mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-25 04:23:46 +00:00
e0cfc20984
When a driver declares DM_FLAG_PRE_RELOC flag, it wishes to be bound before relocation. However due to a bug in the DM core, the flag only takes effect when devices are statically declared via U_BOOT_DEVICE(). This bug has been fixed recently by commit "dm: core: Respect drivers with the DM_FLAG_PRE_RELOC flag in lists_bind_fdt()", but with the fix, it has a side effect that all existing drivers that declared DM_FLAG_PRE_RELOC flag will be bound before relocation now. This may expose potential boot failure on some boards due to insufficient memory during the pre-relocation stage. To mitigate this potential impact, the following changes are implemented: - Remove DM_FLAG_PRE_RELOC flag in the driver, if the driver only supports configuration from device tree (OF_CONTROL) - Keep DM_FLAG_PRE_RELOC flag in the driver only if the device is statically declared via U_BOOT_DEVICE() - Surround DM_FLAG_PRE_RELOC flag with OF_CONTROL check, for drivers that support both statically declared devices and configuration from device tree Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Simon Glass <sjg@chromium.org>
933 lines
24 KiB
C
933 lines
24 KiB
C
/*
|
|
* Basic I2C functions
|
|
*
|
|
* Copyright (c) 2004 Texas Instruments
|
|
*
|
|
* This package is free software; you can redistribute it and/or
|
|
* modify it under the terms of the license found in the file
|
|
* named COPYING that should have accompanied this file.
|
|
*
|
|
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* Author: Jian Zhang jzhang@ti.com, Texas Instruments
|
|
*
|
|
* Copyright (c) 2003 Wolfgang Denk, wd@denx.de
|
|
* Rewritten to fit into the current U-Boot framework
|
|
*
|
|
* Adapted for OMAP2420 I2C, r-woodruff2@ti.com
|
|
*
|
|
* Copyright (c) 2013 Lubomir Popov <lpopov@mm-sol.com>, MM Solutions
|
|
* New i2c_read, i2c_write and i2c_probe functions, tested on OMAP4
|
|
* (4430/60/70), OMAP5 (5430) and AM335X (3359); should work on older
|
|
* OMAPs and derivatives as well. The only anticipated exception would
|
|
* be the OMAP2420, which shall require driver modification.
|
|
* - Rewritten i2c_read to operate correctly with all types of chips
|
|
* (old function could not read consistent data from some I2C slaves).
|
|
* - Optimized i2c_write.
|
|
* - New i2c_probe, performs write access vs read. The old probe could
|
|
* hang the system under certain conditions (e.g. unconfigured pads).
|
|
* - The read/write/probe functions try to identify unconfigured bus.
|
|
* - Status functions now read irqstatus_raw as per TRM guidelines
|
|
* (except for OMAP243X and OMAP34XX).
|
|
* - Driver now supports up to I2C5 (OMAP5).
|
|
*
|
|
* Copyright (c) 2014 Hannes Schmelzer <oe5hpm@oevsv.at>, B&R
|
|
* - Added support for set_speed
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <i2c.h>
|
|
|
|
#include <asm/arch/i2c.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "omap24xx_i2c.h"
|
|
|
|
#define I2C_TIMEOUT 1000
|
|
|
|
/* Absolutely safe for status update at 100 kHz I2C: */
|
|
#define I2C_WAIT 200
|
|
|
|
struct omap_i2c {
|
|
struct udevice *clk;
|
|
struct i2c *regs;
|
|
unsigned int speed;
|
|
int waitdelay;
|
|
int clk_id;
|
|
};
|
|
|
|
static int omap24_i2c_findpsc(u32 *pscl, u32 *psch, uint speed)
|
|
{
|
|
unsigned long internal_clk = 0, fclk;
|
|
unsigned int prescaler;
|
|
|
|
/*
|
|
* This method is only called for Standard and Fast Mode speeds
|
|
*
|
|
* For some TI SoCs it is explicitly written in TRM (e,g, SPRUHZ6G,
|
|
* page 5685, Table 24-7)
|
|
* that the internal I2C clock (after prescaler) should be between
|
|
* 7-12 MHz (at least for Fast Mode (FS)).
|
|
*
|
|
* Such approach is used in v4.9 Linux kernel in:
|
|
* ./drivers/i2c/busses/i2c-omap.c (omap_i2c_init function).
