|
* This routine uses the OUT bit and the validity of the time values to
|
|
* determine whether there has been an initial power-up since the last
|
|
* time the routine was run. It assumes that the OUT bit is not being
|
|
* used for any other purpose.
|
|
*/
|
|
static const uchar daysInMonth[0x13] = {
|
|
0x00, 0x31, 0x29, 0x31, 0x30, 0x31, 0x30, 0x31,
|
|
0x31, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x31, 0x30, 0x31
|
|
};
|
|
static uchar data[8];
|
|
uchar min, date, month, years;
|
|
|
|
rtc_dump("begin validate");
|
|
if (i2c_read(CONFIG_SYS_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) {
|
|
printf("I2C read failed in rtc_validate()\n");
|
|
return 0;
|
|
}
|
|
/*
|
|
* If the OUT bit is "1", there has been a loss of power, so stop the
|
|
* oscillator so it can be "kick-started" as per data sheet.
|
|
*/
|
|
if (0x00 != (data[RTC_CTRL] & 0x80)) {
|
|
printf("M41T60 RTC clock lost power.\n");
|
|
data[RTC_SEC] = 0x80;
|
|
if (i2c_write(CONFIG_SYS_I2C_RTC_ADDR, RTC_SEC, 1, data, 1)) {
|
|
printf("I2C write failed in rtc_validate()\n");
|
|
return 0;
|
|
}
|
|
}
|
|
/*
|
|
* If the oscillator is stopped or the date is invalid, then reset the
|
|
* OUT bit to "0", reset the date registers, and start the oscillator.
|
|
*/
|
|
min = data[RTC_MIN] & 0x7F;
|
|
date = data[RTC_DATE];
|
|
month = data[RTC_MONTH] & 0x3F;
|
|
years = data[RTC_YEAR];
|
|
if (0x59 < data[RTC_SEC] || 0x09 < (data[RTC_SEC] & 0x0F) ||
|
|
0x59 < min || 0x09 < (min & 0x0F) ||
|
|
0x23 < data[RTC_HOUR] || 0x09 < (data[RTC_HOUR] & 0x0F) ||
|
|
0x07 < data[RTC_DAY] || 0x00 == data[RTC_DAY] ||
|
|
0x12 < month ||
|
|
0x99 < years || 0x09 < (years & 0x0F) ||
|
|
daysInMonth[month] < date || 0x09 < (date & 0x0F) || 0x00 == date ||
|
|
(0x29 == date && 0x02 == month &&
|
|
((0x00 != (years & 0x03)) ||
|
|
(0x00 == years && 0x00 != (data[RTC_MONTH] & 0xC0))))) {
|
|
printf("Resetting M41T60 RTC clock.\n");
|
|
/*
|
|
* Set to 00:00:00 1900-01-01 (Monday)
|
|
*/
|
|
data[RTC_SEC] = 0x00;
|
|
data[RTC_MIN] &= 0x80; /* preserve OFIE bit */
|
|
data[RTC_HOUR] = 0x00;
|
|
data[RTC_DAY] = 0x02;
|
|
data[RTC_DATE] = 0x01;
|
|
data[RTC_MONTH] = 0xC1;
|
|
data[RTC_YEAR] = 0x00;
|
|
data[RTC_CTRL] &= 0x7F; /* reset OUT bit */
|
|
|
|
if (i2c_write(CONFIG_SYS_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) {
|
|
printf("I2C write failed in rtc_validate()\n");
|
|
return 0;
|
|
}
|
|
}
|
|
return data;
|
|
}
|
|
|
|
int rtc_get(struct rtc_time *tmp)
|
|
{
|
|
uchar const *const data = rtc_validate();
|
|
|
|
if (!data)
|
|
return -1;
|
|
|
|
tmp->tm_sec = bcd2bin(data[RTC_SEC] & 0x7F);
|
|
tmp->tm_min = bcd2bin(data[RTC_MIN] & 0x7F);
|
|
tmp->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3F);
|
|
tmp->tm_mday = bcd2bin(data[RTC_DATE] & 0x3F);
|
|
tmp->tm_mon = bcd2bin(data[RTC_MONTH] & 0x1F);
|
|
tmp->tm_year = cb2year(data[RTC_MONTH] >> 6) + bcd2bin(data[RTC_YEAR]);
|
|
tmp->tm_wday = bcd2bin(data[RTC_DAY] & 0x07) - 1;
|
|
tmp->tm_yday = 0;
|
|
tmp->tm_isdst = 0;
|
|
|
|
debug("Get DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
|
|
tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
|
|
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rtc_set(struct rtc_time *tmp)
|
|
{
|
|
uchar *const data = rtc_validate();
|
|
|
|
if (!data)
|
|
return -1;
|
|
|
|
debug("Set DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
|
|
tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
|
|
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
|
|
|
|
data[RTC_SEC] = (data[RTC_SEC] & 0x80) | (bin2bcd(tmp->tm_sec) & 0x7F);
|
|
data[RTC_MIN] = (data[RTC_MIN] & 0X80) | (bin2bcd(tmp->tm_min) & 0X7F);
|
|
data[RTC_HOUR] = bin2bcd(tmp->tm_hour) & 0x3F;
|
|
data[RTC_DATE] = bin2bcd(tmp->tm_mday) & 0x3F;
|
|
data[RTC_MONTH] = bin2bcd(tmp->tm_mon) & 0x1F;
|
|
data[RTC_YEAR] = bin2bcd(tmp->tm_year % 100);
|
|
data[RTC_MONTH] |= year2cb(tmp->tm_year) << 6;
|
|
data[RTC_DAY] = bin2bcd(tmp->tm_wday + 1) & 0x07;
|
|
if (i2c_write(CONFIG_SYS_I2C_RTC_ADDR, 0, 1, data, RTC_REG_CNT)) {
|
|
printf("I2C write failed in rtc_set()\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rtc_reset(void)
|
|
{
|
|
uchar *const data = rtc_validate();
|
|
char const *const s = env_get("rtccal");
|
|
|
|
if (!data)
|
|
return;
|
|
|
|
rtc_dump("begin reset");
|
|
/*
|
|
* If environmental variable "rtccal" is present, it must be a hex value
|
|
* between 0x00 and 0x3F, inclusive. The five least-significan bits
|
|
* represent the calibration magnitude, and the sixth bit the sign bit.
|
|
* If these do not match the contents of the hardware register, that
|
|
* register is updated. The value 0x00 imples no correction. Consult
|
|
* the M41T60 documentation for further details.
|
|
*/
|
|
if (s) {
|
|
unsigned long const l = simple_strtoul(s, 0, 16);
|
|
|
|
if (l <= 0x3F) {
|
|
if ((data[RTC_CTRL] & 0x3F) != l) {
|
|
printf("Setting RTC calibration to 0x%02lX\n",
|
|
l);
|
|
data[RTC_CTRL] &= 0xC0;
|
|
data[RTC_CTRL] |= (uchar) l;
|
|
}
|
|
} else
|
|
printf("environment parameter \"rtccal\" not valid: "
|
|
"ignoring\n");
|
|
}
|
|
/*
|
|
* Turn off frequency test.
|
|
*/
|
|
data[RTC_CTRL] &= 0xBF;
|
|
if (i2c_write(CONFIG_SYS_I2C_RTC_ADDR, RTC_CTRL, 1, data + RTC_CTRL, 1)) {
|
|
printf("I2C write failed in rtc_reset()\n");
|
|
return;
|
|
}
|
|
rtc_dump("end reset");
|
|
}
|