u-boot/arch/mips/mach-octeon/cvmx-bootmem.c
Stefan Roese 2b6a72ed08 mips: octeon: cvmx-bootmem: Fix compare in "if" statement
While porting from the Marvell source, I introduced a bug by misplacing
the parenthesis. This patch fixes this issue.

Signed-off-by: Stefan Roese <sr@denx.de>
2021-04-23 21:22:55 +02:00

1454 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Marvell International Ltd.
*/
/*
* Simple allocate only memory allocator. Used to allocate memory at
* application start time.
*/
#include <asm/global_data.h>
#include <linux/compat.h>
#include <linux/io.h>
#include <linux/types.h>
#include <mach/octeon-model.h>
#include <mach/cvmx-bootmem.h>
#include <mach/cvmx-coremask.h>
#include <mach/cvmx-regs.h>
DECLARE_GLOBAL_DATA_PTR;
/**
* This is the physical location of a struct cvmx_bootmem_desc
* structure in Octeon's memory. Note that dues to addressing
* limits or runtime environment it might not be possible to
* create a C pointer to this structure.
*/
static u64 cvmx_bootmem_desc_addr;
/**
* This macro returns the size of a member of a structure.
* Logically it is the same as "sizeof(s::field)" in C++, but
* C lacks the "::" operator.
*/
#define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
/**
* This macro returns a member of the struct cvmx_bootmem_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the struct cvmx_bootmem_desc to read.
* Regardless of the type of the field, the return type is always
* a u64.
*/
#define CVMX_BOOTMEM_DESC_GET_FIELD(field) \
__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \
offsetof(struct cvmx_bootmem_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
/**
* This macro writes a member of the struct cvmx_bootmem_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the struct cvmx_bootmem_desc to write.
*/
#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \
__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \
offsetof(struct cvmx_bootmem_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
value)
/**
* This macro returns a member of the
* struct cvmx_bootmem_named_block_desc structure. These members can't
* be directly addressed as they might be in memory not directly
* reachable. In the case where bootmem is compiled with
* LINUX_HOST, the structure itself might be located on a remote
* Octeon. The argument "field" is the member name of the
* struct cvmx_bootmem_named_block_desc to read. Regardless of the type
* of the field, the return type is always a u64. The "addr"
* parameter is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
__cvmx_bootmem_desc_get(addr, \
offsetof(struct cvmx_bootmem_named_block_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
/**
* This macro writes a member of the struct cvmx_bootmem_named_block_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the
* struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
* is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \
__cvmx_bootmem_desc_set(addr, \
offsetof(struct cvmx_bootmem_named_block_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
value)
/**
* This function is the implementation of the get macros defined
* for individual structure members. The argument are generated
* by the macros inorder to read only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
*
* @return Value of the structure member promoted into a u64.
*/
static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
int size)
{
base = (1ull << 63) | (base + offset);
switch (size) {
case 4:
return cvmx_read64_uint32(base);
case 8:
return cvmx_read64_uint64(base);
default:
return 0;
}
}
/**
* This function is the implementation of the set macros defined
* for individual structure members. The argument are generated
* by the macros in order to write only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
* @param value Value to write into the structure
*/
static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
u64 value)
{
base = (1ull << 63) | (base + offset);
switch (size) {
case 4:
cvmx_write64_uint32(base, value);
break;
case 8:
cvmx_write64_uint64(base, value);
break;
default:
break;
}
}
/**
* This function returns the address of the bootmem descriptor lock.
*
* @return 64-bit address in KSEG0 of the bootmem descriptor block
*/
static inline u64 __cvmx_bootmem_get_lock_addr(void)
{
return (1ull << 63) |
(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
}
/**
* This function retrieves the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessible.
*
* @param addr Physical address of the named block descriptor
* @param str String to receive the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
{
int l = len;
char *ptr = str;
addr |= (1ull << 63);
addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
while (l) {
/*
* With big-endian in memory byte order, this gives uniform
* results for the CPU in either big or Little endian mode.