|
|
*/
|
|
|
|
speed /= 1000; /* convert speed to kHz */
|
|
|
|
if (speed > 100)
|
|
internal_clk = 9600;
|
|
else
|
|
internal_clk = 4000;
|
|
|
|
fclk = I2C_IP_CLK / 1000;
|
|
prescaler = fclk / internal_clk;
|
|
prescaler = prescaler - 1;
|
|
|
|
if (speed > 100) {
|
|
unsigned long scl;
|
|
|
|
/* Fast mode */
|
|
scl = internal_clk / speed;
|
|
*pscl = scl - (scl / 3) - I2C_FASTSPEED_SCLL_TRIM;
|
|
*psch = (scl / 3) - I2C_FASTSPEED_SCLH_TRIM;
|
|
} else {
|
|
/* Standard mode */
|
|
*pscl = internal_clk / (speed * 2) - I2C_FASTSPEED_SCLL_TRIM;
|
|
*psch = internal_clk / (speed * 2) - I2C_FASTSPEED_SCLH_TRIM;
|
|
}
|
|
|
|
debug("%s: speed [kHz]: %d psc: 0x%x sscl: 0x%x ssch: 0x%x\n",
|
|
__func__, speed, prescaler, *pscl, *psch);
|
|
|
|
if (*pscl <= 0 || *psch <= 0 || prescaler <= 0)
|
|
return -EINVAL;
|
|
|
|
return prescaler;
|
|
}
|
|
|
|
/*
|
|
* Wait for the bus to be free by checking the Bus Busy (BB)
|
|
* bit to become clear
|
|
*/
|
|
static int wait_for_bb(struct i2c *i2c_base, int waitdelay)
|
|
{
|
|
int timeout = I2C_TIMEOUT;
|
|
u16 stat;
|
|
|
|
writew(0xFFFF, &i2c_base->stat); /* clear current interrupts...*/
|
|
#if defined(CONFIG_OMAP34XX)
|
|
while ((stat = readw(&i2c_base->stat) & I2C_STAT_BB) && timeout--) {
|
|
#else
|
|
/* Read RAW status */
|
|
while ((stat = readw(&i2c_base->irqstatus_raw) &
|
|
I2C_STAT_BB) && timeout--) {
|
|
#endif
|
|
writew(stat, &i2c_base->stat);
|
|
udelay(waitdelay);
|
|
}
|
|
|
|
if (timeout <= 0) {
|
|
printf("Timed out in wait_for_bb: status=%04x\n",
|
|
stat);
|
|
return 1;
|
|
}
|
|
writew(0xFFFF, &i2c_base->stat); /* clear delayed stuff*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for the I2C controller to complete current action
|
|
* and update status
|
|
*/
|
|
static u16 wait_for_event(struct i2c *i2c_base, int waitdelay)
|
|
{
|
|
u16 status;
|
|
int timeout = I2C_TIMEOUT;
|
|
|
|
do {
|
|
udelay(waitdelay);
|
|
#if defined(CONFIG_OMAP34XX)
|
|
status = readw(&i2c_base->stat);
|
|
#else
|
|
/* Read RAW status */
|
|
status = readw(&i2c_base->irqstatus_raw);
|
|
#endif
|
|
} while (!(status &
|
|
(I2C_STAT_ROVR | I2C_STAT_XUDF | I2C_STAT_XRDY |
|
|
I2C_STAT_RRDY | I2C_STAT_ARDY | I2C_STAT_NACK |
|
|
I2C_STAT_AL)) && timeout--);
|
|
|
|
if (timeout <= 0) {
|
|
printf("Timed out in wait_for_event: status=%04x\n",
|
|
status);
|
|
/*
|
|
* If status is still 0 here, probably the bus pads have
|
|
* not been configured for I2C, and/or pull-ups are missing.
