mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-30 00:21:06 +00:00
728b393f3b
The Quark SoC contains a legacy SPI controller in the legacy bridge which is ICH7 compatible. Like Tunnel Creek and BayTrail, the BIOS control register offset in the ICH SPI driver is wrong for the Quark SoC too, unprotect_spi_flash() is added to enable the flash write. Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Acked-by: Simon Glass <sjg@chromium.org>
772 lines
19 KiB
C
772 lines
19 KiB
C
/*
|
|
* Copyright (c) 2011-12 The Chromium OS Authors.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*
|
|
* This file is derived from the flashrom project.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <pci.h>
|
|
#include <pci_ids.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "ich.h"
|
|
|
|
#define SPI_OPCODE_WREN 0x06
|
|
#define SPI_OPCODE_FAST_READ 0x0b
|
|
|
|
struct ich_ctlr {
|
|
pci_dev_t dev; /* PCI device number */
|
|
int ich_version; /* Controller version, 7 or 9 */
|
|
bool use_sbase; /* Use SBASE instead of RCB */
|
|
int ichspi_lock;
|
|
int locked;
|
|
uint8_t *opmenu;
|
|
int menubytes;
|
|
void *base; /* Base of register set */
|
|
uint16_t *preop;
|
|
uint16_t *optype;
|
|
uint32_t *addr;
|
|
uint8_t *data;
|
|
unsigned databytes;
|
|
uint8_t *status;
|
|
uint16_t *control;
|
|
uint32_t *bbar;
|
|
uint32_t *pr; /* only for ich9 */
|
|
uint8_t *speed; /* pointer to speed control */
|
|
ulong max_speed; /* Maximum bus speed in MHz */
|
|
};
|
|
|
|
struct ich_ctlr ctlr;
|
|
|
|
static inline struct ich_spi_slave *to_ich_spi(struct spi_slave *slave)
|
|
{
|
|
return container_of(slave, struct ich_spi_slave, slave);
|
|
}
|
|
|
|
static unsigned int ich_reg(const void *addr)
|
|
{
|
|
return (unsigned)(addr - ctlr.base) & 0xffff;
|
|
}
|
|
|
|
static u8 ich_readb(const void *addr)
|
|
{
|
|
u8 value = readb(addr);
|
|
|
|
debug("read %2.2x from %4.4x\n", value, ich_reg(addr));
|
|
|
|
return value;
|
|
}
|
|
|
|
static u16 ich_readw(const void *addr)
|
|
{
|
|
u16 value = readw(addr);
|
|
|
|
debug("read %4.4x from %4.4x\n", value, ich_reg(addr));
|
|
|
|
return value;
|
|
}
|
|
|
|
static u32 ich_readl(const void *addr)
|
|
{
|
|
u32 value = readl(addr);
|
|
|
|
debug("read %8.8x from %4.4x\n", value, ich_reg(addr));
|
|
|
|
return value;
|
|
}
|
|
|
|
static void ich_writeb(u8 value, void *addr)
|
|
{
|
|
writeb(value, addr);
|
|
debug("wrote %2.2x to %4.4x\n", value, ich_reg(addr));
|
|
}
|
|
|
|
static void ich_writew(u16 value, void *addr)
|
|
{
|
|
writew(value, addr);
|
|
debug("wrote %4.4x to %4.4x\n", value, ich_reg(addr));
|
|
}
|
|
|
|
static void ich_writel(u32 value, void *addr)
|
|
{
|
|
writel(value, addr);
|
|
debug("wrote %8.8x to %4.4x\n", value, ich_reg(addr));
|
|
}
|
|
|
|
static void write_reg(const void *value, void *dest, uint32_t size)
|
|
{
|
|
memcpy_toio(dest, value, size);
|
|
}
|
|
|
|
static void read_reg(const void *src, void *value, uint32_t size)
|
|
{
|
|
memcpy_fromio(value, src, size);
|
|
}
|
|
|
|
static void ich_set_bbar(struct ich_ctlr *ctlr, uint32_t minaddr)
|
|
{
|
|
const uint32_t bbar_mask = 0x00ffff00;
|
|
uint32_t ichspi_bbar;
|
|
|
|
minaddr &= bbar_mask;
|
|
ichspi_bbar = ich_readl(ctlr->bbar) & ~bbar_mask;
|
|
ichspi_bbar |= minaddr;
|
|
ich_writel(ichspi_bbar, ctlr->bbar);
|
|
}
|
|
|
|
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
|
|
{
|
|
puts("spi_cs_is_valid used but not implemented\n");
|
|
return 0;
|
|
}
|
|
|
|
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
|
|
unsigned int max_hz, unsigned int mode)
|
|
{
|
|
struct ich_spi_slave *ich;
|
|
|
|
ich = spi_alloc_slave(struct ich_spi_slave, bus, cs);
|
|
if (!ich) {
|
|
puts("ICH SPI: Out of memory\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Yes this controller can only write a small number of bytes at
|
|
* once! The limit is typically 64 bytes.