*/
u64 blob = cvmx_read64_uint64(addr);
int sa = 56;
addr += sizeof(u64);
while (l && sa >= 0) {
*ptr++ = (char)(blob >> sa);
l--;
sa -= 8;
}
}
str[len] = 0;
}
/**
* This function stores the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessible.
*
* @param addr Physical address of the named block descriptor
* @param str String to store into the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
{
int l = len;
addr |= (1ull << 63);
addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
while (l) {
/*
* With big-endian in memory byte order, this gives uniform
* results for the CPU in either big or Little endian mode.
*/
u64 blob = 0;
int sa = 56;
while (l && sa >= 0) {
u64 c = (u8)(*str++);
l--;
if (l == 0)
c = 0;
blob |= c << sa;
sa -= 8;
}
cvmx_write64_uint64(addr, blob);
addr += sizeof(u64);
}
}
/* See header file for descriptions of functions */
/*
* Wrapper functions are provided for reading/writing the size and next block
* values as these may not be directly addressible (in 32 bit applications, for
* instance.)
*
* Offsets of data elements in bootmem list, must match
* struct cvmx_bootmem_block_header
*/
#define NEXT_OFFSET 0
#define SIZE_OFFSET 8
static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
{
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
}
static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
{
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
}
static u64 cvmx_bootmem_phy_get_size(u64 addr)
{
return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
}
static u64 cvmx_bootmem_phy_get_next(u64 addr)
{
return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
}
/**
* Check the version information on the bootmem descriptor
*
* @param exact_match
* Exact major version to check against. A zero means
* check that the version supports named blocks.
*
* @return Zero if the version is correct. Negative if the version is
* incorrect. Failures also cause a message to be displayed.
*/
static int __cvmx_bootmem_check_version(int exact_match)
{
int major_version;
major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
if ((major_version > 3) ||
(exact_match && major_version != exact_match)) {
debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
major_version,
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
CAST_ULL(cvmx_bootmem_desc_addr));
return -1;
} else {
return 0;
}
}
/**
* Get the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_lock(u32 flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
/*
* Unfortunately we can't use the normal cvmx-spinlock code as
* the memory for the bootmem descriptor may be not accessible
* by a C pointer. We use a 64bit XKPHYS address to access the
* memory directly
*/
u64 lock_addr = (1ull << 63) |
(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
lock));
unsigned int tmp;
__asm__ __volatile__(".set noreorder\n"
"1: ll %[tmp], 0(%[addr])\n"
" bnez %[tmp], 1b\n"
" li %[tmp], 1\n"
" sc %[tmp], 0(%[addr])\n"
" beqz %[tmp], 1b\n"
" nop\n"
".set reorder\n"
: [tmp] "=&r"(tmp)
: [addr] "r"(lock_addr)
: "memory");
}
}
/**
* Release the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_unlock(u32 flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
/*
* Unfortunately we can't use the normal cvmx-spinlock code as
* the memory for the bootmem descriptor may be not accessible
* by a C pointer. We use a 64bit XKPHYS address to access the
* memory directly
*/
u64 lock_addr = __cvmx_bootmem_get_lock_addr();
CVMX_SYNCW;
__asm__ __volatile__("sw $0, 0(%[addr])\n"
: : [addr] "r"(lock_addr)
: "memory");
CVMX_SYNCW;
}
}
/*
* Some of the cvmx-bootmem functions dealing with C pointers are not
* supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
* ifndef removes these functions when they aren't needed.