|
|
*/
|
|
printf("Check if pads/pull-ups of bus are properly configured\n");
|
|
writew(0xFFFF, &i2c_base->stat);
|
|
status = 0;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void flush_fifo(struct i2c *i2c_base)
|
|
{
|
|
u16 stat;
|
|
|
|
/*
|
|
* note: if you try and read data when its not there or ready
|
|
* you get a bus error
|
|
*/
|
|
while (1) {
|
|
stat = readw(&i2c_base->stat);
|
|
if (stat == I2C_STAT_RRDY) {
|
|
readb(&i2c_base->data);
|
|
writew(I2C_STAT_RRDY, &i2c_base->stat);
|
|
udelay(1000);
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int __omap24_i2c_setspeed(struct i2c *i2c_base, uint speed,
|
|
int *waitdelay)
|
|
{
|
|
int psc, fsscll = 0, fssclh = 0;
|
|
int hsscll = 0, hssclh = 0;
|
|
u32 scll = 0, sclh = 0;
|
|
|
|
if (speed >= OMAP_I2C_HIGH_SPEED) {
|
|
/* High speed */
|
|
psc = I2C_IP_CLK / I2C_INTERNAL_SAMPLING_CLK;
|
|
psc -= 1;
|
|
if (psc < I2C_PSC_MIN) {
|
|
printf("Error : I2C unsupported prescaler %d\n", psc);
|
|
return -1;
|
|
}
|
|
|
|
/* For first phase of HS mode */
|
|
fsscll = I2C_INTERNAL_SAMPLING_CLK / (2 * speed);
|
|
|
|
fssclh = fsscll;
|
|
|
|
fsscll -= I2C_HIGHSPEED_PHASE_ONE_SCLL_TRIM;
|
|
fssclh -= I2C_HIGHSPEED_PHASE_ONE_SCLH_TRIM;
|
|
if (((fsscll < 0) || (fssclh < 0)) ||
|
|
((fsscll > 255) || (fssclh > 255))) {
|
|
puts("Error : I2C initializing first phase clock\n");
|
|
return -1;
|
|
}
|
|
|
|
/* For second phase of HS mode */
|
|
hsscll = hssclh = I2C_INTERNAL_SAMPLING_CLK / (2 * speed);
|
|
|
|
hsscll -= I2C_HIGHSPEED_PHASE_TWO_SCLL_TRIM;
|
|
hssclh -= I2C_HIGHSPEED_PHASE_TWO_SCLH_TRIM;
|
|
if (((fsscll < 0) || (fssclh < 0)) ||
|
|
((fsscll > 255) || (fssclh > 255))) {
|
|
puts("Error : I2C initializing second phase clock\n");
|
|
return -1;
|
|
}
|
|
|
|
scll = (unsigned int)hsscll << 8 | (unsigned int)fsscll;
|
|
sclh = (unsigned int)hssclh << 8 | (unsigned int)fssclh;
|
|
|
|
} else {
|
|
/* Standard and fast speed */
|
|
psc = omap24_i2c_findpsc(&scll, &sclh, speed);
|
|
if (0 > psc) {
|
|
puts("Error : I2C initializing clock\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
*waitdelay = (10000000 / speed) * 2; /* wait for 20 clkperiods */
|
|
writew(0, &i2c_base->con);
|
|
writew(psc, &i2c_base->psc);
|
|
writew(scll, &i2c_base->scll);
|
|
writew(sclh, &i2c_base->sclh);
|
|
writew(I2C_CON_EN, &i2c_base->con);
|
|
writew(0xFFFF, &i2c_base->stat); /* clear all pending status */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void omap24_i2c_deblock(struct i2c *i2c_base)
|
|
{
|
|
int i;
|
|
u16 systest;
|
|
u16 orgsystest;
|
|
|
|
/* set test mode ST_EN = 1 */
|
|
orgsystest = readw(&i2c_base->systest);
|
|
systest = orgsystest;
|
|
/* enable testmode */
|
|
systest |= I2C_SYSTEST_ST_EN;
|
|
writew(systest, &i2c_base->systest);
|
|
systest &= ~I2C_SYSTEST_TMODE_MASK;
|
|
systest |= 3 << I2C_SYSTEST_TMODE_SHIFT;
|
|
writew(systest, &i2c_base->systest);
|
|
|
|
/* set SCL, SDA = 1 */
|
|
systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O;
|
|
writew(systest, &i2c_base->systest);
|
|
udelay(10);
|
|
|
|
/* toggle scl 9 clocks */
|
|
for (i = 0; i < 9; i++) {
|
|
/* SCL = 0 */
|
|
systest &= ~I2C_SYSTEST_SCL_O;
|
|
writew(systest, &i2c_base->systest);
|
|
udelay(10);
|
|
/* SCL = 1 */
|
|
systest |= I2C_SYSTEST_SCL_O;
|
|
writew(systest, &i2c_base->systest);
|
|
udelay(10);
|
|
}
|
|
|
|
/* send stop */
|
|
systest &= ~I2C_SYSTEST_SDA_O;
|
|
writew(systest, &i2c_base->systest);
|
|
udelay(10);
|
|
systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O;
|
|
writew(systest, &i2c_base->systest);
|
|
udelay(10);
|
|
|
|
/* restore original mode */
|
|
writew(orgsystest, &i2c_base->systest);
|
|
}
|
|
|
|
static void __omap24_i2c_init(struct i2c *i2c_base, int speed, int slaveadd,