|
|
*/
|
|
ich->slave.max_write_size = ctlr.databytes;
|
|
ich->speed = max_hz;
|
|
|
|
/*
|
|
* ICH 7 SPI controller only supports array read command
|
|
* and byte program command for SST flash
|
|
*/
|
|
if (ctlr.ich_version == 7 || ctlr.use_sbase) {
|
|
ich->slave.op_mode_rx = SPI_OPM_RX_AS;
|
|
ich->slave.op_mode_tx = SPI_OPM_TX_BP;
|
|
}
|
|
|
|
return &ich->slave;
|
|
}
|
|
|
|
struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
|
|
int spi_node)
|
|
{
|
|
/* We only support a single SPI at present */
|
|
return spi_setup_slave(0, 0, 20000000, 0);
|
|
}
|
|
|
|
void spi_free_slave(struct spi_slave *slave)
|
|
{
|
|
struct ich_spi_slave *ich = to_ich_spi(slave);
|
|
|
|
free(ich);
|
|
}
|
|
|
|
/*
|
|
* Check if this device ID matches one of supported Intel PCH devices.
|
|
*
|
|
* Return the ICH version if there is a match, or zero otherwise.
|
|
*/
|
|
static int get_ich_version(uint16_t device_id)
|
|
{
|
|
if (device_id == PCI_DEVICE_ID_INTEL_TGP_LPC ||
|
|
device_id == PCI_DEVICE_ID_INTEL_ITC_LPC ||
|
|
device_id == PCI_DEVICE_ID_INTEL_QRK_ILB)
|
|
return 7;
|
|
|
|
if ((device_id >= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MIN &&
|
|
device_id <= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MAX) ||
|
|
(device_id >= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MIN &&
|
|
device_id <= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MAX) ||
|
|
device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC)
|
|
return 9;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* @return 1 if the SPI flash supports the 33MHz speed */
|
|
static int ich9_can_do_33mhz(pci_dev_t dev)
|
|
{
|
|
u32 fdod, speed;
|
|
|
|
/* Observe SPI Descriptor Component Section 0 */
|
|
pci_write_config_dword(dev, 0xb0, 0x1000);
|
|
|
|
/* Extract the Write/Erase SPI Frequency from descriptor */
|
|
pci_read_config_dword(dev, 0xb4, &fdod);
|
|
|
|
/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
|
|
speed = (fdod >> 21) & 7;
|
|
|
|
return speed == 1;
|
|
}
|
|
|
|
static int ich_find_spi_controller(struct ich_ctlr *ich)
|
|
{
|
|
int last_bus = pci_last_busno();
|
|
int bus;
|
|
|
|
if (last_bus == -1) {
|
|
debug("No PCI busses?\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (bus = 0; bus <= last_bus; bus++) {
|
|
uint16_t vendor_id, device_id;
|
|
uint32_t ids;
|
|
pci_dev_t dev;
|
|
|
|
dev = PCI_BDF(bus, 31, 0);
|
|
pci_read_config_dword(dev, 0, &ids);
|
|
vendor_id = ids;
|
|
device_id = ids >> 16;
|
|
|
|
if (vendor_id == PCI_VENDOR_ID_INTEL) {
|
|
ich->dev = dev;
|
|
ich->ich_version = get_ich_version(device_id);
|
|
if (device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC)
|
|
ich->use_sbase = true;
|
|
return ich->ich_version == 0 ? -ENODEV : 0;
|
|
}
|
|
}
|
|
|
|
debug("ICH SPI: No ICH found.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int ich_init_controller(struct ich_ctlr *ctlr)