*
* This functions takes an address range and adjusts it as necessary
* to match the ABI that is currently being used. This is required to
* ensure that bootmem_alloc* functions only return valid pointers for
* 32 bit ABIs
*/
static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
u64 *max_addr_ptr)
{
u64 max_phys = (1ull << 29) - 0x10; /* KSEG0 */
*min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
if (!*max_addr_ptr) {
*max_addr_ptr = max_phys;
} else {
*max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
max_phys), 0x0);
}
return 0;
}
u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr)
{
s64 address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment, 0);
if (address > 0)
return address;
else
return 0;
}
void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr)
{
s64 address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment, 0);
if (address > 0)
return cvmx_phys_to_ptr(address);
else
return NULL;
}
void *cvmx_bootmem_alloc_address(u64 size, u64 address,
u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, address,
address + size);
}
void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment,
node << CVMX_NODE_MEM_SHIFT,
((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
}
void *cvmx_bootmem_alloc(u64 size, u64 alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
}
void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name,
void (*init)(void *))
{
u64 named_block_desc_addr;
void *ptr;
s64 addr;
__cvmx_bootmem_lock(0);
__cvmx_validate_mem_range(&min_addr, &max_addr);
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr) {
addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
base_addr);
__cvmx_bootmem_unlock(0);
return cvmx_phys_to_ptr(addr);
}
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
align, name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr < 0) {
__cvmx_bootmem_unlock(0);
return NULL;
}
ptr = cvmx_phys_to_ptr(addr);
if (init)
init(ptr);
else
memset(ptr, 0, size);
__cvmx_bootmem_unlock(0);
return ptr;
}
void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name, u32 flags)
{
s64 addr;
__cvmx_validate_mem_range(&min_addr, &max_addr);
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
align, name, flags);
if (addr >= 0)
return cvmx_phys_to_ptr(addr);
else
return NULL;
}
void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name)
{
return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
align, name, 0);
}
void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
const char *name)
{
return cvmx_bootmem_alloc_named_range(size, address, address + size,
0, name);
}
void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
const char *name)
{
return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
}
void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
const char *name, u32 flags)
{
return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
name, flags);
}
int cvmx_bootmem_free_named(const char *name)
{
return cvmx_bootmem_phy_named_block_free(name, 0);
}
/**
* Find a named block with flags
*
* @param name is the block name
* @param flags indicates the need to use locking during search
* @return pointer to named block descriptor
*
* Note: this function returns a pointer to a static structure,
* and is therefore not re-entrant.
* Making this function re-entrant will break backward compatibility.
*/
const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
{
static struct cvmx_bootmem_named_block_desc desc;
u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
if (named_addr) {
desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
base_addr);
desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
strncpy(desc.name, name, sizeof(desc.name));
desc.name[sizeof(desc.name) - 1] = 0;
return &desc;
} else {
return NULL;
}
}
const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char *name)
{
return __cvmx_bootmem_find_named_block_flags(name, 0);
}
void cvmx_bootmem_print_named(void)
{
cvmx_bootmem_phy_named_block_print();
}
int cvmx_bootmem_init(u64 mem_desc_addr)
{
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = mem_desc_addr;
return 0;
}
u64 cvmx_bootmem_available_mem(u64 min_block_size)
{
return cvmx_bootmem_phy_available_mem(min_block_size);
}
/*
* The cvmx_bootmem_phy* functions below return 64 bit physical
* addresses, and expose more features that the cvmx_bootmem_functions
* above. These are required for full memory space access in 32 bit
* applications, as well as for using some advance features. Most
* applications should not need to use these.
*/
s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
u64 address_max, u64 alignment,
u32 flags)
{
u64 head_addr, ent_addr, ent_size;
u64 target_ent_addr = 0, target_prev_addr = 0;
u64 target_size = ~0ull;
u64 free_start, free_end;
u64 next_addr, prev_addr = 0;
u64 new_ent_addr = 0, new_ent_size;
u64 desired_min_addr, usable_max;
u64 align, align_mask;
debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
__func__, CAST_ULL(req_size), CAST_ULL(address_min),
CAST_ULL(address_max), CAST_ULL(alignment));
if (__cvmx_bootmem_check_version(0))
return -1;
/*
* Do a variety of checks to validate the arguments. The
* allocator code will later assume that these checks have
* been made. We validate that the requested constraints are
* not self-contradictory before we look through the list of
* available memory
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
return -1;
/* Round req_size up to multiple of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/* Make sure alignment is power of 2, and at least the minimum */
for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
align < (1ull << 48);
align <<= 1) {
if (align >= alignment)
break;
}
align_mask = ~(align - 1);
/*
* Adjust address minimum based on requested alignment (round
* up to meet alignment). Do this here so we can reject
* impossible requests up front. (NOP for address_min == 0)
*/
address_min = (address_min + (align - 1)) & align_mask;
/*
* Convert !0 address_min and 0 address_max to special case of
* range that specifies an exact memory block to allocate. Do
* this before other checks and adjustments so that this
* tranformation will be validated
*/
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max */
/*
* Reject inconsistent args. We have adjusted these, so this
* may fail due to our internal changes even if this check
* would pass for the values the user supplied.