|
|
int *waitdelay)
|
|
{
|
|
int timeout = I2C_TIMEOUT;
|
|
int deblock = 1;
|
|
|
|
retry:
|
|
if (readw(&i2c_base->con) & I2C_CON_EN) {
|
|
writew(0, &i2c_base->con);
|
|
udelay(50000);
|
|
}
|
|
|
|
writew(0x2, &i2c_base->sysc); /* for ES2 after soft reset */
|
|
udelay(1000);
|
|
|
|
writew(I2C_CON_EN, &i2c_base->con);
|
|
while (!(readw(&i2c_base->syss) & I2C_SYSS_RDONE) && timeout--) {
|
|
if (timeout <= 0) {
|
|
puts("ERROR: Timeout in soft-reset\n");
|
|
return;
|
|
}
|
|
udelay(1000);
|
|
}
|
|
|
|
if (0 != __omap24_i2c_setspeed(i2c_base, speed, waitdelay)) {
|
|
printf("ERROR: failed to setup I2C bus-speed!\n");
|
|
return;
|
|
}
|
|
|
|
/* own address */
|
|
writew(slaveadd, &i2c_base->oa);
|
|
|
|
#if defined(CONFIG_OMAP34XX)
|
|
/*
|
|
* Have to enable interrupts for OMAP2/3, these IPs don't have
|
|
* an 'irqstatus_raw' register and we shall have to poll 'stat'
|
|
*/
|
|
writew(I2C_IE_XRDY_IE | I2C_IE_RRDY_IE | I2C_IE_ARDY_IE |
|
|
I2C_IE_NACK_IE | I2C_IE_AL_IE, &i2c_base->ie);
|
|
#endif
|
|
udelay(1000);
|
|
flush_fifo(i2c_base);
|
|
writew(0xFFFF, &i2c_base->stat);
|
|
|
|
/* Handle possible failed I2C state */
|
|
if (wait_for_bb(i2c_base, *waitdelay))
|
|
if (deblock == 1) {
|
|
omap24_i2c_deblock(i2c_base);
|
|
deblock = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i2c_probe: Use write access. Allows to identify addresses that are
|
|
* write-only (like the config register of dual-port EEPROMs)
|
|
*/
|
|
static int __omap24_i2c_probe(struct i2c *i2c_base, int waitdelay, uchar chip)
|
|
{
|
|
u16 status;
|
|
int res = 1; /* default = fail */
|
|
|
|
if (chip == readw(&i2c_base->oa))
|
|
return res;
|
|
|
|
/* Wait until bus is free */
|
|
if (wait_for_bb(i2c_base, waitdelay))
|
|
return res;
|
|
|
|
/* No data transfer, slave addr only */
|
|
writew(chip, &i2c_base->sa);
|
|
/* Stop bit needed here */
|
|
writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX |
|
|
I2C_CON_STP, &i2c_base->con);
|
|
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
|
|
if ((status & ~I2C_STAT_XRDY) == 0 || (status & I2C_STAT_AL)) {
|
|
/*
|
|
* With current high-level command implementation, notifying
|
|
* the user shall flood the console with 127 messages. If
|
|
* silent exit is desired upon unconfigured bus, remove the
|
|
* following 'if' section:
|
|
*/
|
|
if (status == I2C_STAT_XRDY)
|
|
printf("i2c_probe: pads on bus probably not configured (status=0x%x)\n",
|
|
status);
|
|
|
|
goto pr_exit;
|
|
}
|
|
|
|
/* Check for ACK (!NAK) */
|
|
if (!(status & I2C_STAT_NACK)) {
|
|
res = 0; /* Device found */
|
|
udelay(waitdelay);/* Required by AM335X in SPL */
|
|
/* Abort transfer (force idle state) */
|
|
writew(I2C_CON_MST | I2C_CON_TRX, &i2c_base->con); /* Reset */
|
|
udelay(1000);
|
|
writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_TRX |
|
|
I2C_CON_STP, &i2c_base->con); /* STP */
|
|
}
|
|
pr_exit:
|
|
flush_fifo(i2c_base);
|
|
writew(0xFFFF, &i2c_base->stat);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* i2c_read: Function now uses a single I2C read transaction with bulk transfer
|
|
* of the requested number of bytes (note that the 'i2c md' command
|
|
* limits this to 16 bytes anyway). If CONFIG_I2C_REPEATED_START is
|
|
* defined in the board config header, this transaction shall be with
|
|
* Repeated Start (Sr) between the address and data phases; otherwise
|
|
* Stop-Start (P-S) shall be used (some I2C chips do require a P-S).
|
|
* The address (reg offset) may be 0, 1 or 2 bytes long.
|
|
* Function now reads correctly from chips that return more than one
|
|
* byte of data per addressed register (like TI temperature sensors),
|
|
* or that do not need a register address at all (such as some clock
|
|
* distributors).