|
|
{
|
|
uint8_t *rcrb; /* Root Complex Register Block */
|
|
uint32_t rcba; /* Root Complex Base Address */
|
|
uint32_t sbase_addr;
|
|
uint8_t *sbase;
|
|
|
|
pci_read_config_dword(ctlr->dev, 0xf0, &rcba);
|
|
/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
|
|
rcrb = (uint8_t *)(rcba & 0xffffc000);
|
|
|
|
/* SBASE is similar */
|
|
pci_read_config_dword(ctlr->dev, 0x54, &sbase_addr);
|
|
sbase = (uint8_t *)(sbase_addr & 0xfffffe00);
|
|
|
|
if (ctlr->ich_version == 7) {
|
|
struct ich7_spi_regs *ich7_spi;
|
|
|
|
ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020);
|
|
ctlr->ichspi_lock = ich_readw(&ich7_spi->spis) & SPIS_LOCK;
|
|
ctlr->opmenu = ich7_spi->opmenu;
|
|
ctlr->menubytes = sizeof(ich7_spi->opmenu);
|
|
ctlr->optype = &ich7_spi->optype;
|
|
ctlr->addr = &ich7_spi->spia;
|
|
ctlr->data = (uint8_t *)ich7_spi->spid;
|
|
ctlr->databytes = sizeof(ich7_spi->spid);
|
|
ctlr->status = (uint8_t *)&ich7_spi->spis;
|
|
ctlr->control = &ich7_spi->spic;
|
|
ctlr->bbar = &ich7_spi->bbar;
|
|
ctlr->preop = &ich7_spi->preop;
|
|
ctlr->base = ich7_spi;
|
|
} else if (ctlr->ich_version == 9) {
|
|
struct ich9_spi_regs *ich9_spi;
|
|
|
|
if (ctlr->use_sbase)
|
|
ich9_spi = (struct ich9_spi_regs *)sbase;
|
|
else
|
|
ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800);
|
|
ctlr->ichspi_lock = ich_readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
|
|
ctlr->opmenu = ich9_spi->opmenu;
|
|
ctlr->menubytes = sizeof(ich9_spi->opmenu);
|
|
ctlr->optype = &ich9_spi->optype;
|
|
ctlr->addr = &ich9_spi->faddr;
|
|
ctlr->data = (uint8_t *)ich9_spi->fdata;
|
|
ctlr->databytes = sizeof(ich9_spi->fdata);
|
|
ctlr->status = &ich9_spi->ssfs;
|
|
ctlr->control = (uint16_t *)ich9_spi->ssfc;
|
|
ctlr->speed = ich9_spi->ssfc + 2;
|
|
ctlr->bbar = &ich9_spi->bbar;
|
|
ctlr->preop = &ich9_spi->preop;
|
|
ctlr->pr = &ich9_spi->pr[0];
|
|
ctlr->base = ich9_spi;
|
|
} else {
|
|
debug("ICH SPI: Unrecognized ICH version %d.\n",
|
|
ctlr->ich_version);
|
|
return -1;
|
|
}
|
|
|
|
/* Work out the maximum speed we can support */
|
|
ctlr->max_speed = 20000000;
|
|
if (ctlr->ich_version == 9 && ich9_can_do_33mhz(ctlr->dev))
|
|
ctlr->max_speed = 33000000;
|
|
debug("ICH SPI: Version %d detected at %p, speed %ld\n",
|
|
ctlr->ich_version, ctlr->base, ctlr->max_speed);
|
|
|
|
ich_set_bbar(ctlr, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void spi_init(void)
|
|
{
|
|
uint8_t bios_cntl;
|
|
|
|
if (ich_find_spi_controller(&ctlr)) {
|
|
printf("ICH SPI: Cannot find device\n");
|
|
return;
|
|
}
|
|
|
|
if (ich_init_controller(&ctlr)) {
|
|
printf("ICH SPI: Cannot setup controller\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Disable the BIOS write protect so write commands are allowed. On
|
|
* v9, deassert SMM BIOS Write Protect Disable.
