u-boot/include/tee/optee.h
Heiko Stuebner 6ccb05eae0 image: fdt: copy possible optee nodes to a loaded devicetree
The loading convention for optee or any other tee on arm64 is as bl32
parameter to the trusted-firmware. So TF-A gets invoked with the TEE as
bl32 and main u-boot as bl33. Once it has done its startup TF-A jumps
into the bl32 for the TEE startup, returns to TF-A and then jumps to bl33.

All of them get passed a devicetree as parameter and all components often
get loaded from a FIT image.

OP-TEE will create additional nodes in that devicetree namely a firmware
node and possibly multiple reserved-memory nodes.

While this devicetree is used in main u-boot, in most cases it won't be
the one passed to the actual kernel. Instead most boot commands will load
a new devicetree from somewhere like mass storage of the network, so if
that happens u-boot should transfer the optee nodes to that new devicetree.

To make that happen introduce optee_copy_fdt_nodes() called from the dt
setup function in image-fdt which after checking for the optee presence
in the u-boot dt will make sure a optee node is present in the kernel dt
and transfer any reserved-memory regions it can find.

Signed-off-by: Heiko Stuebner <heiko.stuebner@theobroma-systems.com>
Reviewed-by: Jens Wiklander <jens.wiklander@linaro.org>
2019-11-14 07:09:34 -06:00

79 lines
1.8 KiB
C

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* OP-TEE related definitions
*
* (C) Copyright 2016 Linaro Limited
* Andrew F. Davis <andrew.davis@linaro.org>
*/
#ifndef _OPTEE_H
#define _OPTEE_H
#include <linux/errno.h>
#define OPTEE_MAGIC 0x4554504f
#define OPTEE_VERSION 1
#define OPTEE_ARCH_ARM32 0
#define OPTEE_ARCH_ARM64 1
struct optee_header {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t init_size;
uint32_t init_load_addr_hi;
uint32_t init_load_addr_lo;
uint32_t init_mem_usage;
uint32_t paged_size;
};
static inline uint32_t optee_image_get_entry_point(const image_header_t *hdr)
{
struct optee_header *optee_hdr = (struct optee_header *)(hdr + 1);
return optee_hdr->init_load_addr_lo;
}
static inline uint32_t optee_image_get_load_addr(const image_header_t *hdr)
{
return optee_image_get_entry_point(hdr) - sizeof(struct optee_header);
}
#if defined(CONFIG_OPTEE)
int optee_verify_image(struct optee_header *hdr, unsigned long tzdram_start,
unsigned long tzdram_len, unsigned long image_len);
#else
static inline int optee_verify_image(struct optee_header *hdr,
unsigned long tzdram_start,
unsigned long tzdram_len,
unsigned long image_len)
{
return -EPERM;
}
#endif
#if defined(CONFIG_OPTEE)
int optee_verify_bootm_image(unsigned long image_addr,
unsigned long image_load_addr,
unsigned long image_len);
#else
static inline int optee_verify_bootm_image(unsigned long image_addr,
unsigned long image_load_addr,
unsigned long image_len)
{
return -EPERM;
}
#endif
#if defined(CONFIG_OPTEE) && defined(CONFIG_OF_LIBFDT)
int optee_copy_fdt_nodes(const void *old_blob, void *new_blob);
#else
static inline int optee_copy_fdt_nodes(const void *old_blob, void *new_blob)
{
return 0;
}
#endif
#endif /* _OPTEE_H */