|
|
*/
|
|
static int __omap24_i2c_read(struct i2c *i2c_base, int waitdelay, uchar chip,
|
|
uint addr, int alen, uchar *buffer, int len)
|
|
{
|
|
int i2c_error = 0;
|
|
u16 status;
|
|
|
|
if (alen < 0) {
|
|
puts("I2C read: addr len < 0\n");
|
|
return 1;
|
|
}
|
|
if (len < 0) {
|
|
puts("I2C read: data len < 0\n");
|
|
return 1;
|
|
}
|
|
if (buffer == NULL) {
|
|
puts("I2C read: NULL pointer passed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (alen > 2) {
|
|
printf("I2C read: addr len %d not supported\n", alen);
|
|
return 1;
|
|
}
|
|
|
|
if (addr + len > (1 << 16)) {
|
|
puts("I2C read: address out of range\n");
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
|
/*
|
|
* EEPROM chips that implement "address overflow" are ones
|
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
|
* address and the extra bits end up in the "chip address"
|
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
|
* four 256 byte chips.
|
|
*
|
|
* Note that we consider the length of the address field to
|
|
* still be one byte because the extra address bits are
|
|
* hidden in the chip address.
|
|
*/
|
|
if (alen > 0)
|
|
chip |= ((addr >> (alen * 8)) &
|
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
|
#endif
|
|
|
|
/* Wait until bus not busy */
|
|
if (wait_for_bb(i2c_base, waitdelay))
|
|
return 1;
|
|
|
|
/* Zero, one or two bytes reg address (offset) */
|
|
writew(alen, &i2c_base->cnt);
|
|
/* Set slave address */
|
|
writew(chip, &i2c_base->sa);
|
|
|
|
if (alen) {
|
|
/* Must write reg offset first */
|
|
#ifdef CONFIG_I2C_REPEATED_START
|
|
/* No stop bit, use Repeated Start (Sr) */
|
|
writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT |
|
|
I2C_CON_TRX, &i2c_base->con);
|
|
#else
|
|
/* Stop - Start (P-S) */
|
|
writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP |
|
|
I2C_CON_TRX, &i2c_base->con);
|
|
#endif
|
|
/* Send register offset */
|
|
while (1) {
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
/* Try to identify bus that is not padconf'd for I2C */
|
|
if (status == I2C_STAT_XRDY) {
|
|
i2c_error = 2;
|
|
printf("i2c_read (addr phase): pads on bus probably not configured (status=0x%x)\n",
|
|
status);
|
|
goto rd_exit;
|
|
}
|
|
if (status == 0 || (status & I2C_STAT_NACK)) {
|
|
i2c_error = 1;
|
|
printf("i2c_read: error waiting for addr ACK (status=0x%x)\n",
|
|
status);
|
|
goto rd_exit;
|
|
}
|
|
if (alen) {
|
|
if (status & I2C_STAT_XRDY) {
|
|
alen--;
|
|
/* Do we have to use byte access? */
|
|
writeb((addr >> (8 * alen)) & 0xff,
|
|
&i2c_base->data);
|
|
writew(I2C_STAT_XRDY, &i2c_base->stat);
|
|
}
|
|
}
|
|
if (status & I2C_STAT_ARDY) {
|
|
writew(I2C_STAT_ARDY, &i2c_base->stat);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Set slave address */
|
|
writew(chip, &i2c_base->sa);
|
|
/* Read len bytes from slave */
|
|
writew(len, &i2c_base->cnt);
|
|
/* Need stop bit here */
|
|
writew(I2C_CON_EN | I2C_CON_MST |
|
|
I2C_CON_STT | I2C_CON_STP,
|
|
&i2c_base->con);
|
|
|
|
/* Receive data */
|
|
while (1) {
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
/*
|
|
* Try to identify bus that is not padconf'd for I2C. This
|
|
* state could be left over from previous transactions if
|
|
* the address phase is skipped due to alen=0.