|
|
*/
|
|
if (ctlr.use_sbase) {
|
|
struct ich9_spi_regs *ich9_spi;
|
|
|
|
ich9_spi = (struct ich9_spi_regs *)ctlr.base;
|
|
bios_cntl = ich_readb(&ich9_spi->bcr);
|
|
bios_cntl &= ~(1 << 5); /* clear Enable InSMM_STS (EISS) */
|
|
bios_cntl |= 1; /* Write Protect Disable (WPD) */
|
|
ich_writeb(bios_cntl, &ich9_spi->bcr);
|
|
} else {
|
|
pci_read_config_byte(ctlr.dev, 0xdc, &bios_cntl);
|
|
if (ctlr.ich_version == 9)
|
|
bios_cntl &= ~(1 << 5);
|
|
pci_write_config_byte(ctlr.dev, 0xdc, bios_cntl | 0x1);
|
|
}
|
|
}
|
|
|
|
int spi_claim_bus(struct spi_slave *slave)
|
|
{
|
|
/* Handled by ICH automatically. */
|
|
return 0;
|
|
}
|
|
|
|
void spi_release_bus(struct spi_slave *slave)
|
|
{
|
|
/* Handled by ICH automatically. */
|
|
}
|
|
|
|
void spi_cs_activate(struct spi_slave *slave)
|
|
{
|
|
/* Handled by ICH automatically. */
|
|
}
|
|
|
|
void spi_cs_deactivate(struct spi_slave *slave)
|
|
{
|
|
/* Handled by ICH automatically. */
|
|
}
|
|
|
|
static inline void spi_use_out(struct spi_trans *trans, unsigned bytes)
|
|
{
|
|
trans->out += bytes;
|
|
trans->bytesout -= bytes;
|
|
}
|
|
|
|
static inline void spi_use_in(struct spi_trans *trans, unsigned bytes)
|
|
{
|
|
trans->in += bytes;
|
|
trans->bytesin -= bytes;
|
|
}
|
|
|
|
static void spi_setup_type(struct spi_trans *trans, int data_bytes)
|
|
{
|
|
trans->type = 0xFF;
|
|
|
|
/* Try to guess spi type from read/write sizes. */
|
|
if (trans->bytesin == 0) {
|
|
if (trans->bytesout + data_bytes > 4)
|
|
/*
|
|
* If bytesin = 0 and bytesout > 4, we presume this is
|
|
* a write data operation, which is accompanied by an
|
|
* address.