*/
if (req_size > address_max - address_min)
return -1;
__cvmx_bootmem_lock(flags);
/* Walk through the list entries to find the right fit */
head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
for (ent_addr = head_addr;
ent_addr != 0ULL && ent_addr < address_max;
prev_addr = ent_addr,
ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
/* Raw free block size */
ent_size = cvmx_bootmem_phy_get_size(ent_addr);
next_addr = cvmx_bootmem_phy_get_next(ent_addr);
/* Validate the free list ascending order */
if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
(next_addr && ent_addr > next_addr)) {
debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
__func__, CAST_ULL(ent_addr),
CAST_ULL(next_addr));
goto error_out;
}
/* adjust free block edges for alignment */
free_start = (ent_addr + align - 1) & align_mask;
free_end = (ent_addr + ent_size) & align_mask;
/* check that free block is large enough */
if ((free_start + req_size) > free_end)
continue;
/* check that desired start is within the free block */
if (free_end < address_min || free_start > address_max)
continue;
if ((free_end - address_min) < req_size)
continue;
if ((address_max - free_start) < req_size)
continue;
/* Found usebale free block */
target_ent_addr = ent_addr;
target_prev_addr = prev_addr;
target_size = ent_size;
/* Continue looking for highest/best block that fits */
}
/* Bail if the search has resulted in no eligible free blocks */
if (target_ent_addr == 0) {
debug("%s: eligible free block not found\n", __func__);
goto error_out;
}
/* Found the free block to allocate from */
ent_addr = target_ent_addr;
prev_addr = target_prev_addr;
ent_size = target_size;
debug("%s: using free block at %#010llx size %#llx\n",
__func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
/* Always allocate from the end of a free block */
usable_max = min_t(u64, address_max, ent_addr + ent_size);
desired_min_addr = usable_max - req_size;
desired_min_addr &= align_mask;
/* Split current free block into up to 3 free blocks */
/* Check for head room */
if (desired_min_addr > ent_addr) {
/* Create a new free block at the allocation address */
new_ent_addr = desired_min_addr;
new_ent_size = ent_size - (desired_min_addr - ent_addr);
cvmx_bootmem_phy_set_next(new_ent_addr,
cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
/* Split out head room into a new free block */
ent_size -= new_ent_size;
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
cvmx_bootmem_phy_set_size(ent_addr, ent_size);
debug("%s: splitting head, addr %#llx size %#llx\n",
__func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
/* Make the allocation target the current free block */
prev_addr = ent_addr;
ent_addr = new_ent_addr;
ent_size = new_ent_size;
}
/* Check for tail room */
if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
new_ent_addr = ent_addr + req_size;
new_ent_size = ent_size - req_size;
/* Create a new free block from tail room */
cvmx_bootmem_phy_set_next(new_ent_addr,
cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
debug("%s: splitting tail, addr %#llx size %#llx\n",
__func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
/* Adjust the current block to exclude tail room */
ent_size = ent_size - new_ent_size;
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
cvmx_bootmem_phy_set_size(ent_addr, ent_size);
}
/* The current free block IS the allocation target */
if (desired_min_addr != ent_addr || ent_size != req_size)
debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
__func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
CAST_ULL(ent_size), CAST_ULL(req_size));
/* Remove the current free block from list */
if (prev_addr) {
cvmx_bootmem_phy_set_next(prev_addr,
cvmx_bootmem_phy_get_next(ent_addr));
} else {
/* head of list being returned, so update head ptr */
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
cvmx_bootmem_phy_get_next(ent_addr));
}
__cvmx_bootmem_unlock(flags);
debug("%s: allocated size: %#llx, at addr: %#010llx\n",
__func__,
CAST_ULL(req_size),
CAST_ULL(desired_min_addr));
return desired_min_addr;
error_out:
/* Requested memory not found or argument error */
__cvmx_bootmem_unlock(flags);
return -1;
}
int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
{
u64 cur_addr;
u64 prev_addr = 0; /* zero is invalid */
int retval = 0;
debug("%s addr: %#llx, size: %#llx\n", __func__,