|
|
*/
|
|
if (status == I2C_STAT_XRDY) {
|
|
i2c_error = 2;
|
|
printf("i2c_read (data phase): pads on bus probably not configured (status=0x%x)\n",
|
|
status);
|
|
goto rd_exit;
|
|
}
|
|
if (status == 0 || (status & I2C_STAT_NACK)) {
|
|
i2c_error = 1;
|
|
goto rd_exit;
|
|
}
|
|
if (status & I2C_STAT_RRDY) {
|
|
*buffer++ = readb(&i2c_base->data);
|
|
writew(I2C_STAT_RRDY, &i2c_base->stat);
|
|
}
|
|
if (status & I2C_STAT_ARDY) {
|
|
writew(I2C_STAT_ARDY, &i2c_base->stat);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rd_exit:
|
|
flush_fifo(i2c_base);
|
|
writew(0xFFFF, &i2c_base->stat);
|
|
return i2c_error;
|
|
}
|
|
|
|
/* i2c_write: Address (reg offset) may be 0, 1 or 2 bytes long. */
|
|
static int __omap24_i2c_write(struct i2c *i2c_base, int waitdelay, uchar chip,
|
|
uint addr, int alen, uchar *buffer, int len)
|
|
{
|
|
int i;
|
|
u16 status;
|
|
int i2c_error = 0;
|
|
int timeout = I2C_TIMEOUT;
|
|
|
|
if (alen < 0) {
|
|
puts("I2C write: addr len < 0\n");
|
|
return 1;
|
|
}
|
|
|
|
if (len < 0) {
|
|
puts("I2C write: data len < 0\n");
|
|
return 1;
|
|
}
|
|
|
|
if (buffer == NULL) {
|
|
puts("I2C write: NULL pointer passed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (alen > 2) {
|
|
printf("I2C write: addr len %d not supported\n", alen);
|
|
return 1;
|
|
}
|
|
|
|
if (addr + len > (1 << 16)) {
|
|
printf("I2C write: address 0x%x + 0x%x out of range\n",
|
|
addr, len);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
|
/*
|
|
* EEPROM chips that implement "address overflow" are ones
|
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
|
* address and the extra bits end up in the "chip address"
|
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
|
* four 256 byte chips.
|
|
*
|
|
* Note that we consider the length of the address field to
|
|
* still be one byte because the extra address bits are
|
|
* hidden in the chip address.
|
|
*/
|
|
if (alen > 0)
|
|
chip |= ((addr >> (alen * 8)) &
|
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
|
#endif
|
|
|
|
/* Wait until bus not busy */
|
|
if (wait_for_bb(i2c_base, waitdelay))
|
|
return 1;
|
|
|
|
/* Start address phase - will write regoffset + len bytes data */
|
|
writew(alen + len, &i2c_base->cnt);
|
|
/* Set slave address */
|
|
writew(chip, &i2c_base->sa);
|
|
/* Stop bit needed here */
|
|
writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX |
|
|
I2C_CON_STP, &i2c_base->con);
|
|
|
|
while (alen) {
|
|
/* Must write reg offset (one or two bytes) */
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
/* Try to identify bus that is not padconf'd for I2C */
|
|
if (status == I2C_STAT_XRDY) {
|
|
i2c_error = 2;
|
|
printf("i2c_write: pads on bus probably not configured (status=0x%x)\n",
|
|
status);
|
|
goto wr_exit;
|
|
}
|
|
if (status == 0 || (status & I2C_STAT_NACK)) {
|
|
i2c_error = 1;
|
|
printf("i2c_write: error waiting for addr ACK (status=0x%x)\n",
|
|
status);
|
|
goto wr_exit;
|
|
}
|
|
if (status & I2C_STAT_XRDY) {
|
|
alen--;
|
|
writeb((addr >> (8 * alen)) & 0xff, &i2c_base->data);
|
|
writew(I2C_STAT_XRDY, &i2c_base->stat);
|
|
} else {
|
|
i2c_error = 1;
|
|
printf("i2c_write: bus not ready for addr Tx (status=0x%x)\n",
|
|
status);
|
|
goto wr_exit;
|
|
}
|
|
}
|
|
/* Address phase is over, now write data */
|
|
for (i = 0; i < len; i++) {
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
if (status == 0 || (status & I2C_STAT_NACK)) {
|
|
i2c_error = 1;
|
|
printf("i2c_write: error waiting for data ACK (status=0x%x)\n",
|
|
status);
|
|
goto wr_exit;
|
|
}
|
|
if (status & I2C_STAT_XRDY) {
|
|
writeb(buffer[i], &i2c_base->data);
|
|
writew(I2C_STAT_XRDY, &i2c_base->stat);
|
|
} else {
|
|
i2c_error = 1;
|
|
printf("i2c_write: bus not ready for data Tx (i=%d)\n",
|
|
i);
|
|
goto wr_exit;
|
|
}
|
|
}
|
|
/*
|
|
* poll ARDY bit for making sure that last byte really has been
|
|
* transferred on the bus.
|
|
*/
|
|
do {
|
|
status = wait_for_event(i2c_base, waitdelay);
|
|
} while (!(status & I2C_STAT_ARDY) && timeout--);
|
|
if (timeout <= 0)
|
|
printf("i2c_write: timed out writig last byte!\n");
|
|
|
|
wr_exit:
|
|
flush_fifo(i2c_base);
|
|
writew(0xFFFF, &i2c_base->stat);
|
|
return i2c_error;
|
|
}
|
|
|
|
#ifndef CONFIG_DM_I2C
|
|
/*
|
|
* The legacy I2C functions. These need to get removed once
|
|
* all users of this driver are converted to DM.