|
|
*/
|
|
trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
|
|
else
|
|
trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
|
|
return;
|
|
}
|
|
|
|
if (trans->bytesout == 1) { /* and bytesin is > 0 */
|
|
trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
|
|
return;
|
|
}
|
|
|
|
if (trans->bytesout == 4) /* and bytesin is > 0 */
|
|
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
|
|
|
|
/* Fast read command is called with 5 bytes instead of 4 */
|
|
if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
|
|
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
|
|
--trans->bytesout;
|
|
}
|
|
}
|
|
|
|
static int spi_setup_opcode(struct spi_trans *trans)
|
|
{
|
|
uint16_t optypes;
|
|
uint8_t opmenu[ctlr.menubytes];
|
|
|
|
trans->opcode = trans->out[0];
|
|
spi_use_out(trans, 1);
|
|
if (!ctlr.ichspi_lock) {
|
|
/* The lock is off, so just use index 0. */
|
|
ich_writeb(trans->opcode, ctlr.opmenu);
|
|
optypes = ich_readw(ctlr.optype);
|
|
optypes = (optypes & 0xfffc) | (trans->type & 0x3);
|
|
ich_writew(optypes, ctlr.optype);
|
|
return 0;
|
|
} else {
|
|
/* The lock is on. See if what we need is on the menu. */
|
|
uint8_t optype;
|
|
uint16_t opcode_index;
|
|
|
|
/* Write Enable is handled as atomic prefix */
|
|
if (trans->opcode == SPI_OPCODE_WREN)
|
|
return 0;
|
|
|
|
read_reg(ctlr.opmenu, opmenu, sizeof(opmenu));
|
|
for (opcode_index = 0; opcode_index < ctlr.menubytes;
|
|
opcode_index++) {
|
|
if (opmenu[opcode_index] == trans->opcode)
|
|
break;
|
|
}
|
|
|
|
if (opcode_index == ctlr.menubytes) {
|
|
printf("ICH SPI: Opcode %x not found\n",
|
|
trans->opcode);
|
|
return -1;
|
|
}
|
|
|
|
optypes = ich_readw(ctlr.optype);
|
|
optype = (optypes >> (opcode_index * 2)) & 0x3;
|
|
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
|
|
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
|
|
trans->bytesout >= 3) {
|
|
/* We guessed wrong earlier. Fix it up. */
|
|
trans->type = optype;
|
|
}
|
|
if (optype != trans->type) {
|
|
printf("ICH SPI: Transaction doesn't fit type %d\n",
|
|
optype);
|
|
return -1;
|
|
}
|
|
return opcode_index;
|
|
}
|
|
}
|
|
|
|
static int spi_setup_offset(struct spi_trans *trans)
|
|
{
|
|
/* Separate the SPI address and data. */
|
|
switch (trans->type) {
|
|
case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
|
|
case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
|
|
return 0;
|
|
case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
|
|
case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
|
|
trans->offset = ((uint32_t)trans->out[0] << 16) |
|
|
((uint32_t)trans->out[1] << 8) |
|
|
((uint32_t)trans->out[2] << 0);
|
|
spi_use_out(trans, 3);
|
|
return 1;
|
|
default:
|
|
printf("Unrecognized SPI transaction type %#x\n", trans->type);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
|
|
* below is true) or 0. In case the wait was for the bit(s) to set - write
|
|
* those bits back, which would cause resetting them.
|
|
*
|
|
* Return the last read status value on success or -1 on failure.
|
|
*/
|
|
static int ich_status_poll(u16 bitmask, int wait_til_set)
|
|
{
|
|
int timeout = 600000; /* This will result in 6s */
|
|
u16 status = 0;
|
|
|
|
while (timeout--) {
|
|
status = ich_readw(ctlr.status);
|
|
if (wait_til_set ^ ((status & bitmask) == 0)) {
|
|
if (wait_til_set)
|
|
ich_writew((status & bitmask), ctlr.status);
|
|
return status;
|
|
}
|
|
udelay(10);
|
|
}
|
|
|
|
printf("ICH SPI: SCIP timeout, read %x, expected %x\n",
|
|
status, bitmask);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
int spi_xfer(struct spi_slave *slave, const void *dout,
|
|
unsigned int bitsout, void *din, unsigned int bitsin)
|
|
*/
|
|
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
|
|
void *din, unsigned long flags)
|
|
{
|
|
struct ich_spi_slave *ich = to_ich_spi(slave);
|
|
uint16_t control;
|
|
int16_t opcode_index;
|
|
int with_address;
|
|
int status;
|
|
int bytes = bitlen / 8;
|
|
struct spi_trans *trans = &ich->trans;
|
|
unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END);
|
|
int using_cmd = 0;
|
|
|
|
/* Ee don't support writing partial bytes. */
|
|
if (bitlen % 8) {
|
|
debug("ICH SPI: Accessing partial bytes not supported\n");
|
|
return -1;
|
|
}
|
|
|
|
/* An empty end transaction can be ignored */
|
|
if (type == SPI_XFER_END && !dout && !din)
|
|
return 0;
|
|
|
|
if (type & SPI_XFER_BEGIN)
|
|
memset(trans, '\0', sizeof(*trans));
|
|
|
|
/* Dp we need to come back later to finish it? */
|
|
if (dout && type == SPI_XFER_BEGIN) {
|
|
if (bytes > ICH_MAX_CMD_LEN) {
|
|
debug("ICH SPI: Command length limit exceeded\n");
|
|
return -1;
|
|
}
|
|
memcpy(trans->cmd, dout, bytes);
|
|
trans->cmd_len = bytes;
|
|
debug("ICH SPI: Saved %d bytes\n", bytes);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We process a 'middle' spi_xfer() call, which has no
|
|
* SPI_XFER_BEGIN/END, as an independent transaction as if it had
|
|
* an end. We therefore repeat the command. This is because ICH
|
|
* seems to have no support for this, or because interest (in digging
|
|
* out the details and creating a special case in the code) is low.