CAST_ULL(phy_addr), CAST_ULL(size));
if (__cvmx_bootmem_check_version(0))
return 0;
/* 0 is not a valid size for this allocator */
if (!size || !phy_addr)
return 0;
/* Round size up to mult of minimum alignment bytes */
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
__cvmx_bootmem_lock(flags);
cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (cur_addr == 0 || phy_addr < cur_addr) {
/* add at front of list - special case with changing head ptr */
if (cur_addr && phy_addr + size > cur_addr)
goto bootmem_free_done; /* error, overlapping section */
else if (phy_addr + size == cur_addr) {
/* Add to front of existing first block */
cvmx_bootmem_phy_set_next(phy_addr,
cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_size(phy_addr,
cvmx_bootmem_phy_get_size(cur_addr) + size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
} else {
/* New block before first block */
/* OK if cur_addr is 0 */
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
retval = 1;
goto bootmem_free_done;
}
/* Find place in list to add block */
while (cur_addr && phy_addr > cur_addr) {
prev_addr = cur_addr;
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
}
if (!cur_addr) {
/*
* We have reached the end of the list, add on to end, checking
* to see if we need to combine with last block
*/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(prev_addr) + size);
} else {
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, 0);
}
retval = 1;
goto bootmem_free_done;
} else {
/*
* insert between prev and cur nodes, checking for merge with
* either/both
*/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
/* Merge with previous */
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(prev_addr) + size);
if (phy_addr + size == cur_addr) {
/* Also merge with current */
cvmx_bootmem_phy_set_size(prev_addr,
cvmx_bootmem_phy_get_size(cur_addr) +
cvmx_bootmem_phy_get_size(prev_addr));
cvmx_bootmem_phy_set_next(prev_addr,
cvmx_bootmem_phy_get_next(cur_addr));
}
retval = 1;
goto bootmem_free_done;
} else if (phy_addr + size == cur_addr) {
/* Merge with current */
cvmx_bootmem_phy_set_size(phy_addr,
cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_phy_set_next(phy_addr,
cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
retval = 1;
goto bootmem_free_done;
}
/* It is a standalone block, add in between prev and cur */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
}
retval = 1;
bootmem_free_done:
__cvmx_bootmem_unlock(flags);
return retval;
}
void cvmx_bootmem_phy_list_print(void)
{
u64 addr;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
printf("Descriptor version: %d.%d\n",
(int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
debug("Warning: Bootmem descriptor version is newer than expected\n");
if (!addr)
printf("mem list is empty!\n");
while (addr) {
printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
addr = cvmx_bootmem_phy_get_next(addr);
}
printf("\n\n");
}
u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
{
u64 addr;
u64 available_mem = 0;
__cvmx_bootmem_lock(0);
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
while (addr) {
if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
available_mem += cvmx_bootmem_phy_get_size(addr);
addr = cvmx_bootmem_phy_get_next(addr);
}
__cvmx_bootmem_unlock(0);
return available_mem;
}
u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
{
u64 result = 0;
debug("%s: %s\n", __func__, name);
__cvmx_bootmem_lock(flags);
if (!__cvmx_bootmem_check_version(3)) {
int i;
u64 named_block_array_addr =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
u64 named_addr = named_block_array_addr;
for (i = 0; i < num_blocks; i++) {
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
if (name && named_size) {
char name_tmp[name_length + 1];
CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
name_tmp,
name_length);
if (!strncmp(name, name_tmp, name_length)) {
result = named_addr;
break;
}
} else if (!name && !named_size) {
result = named_addr;
break;
}
named_addr +=
sizeof(struct cvmx_bootmem_named_block_desc);
}
}
__cvmx_bootmem_unlock(flags);
return result;
}
int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
{
u64 named_block_addr;
if (__cvmx_bootmem_check_version(3))
return 0;
debug("%s: %s\n", __func__, name);
/*
* Take lock here, as name lookup/block free/name free need to be
* atomic
*/