|
|
*/
|
|
static struct i2c *omap24_get_base(struct i2c_adapter *adap)
|
|
{
|
|
switch (adap->hwadapnr) {
|
|
case 0:
|
|
return (struct i2c *)I2C_BASE1;
|
|
break;
|
|
case 1:
|
|
return (struct i2c *)I2C_BASE2;
|
|
break;
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 2)
|
|
case 2:
|
|
return (struct i2c *)I2C_BASE3;
|
|
break;
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 3)
|
|
case 3:
|
|
return (struct i2c *)I2C_BASE4;
|
|
break;
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 4)
|
|
case 4:
|
|
return (struct i2c *)I2C_BASE5;
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
default:
|
|
printf("wrong hwadapnr: %d\n", adap->hwadapnr);
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int omap24_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
|
|
int alen, uchar *buffer, int len)
|
|
{
|
|
struct i2c *i2c_base = omap24_get_base(adap);
|
|
|
|
return __omap24_i2c_read(i2c_base, adap->waitdelay, chip, addr,
|
|
alen, buffer, len);
|
|
}
|
|
|
|
|
|
static int omap24_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
|
|
int alen, uchar *buffer, int len)
|
|
{
|
|
struct i2c *i2c_base = omap24_get_base(adap);
|
|
|
|
return __omap24_i2c_write(i2c_base, adap->waitdelay, chip, addr,
|
|
alen, buffer, len);
|
|
}
|
|
|
|
static uint omap24_i2c_setspeed(struct i2c_adapter *adap, uint speed)
|
|
{
|
|
struct i2c *i2c_base = omap24_get_base(adap);
|
|
int ret;
|
|
|
|
ret = __omap24_i2c_setspeed(i2c_base, speed, &adap->waitdelay);
|
|
if (ret) {
|
|
pr_err("%s: set i2c speed failed\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
adap->speed = speed;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void omap24_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
|
|
{
|
|
struct i2c *i2c_base = omap24_get_base(adap);
|
|
|
|
return __omap24_i2c_init(i2c_base, speed, slaveadd, &adap->waitdelay);
|
|
}
|
|
|
|
static int omap24_i2c_probe(struct i2c_adapter *adap, uchar chip)
|
|
{
|
|
struct i2c *i2c_base = omap24_get_base(adap);
|
|
|
|
return __omap24_i2c_probe(i2c_base, adap->waitdelay, chip);
|
|
}
|
|
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SPEED1)
|
|
#define CONFIG_SYS_OMAP24_I2C_SPEED1 CONFIG_SYS_OMAP24_I2C_SPEED
|
|
#endif
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE1)
|
|
#define CONFIG_SYS_OMAP24_I2C_SLAVE1 CONFIG_SYS_OMAP24_I2C_SLAVE
|
|
#endif
|
|
|
|
U_BOOT_I2C_ADAP_COMPLETE(omap24_0, omap24_i2c_init, omap24_i2c_probe,
|
|
omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed,
|
|
CONFIG_SYS_OMAP24_I2C_SPEED,
|
|
CONFIG_SYS_OMAP24_I2C_SLAVE,
|
|
0)
|
|
U_BOOT_I2C_ADAP_COMPLETE(omap24_1, omap24_i2c_init, omap24_i2c_probe,
|
|
omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed,
|
|
CONFIG_SYS_OMAP24_I2C_SPEED1,
|
|
CONFIG_SYS_OMAP24_I2C_SLAVE1,
|
|
1)
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 2)
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SPEED2)
|
|
#define CONFIG_SYS_OMAP24_I2C_SPEED2 CONFIG_SYS_OMAP24_I2C_SPEED
|
|
#endif
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE2)
|
|
#define CONFIG_SYS_OMAP24_I2C_SLAVE2 CONFIG_SYS_OMAP24_I2C_SLAVE
|
|
#endif
|
|
|
|
U_BOOT_I2C_ADAP_COMPLETE(omap24_2, omap24_i2c_init, omap24_i2c_probe,
|
|
omap24_i2c_read, omap24_i2c_write, NULL,
|
|
CONFIG_SYS_OMAP24_I2C_SPEED2,
|
|
CONFIG_SYS_OMAP24_I2C_SLAVE2,
|
|
2)
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 3)
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SPEED3)