|
|
*/
|
|
if (trans->cmd_len) {
|
|
trans->out = trans->cmd;
|
|
trans->bytesout = trans->cmd_len;
|
|
using_cmd = 1;
|
|
debug("ICH SPI: Using %d bytes\n", trans->cmd_len);
|
|
} else {
|
|
trans->out = dout;
|
|
trans->bytesout = dout ? bytes : 0;
|
|
}
|
|
|
|
trans->in = din;
|
|
trans->bytesin = din ? bytes : 0;
|
|
|
|
/* There has to always at least be an opcode. */
|
|
if (!trans->bytesout) {
|
|
debug("ICH SPI: No opcode for transfer\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ich_status_poll(SPIS_SCIP, 0) == -1)
|
|
return -1;
|
|
|
|
ich_writew(SPIS_CDS | SPIS_FCERR, ctlr.status);
|
|
|
|
spi_setup_type(trans, using_cmd ? bytes : 0);
|
|
opcode_index = spi_setup_opcode(trans);
|
|
if (opcode_index < 0)
|
|
return -1;
|
|
with_address = spi_setup_offset(trans);
|
|
if (with_address < 0)
|
|
return -1;
|
|
|
|
if (trans->opcode == SPI_OPCODE_WREN) {
|
|
/*
|
|
* Treat Write Enable as Atomic Pre-Op if possible
|
|
* in order to prevent the Management Engine from
|
|
* issuing a transaction between WREN and DATA.
|
|
*/
|
|
if (!ctlr.ichspi_lock)
|
|
ich_writew(trans->opcode, ctlr.preop);
|
|
return 0;
|
|
}
|
|
|
|
if (ctlr.speed && ctlr.max_speed >= 33000000) {
|
|
int byte;
|
|
|
|
byte = ich_readb(ctlr.speed);
|
|
if (ich->speed >= 33000000)
|
|
byte |= SSFC_SCF_33MHZ;
|
|
else
|
|
byte &= ~SSFC_SCF_33MHZ;
|
|
ich_writeb(byte, ctlr.speed);
|
|
}
|
|
|
|
/* See if we have used up the command data */
|
|
if (using_cmd && dout && bytes) {
|
|
trans->out = dout;
|
|
trans->bytesout = bytes;
|
|
debug("ICH SPI: Moving to data, %d bytes\n", bytes);
|
|
}
|
|
|
|
/* Preset control fields */
|
|
control = ich_readw(ctlr.control);
|
|
control &= ~SSFC_RESERVED;
|
|
control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
|
|
|
|
/* Issue atomic preop cycle if needed */
|
|
if (ich_readw(ctlr.preop))
|
|
control |= SPIC_ACS;
|
|
|
|
if (!trans->bytesout && !trans->bytesin) {
|
|
/* SPI addresses are 24 bit only */
|
|
if (with_address)
|
|
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr);
|
|
|
|
/*
|
|
* This is a 'no data' command (like Write Enable), its
|
|
* bitesout size was 1, decremented to zero while executing
|
|
* spi_setup_opcode() above. Tell the chip to send the
|
|
* command.