__cvmx_bootmem_lock(flags);
named_block_addr = cvmx_bootmem_phy_named_block_find(name,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_addr) {
u64 named_addr =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
base_addr);
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
__func__, name, CAST_ULL(named_addr),
CAST_ULL(named_size));
__cvmx_bootmem_phy_free(named_addr, named_size,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
/* Set size to zero to indicate block not used. */
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
}
__cvmx_bootmem_unlock(flags);
return !!named_block_addr; /* 0 on failure, 1 on success */
}
s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
u64 max_addr,
u64 alignment, const char *name,
u32 flags)
{
s64 addr_allocated;
u64 named_block_desc_addr;
debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
__func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
CAST_ULL(alignment), name);
if (__cvmx_bootmem_check_version(3))
return -1;
/*
* Take lock here, as name lookup/block alloc/name add need to be
* atomic
*/
__cvmx_bootmem_lock(flags);
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(name, flags |
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr) {
__cvmx_bootmem_unlock(flags);
return -1;
}
/* Get pointer to first available named block descriptor */
named_block_desc_addr =
cvmx_bootmem_phy_named_block_find(NULL, flags |
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (!named_block_desc_addr) {
__cvmx_bootmem_unlock(flags);
return -1;
}
/*
* Round size up to mult of minimum alignment bytes
* We need the actual size allocated to allow for blocks to be
* coallesced when they are freed. The alloc routine does the
* same rounding up on all allocations.
*/
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment,
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0) {
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
addr_allocated);
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
}
__cvmx_bootmem_unlock(flags);
return addr_allocated;
}
void cvmx_bootmem_phy_named_block_print(void)
{
int i;
int printed = 0;
u64 named_block_array_addr =
CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
u64 named_block_addr = named_block_array_addr;
debug("%s: desc addr: 0x%llx\n",
__func__, CAST_ULL(cvmx_bootmem_desc_addr));
if (__cvmx_bootmem_check_version(3))
return;
printf("List of currently allocated named bootmem blocks:\n");
for (i = 0; i < num_blocks; i++) {
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
if (named_size) {
char name_tmp[name_length + 1];
u64 named_addr =
CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
base_addr);
CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
name_length);
printed++;
printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
CAST_ULL(named_addr),
CAST_ULL(named_size), i);
}
named_block_addr +=
sizeof(struct cvmx_bootmem_named_block_desc);
}
if (!printed)
printf("No named bootmem blocks exist.\n");
}
s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer)
{
u64 cur_block_addr;
s64 addr;
int i;
debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
__func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
/*
* Descriptor buffer needs to be in 32 bit addressable space to be
* compatible with 32 bit applications
*/
if (!desc_buffer) {
debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
debug("ERROR: requested memory size too large, truncating to maximum size\n");
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
/*
* Set up global pointer to start of list, exclude low 64k for exception
* vectors, space for global descriptor
*/
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
if (mem_size <= OCTEON_DDR0_SIZE) {
__cvmx_bootmem_phy_free(cur_block_addr,
mem_size - low_reserved_bytes, 0);
goto frees_done;
}
__cvmx_bootmem_phy_free(cur_block_addr,
OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE) {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
mem_size - OCTEON_DDR1_SIZE, 0);
} else {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
frees_done:
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
sizeof(struct cvmx_bootmem_named_block_desc),
0, 0x10000000, 0,
CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
debug("%s: named_block_array_addr: 0x%llx)\n",
__func__, CAST_ULL(addr));
if (addr < 0) {
debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return 0;
}
for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(struct cvmx_bootmem_named_block_desc);
}
return 1;
}
s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
u32 mem_sizes[],
u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer)
{
u64 cur_block_addr;
u64 mem_size;
s64 addr;
int i;
int node;
u64 node_base; /* Make u64 to reduce type casting */
mem_sizes[0] = gd->ram_size / (1024 * 1024);
debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
/*
* Descriptor buffer needs to be in 32 bit addressable space to be
* compatible with 32 bit applications
*/
if (!desc_buffer) {
debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
cvmx_coremask_for_each_node(node, node_mask) {
if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
(1024 * 1024);
debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
CAST_ULL(node));
}
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
cvmx_coremask_for_each_node(node, node_mask) {
if (node != 0) /* do not reserve memory on remote nodes */
low_reserved_bytes = 0;
mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
/*
* Set up global pointer to start of list, exclude low 64k
* for exception vectors, space for global descriptor
*/
node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
node_base;
if (mem_size <= OCTEON_DDR0_SIZE) {
__cvmx_bootmem_phy_free(cur_block_addr,
mem_size - low_reserved_bytes,
0);
continue;
}
__cvmx_bootmem_phy_free(cur_block_addr,
OCTEON_DDR0_SIZE - low_reserved_bytes,
0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE) {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
node_base,
OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
node_base,
mem_size - OCTEON_DDR1_SIZE, 0);
} else {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
node_base,
mem_size, 0);
}
}
debug("%s: Initialize the named block\n", __func__);
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
sizeof(struct cvmx_bootmem_named_block_desc),
0, 0x10000000, 0,
CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
CAST_ULL(addr));
if (addr < 0) {
debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return 0;
}
for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(struct cvmx_bootmem_named_block_desc);
}
// test-only: DEBUG ifdef???
cvmx_bootmem_phy_list_print();
return 1;
}
int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
const char *name, u32 flags)
{
u64 addr;
int rc = 1;
static unsigned int block_num;
char block_name[CVMX_BOOTMEM_NAME_LEN];
debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
__func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
if (__cvmx_bootmem_check_version(3))
return 0;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (!addr)
return 0;
if (!name)
name = "__cvmx_bootmem_reserved";
while (addr && rc) {
u64 block_size = cvmx_bootmem_phy_get_size(addr);
u64 reserve_size = 0;
if (addr >= start_addr && addr < start_addr + size) {
reserve_size = size - (addr - start_addr);
if (block_size < reserve_size)
reserve_size = block_size;
} else if (start_addr > addr &&
start_addr < (addr + block_size)) {
reserve_size = block_size - (start_addr - addr);
}
if (reserve_size) {
snprintf(block_name, sizeof(block_name),
"%.32s_%012llx_%u",
name, (unsigned long long)start_addr,
(unsigned int)block_num);
debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
__func__, CAST_ULL(reserve_size),
CAST_ULL(addr), block_name);
if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
addr, 0, 0,
block_name,
flags) == -1) {
debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
__func__, CAST_ULL(reserve_size),
(unsigned long long)addr);
rc = 0;
break;
}
debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
__func__, CAST_ULL(reserve_size),
CAST_ULL(addr), block_name);
}
addr = cvmx_bootmem_phy_get_next(addr);
block_num++;
}
return rc;
}
void cvmx_bootmem_lock(void)
{
__cvmx_bootmem_lock(0);
}
void cvmx_bootmem_unlock(void)
{
__cvmx_bootmem_unlock(0);
}
void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
{
void *tmp;
if (sizeof(void *) == 8) {
tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
} else {
u32 phy32 = (u32)(phys & 0x7fffffffULL);
tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
phy32));
}
return tmp;
}
void *__cvmx_bootmem_internal_get_desc_ptr(void)
{
return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
}