|
|
#define CONFIG_SYS_OMAP24_I2C_SPEED3 CONFIG_SYS_OMAP24_I2C_SPEED
|
|
#endif
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE3)
|
|
#define CONFIG_SYS_OMAP24_I2C_SLAVE3 CONFIG_SYS_OMAP24_I2C_SLAVE
|
|
#endif
|
|
|
|
U_BOOT_I2C_ADAP_COMPLETE(omap24_3, omap24_i2c_init, omap24_i2c_probe,
|
|
omap24_i2c_read, omap24_i2c_write, NULL,
|
|
CONFIG_SYS_OMAP24_I2C_SPEED3,
|
|
CONFIG_SYS_OMAP24_I2C_SLAVE3,
|
|
3)
|
|
#if (CONFIG_SYS_I2C_BUS_MAX > 4)
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SPEED4)
|
|
#define CONFIG_SYS_OMAP24_I2C_SPEED4 CONFIG_SYS_OMAP24_I2C_SPEED
|
|
#endif
|
|
#if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE4)
|
|
#define CONFIG_SYS_OMAP24_I2C_SLAVE4 CONFIG_SYS_OMAP24_I2C_SLAVE
|
|
#endif
|
|
|
|
U_BOOT_I2C_ADAP_COMPLETE(omap24_4, omap24_i2c_init, omap24_i2c_probe,
|
|
omap24_i2c_read, omap24_i2c_write, NULL,
|
|
CONFIG_SYS_OMAP24_I2C_SPEED4,
|
|
CONFIG_SYS_OMAP24_I2C_SLAVE4,
|
|
4)
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#else /* CONFIG_DM_I2C */
|
|
|
|
static int omap_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
|
|
{
|
|
struct omap_i2c *priv = dev_get_priv(bus);
|
|
int ret;
|
|
|
|
debug("i2c_xfer: %d messages\n", nmsgs);
|
|
for (; nmsgs > 0; nmsgs--, msg++) {
|
|
debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len);
|
|
if (msg->flags & I2C_M_RD) {
|
|
ret = __omap24_i2c_read(priv->regs, priv->waitdelay,
|
|
msg->addr, 0, 0, msg->buf,
|
|
msg->len);
|
|
} else {
|
|
ret = __omap24_i2c_write(priv->regs, priv->waitdelay,
|
|
msg->addr, 0, 0, msg->buf,
|
|
msg->len);
|
|
}
|
|
if (ret) {
|
|
debug("i2c_write: error sending\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int omap_i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
|
|
{
|
|
struct omap_i2c *priv = dev_get_priv(bus);
|
|
|
|
priv->speed = speed;
|
|
|
|
return __omap24_i2c_setspeed(priv->regs, speed, &priv->waitdelay);
|
|
}
|
|
|
|
static int omap_i2c_probe_chip(struct udevice *bus, uint chip_addr,
|
|
uint chip_flags)
|
|
{
|
|
struct omap_i2c *priv = dev_get_priv(bus);
|
|
|
|
return __omap24_i2c_probe(priv->regs, priv->waitdelay, chip_addr);
|
|
}
|
|
|
|
static int omap_i2c_probe(struct udevice *bus)
|
|
{
|
|
struct omap_i2c *priv = dev_get_priv(bus);
|
|
|
|
__omap24_i2c_init(priv->regs, priv->speed, 0, &priv->waitdelay);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
static int omap_i2c_ofdata_to_platdata(struct udevice *bus)
|
|
{
|
|
struct omap_i2c *priv = dev_get_priv(bus);
|
|
|
|
priv->regs = map_physmem(devfdt_get_addr(bus), sizeof(void *),
|
|
MAP_NOCACHE);
|
|
priv->speed = CONFIG_SYS_OMAP24_I2C_SPEED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct udevice_id omap_i2c_ids[] = {
|
|
{ .compatible = "ti,omap3-i2c" },
|
|
{ .compatible = "ti,omap4-i2c" },
|
|
{ }
|
|
};
|
|
#endif
|
|
|
|
static const struct dm_i2c_ops omap_i2c_ops = {
|
|
.xfer = omap_i2c_xfer,
|
|
.probe_chip = omap_i2c_probe_chip,
|
|
.set_bus_speed = omap_i2c_set_bus_speed,
|
|
};
|
|
|
|
U_BOOT_DRIVER(i2c_omap) = {
|
|
.name = "i2c_omap",
|
|
.id = UCLASS_I2C,
|
|
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
.of_match = omap_i2c_ids,
|
|
.ofdata_to_platdata = omap_i2c_ofdata_to_platdata,
|
|
#endif
|
|
.probe = omap_i2c_probe,
|
|
.priv_auto_alloc_size = sizeof(struct omap_i2c),
|
|
.ops = &omap_i2c_ops,
|
|
#if !CONFIG_IS_ENABLED(OF_CONTROL)
|
|
.flags = DM_FLAG_PRE_RELOC,
|
|
#endif
|
|
};
|
|
|
|
#endif /* CONFIG_DM_I2C */
|