|
|
*/
|
|
ich_writew(control, ctlr.control);
|
|
|
|
/* wait for the result */
|
|
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
|
|
if (status == -1)
|
|
return -1;
|
|
|
|
if (status & SPIS_FCERR) {
|
|
debug("ICH SPI: Command transaction error\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if this is a write command atempting to transfer more bytes
|
|
* than the controller can handle. Iterations for writes are not
|
|
* supported here because each SPI write command needs to be preceded
|
|
* and followed by other SPI commands, and this sequence is controlled
|
|
* by the SPI chip driver.
|
|
*/
|
|
if (trans->bytesout > ctlr.databytes) {
|
|
debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Read or write up to databytes bytes at a time until everything has
|
|
* been sent.
|
|
*/
|
|
while (trans->bytesout || trans->bytesin) {
|
|
uint32_t data_length;
|
|
|
|
/* SPI addresses are 24 bit only */
|
|
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr);
|
|
|
|
if (trans->bytesout)
|
|
data_length = min(trans->bytesout, ctlr.databytes);
|
|
else
|
|
data_length = min(trans->bytesin, ctlr.databytes);
|
|
|
|
/* Program data into FDATA0 to N */
|
|
if (trans->bytesout) {
|
|
write_reg(trans->out, ctlr.data, data_length);
|
|
spi_use_out(trans, data_length);
|
|
if (with_address)
|
|
trans->offset += data_length;
|
|
}
|
|
|
|
/* Add proper control fields' values */
|
|
control &= ~((ctlr.databytes - 1) << 8);
|
|
control |= SPIC_DS;
|
|
control |= (data_length - 1) << 8;
|
|
|
|
/* write it */
|
|
ich_writew(control, ctlr.control);
|
|
|
|
/* Wait for Cycle Done Status or Flash Cycle Error. */
|
|
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
|
|
if (status == -1)
|
|
return -1;
|
|
|
|
if (status & SPIS_FCERR) {
|
|
debug("ICH SPI: Data transaction error\n");
|
|
return -1;
|
|
}
|
|
|
|
if (trans->bytesin) {
|
|
read_reg(ctlr.data, trans->in, data_length);
|
|
spi_use_in(trans, data_length);
|
|
if (with_address)
|
|
trans->offset += data_length;
|
|
}
|
|
}
|
|
|
|
/* Clear atomic preop now that xfer is done */
|
|
ich_writew(0, ctlr.preop);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This uses the SPI controller from the Intel Cougar Point and Panther Point
|
|
* PCH to write-protect portions of the SPI flash until reboot. The changes
|
|
* don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's
|
|
* done elsewhere.
|
|
*/
|
|
int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint)
|
|
{
|
|
uint32_t tmplong;
|
|
uint32_t upper_limit;
|
|
|
|
if (!ctlr.pr) {
|
|
printf("%s: operation not supported on this chipset\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
|
|
if (length == 0 ||
|
|
lower_limit > (0xFFFFFFFFUL - length) + 1 ||
|
|
hint < 0 || hint > 4) {
|
|
printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__,
|
|
lower_limit, length, hint);
|
|
return -1;
|
|
}
|
|
|
|
upper_limit = lower_limit + length - 1;
|
|
|
|
/*
|
|
* Determine bits to write, as follows:
|
|
* 31 Write-protection enable (includes erase operation)
|
|
* 30:29 reserved
|
|
* 28:16 Upper Limit (FLA address bits 24:12, with 11:0 == 0xfff)
|
|
* 15 Read-protection enable
|
|
* 14:13 reserved
|
|
* 12:0 Lower Limit (FLA address bits 24:12, with 11:0 == 0x000)
|
|
*/
|
|
tmplong = 0x80000000 |
|
|
((upper_limit & 0x01fff000) << 4) |
|
|
((lower_limit & 0x01fff000) >> 12);
|
|
|
|
printf("%s: writing 0x%08x to %p\n", __func__, tmplong,
|
|
&ctlr.pr[hint]);
|
|
ctlr.pr[hint] = tmplong;
|
|
|
|
return 0;
|
|
}
|