mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-12 07:57:21 +00:00
54858311df
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
1032 lines
28 KiB
C
1032 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2018 Synopsys, Inc. All rights reserved.
|
|
* Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <config.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/io.h>
|
|
#include <asm/arcregs.h>
|
|
#include <fdt_support.h>
|
|
#include <dwmmc.h>
|
|
#include <malloc.h>
|
|
#include <usb.h>
|
|
|
|
#include "clk-lib.h"
|
|
#include "env-lib.h"
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0)
|
|
#define MASTER_CPU_ID 0
|
|
#define APERTURE_SHIFT 28
|
|
#define NO_CCM 0x10
|
|
#define SLAVE_CPU_READY 0x12345678
|
|
#define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */
|
|
#define BOOTSTAGE_2 2 /* after HW init, before self halt */
|
|
#define BOOTSTAGE_3 3 /* after self halt */
|
|
#define BOOTSTAGE_4 4 /* before app launch */
|
|
#define BOOTSTAGE_5 5 /* after app launch, unreachable */
|
|
|
|
#define RESET_VECTOR_ADDR 0x0
|
|
|
|
#define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000)
|
|
#define CREG_CPU_START (CREG_BASE + 0x400)
|
|
#define CREG_CPU_START_MASK 0xF
|
|
|
|
#define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000)
|
|
#define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108)
|
|
#define SDIO_UHS_REG_EXT_DIV_2 (2 << 30)
|
|
|
|
/* Uncached access macros */
|
|
#define arc_read_uncached_32(ptr) \
|
|
({ \
|
|
unsigned int __ret; \
|
|
__asm__ __volatile__( \
|
|
" ld.di %0, [%1] \n" \
|
|
: "=r"(__ret) \
|
|
: "r"(ptr)); \
|
|
__ret; \
|
|
})
|
|
|
|
#define arc_write_uncached_32(ptr, data)\
|
|
({ \
|
|
__asm__ __volatile__( \
|
|
" st.di %0, [%1] \n" \
|
|
: \
|
|
: "r"(data), "r"(ptr)); \
|
|
})
|
|
|
|
struct hsdk_env_core_ctl {
|
|
u32_env entry[NR_CPUS];
|
|
u32_env iccm[NR_CPUS];
|
|
u32_env dccm[NR_CPUS];
|
|
};
|
|
|
|
struct hsdk_env_common_ctl {
|
|
bool halt_on_boot;
|
|
u32_env core_mask;
|
|
u32_env cpu_freq;
|
|
u32_env axi_freq;
|
|
u32_env tun_freq;
|
|
u32_env nvlim;
|
|
u32_env icache;
|
|
u32_env dcache;
|
|
};
|
|
|
|
/*
|
|
* Uncached cross-cpu structure. All CPUs must access to this structure fields
|
|
* only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
|
|
* implement ld.di / st.di instructions). Simultaneous cached and uncached
|
|
* access to this area will lead to data loss.
|
|
* We flush all data caches in board_early_init_r() as we don't want to have
|
|
* any dirty line in L1d$ or SL$ in this area.
|
|
*/
|
|
struct hsdk_cross_cpu {
|
|
/* slave CPU ready flag */
|
|
u32 ready_flag;
|
|
/* address of the area, which can be used for stack by slave CPU */
|
|
u32 stack_ptr;
|
|
/* slave CPU status - bootstage number */
|
|
s32 status[NR_CPUS];
|
|
|
|
/*
|
|
* Slave CPU data - it is copy of corresponding fields in
|
|
* hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
|
|
* required for slave CPUs initialization.
|
|
* This fields can be populated by copying from hsdk_env_core_ctl
|
|
* and hsdk_env_common_ctl structures with sync_cross_cpu_data()
|
|
* function.
|
|
*/
|
|
u32 entry[NR_CPUS];
|
|
u32 iccm[NR_CPUS];
|
|
u32 dccm[NR_CPUS];
|
|
|
|
u32 core_mask;
|
|
u32 icache;
|
|
u32 dcache;
|
|
|
|
u8 cache_padding[ARCH_DMA_MINALIGN];
|
|
} __aligned(ARCH_DMA_MINALIGN);
|
|
|
|
/* Place for slave CPUs temporary stack */
|
|
static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
|
|
|
|
static struct hsdk_env_common_ctl env_common = {};
|
|
static struct hsdk_env_core_ctl env_core = {};
|
|
static struct hsdk_cross_cpu cross_cpu_data;
|
|
|
|
static const struct env_map_common env_map_common[] = {
|
|
{ "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask },
|
|
{ "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim },
|
|
{ "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache },
|
|
{ "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache },
|
|
{}
|
|
};
|
|
|
|
static const struct env_map_common env_map_clock[] = {
|
|
{ "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq },
|
|
{ "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq },
|
|
{ "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq },
|
|
{}
|
|
};
|
|
|
|
static const struct env_map_percpu env_map_core[] = {
|
|
{ "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
|
|
{ "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
|
|
{}
|
|
};
|
|
|
|
static const struct env_map_common env_map_mask[] = {
|
|
{ "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask },
|
|
{}
|
|
};
|
|
|
|
static const struct env_map_percpu env_map_go[] = {
|
|
{ "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
|
|
{}
|
|
};
|
|
|
|
static void sync_cross_cpu_data(void)
|
|
{
|
|
u32 value;
|
|
|
|
for (u32 i = 0; i < NR_CPUS; i++) {
|
|
value = env_core.entry[i].val;
|
|
arc_write_uncached_32(&cross_cpu_data.entry[i], value);
|
|
}
|
|
|
|
for (u32 i = 0; i < NR_CPUS; i++) {
|
|
value = env_core.iccm[i].val;
|
|
arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
|
|
}
|
|
|
|
for (u32 i = 0; i < NR_CPUS; i++) {
|
|
value = env_core.dccm[i].val;
|
|
arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
|
|
}
|
|
|
|
value = env_common.core_mask.val;
|
|
arc_write_uncached_32(&cross_cpu_data.core_mask, value);
|
|
|
|
value = env_common.icache.val;
|
|
arc_write_uncached_32(&cross_cpu_data.icache, value);
|
|
|
|
value = env_common.dcache.val;
|
|
arc_write_uncached_32(&cross_cpu_data.dcache, value);
|
|
}
|
|
|
|
/* Can be used only on master CPU */
|
|
static bool is_cpu_used(u32 cpu_id)
|
|
{
|
|
return !!(env_common.core_mask.val & BIT(cpu_id));
|
|
}
|
|
|
|
/* TODO: add ICCM BCR and DCCM BCR runtime check */
|
|
static void init_slave_cpu_func(u32 core)
|
|
{
|
|
u32 val;
|
|
|
|
/* Remap ICCM to another memory region if it exists */
|
|
val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
|
|
if (val != NO_CCM)
|
|
write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
|
|
|
|
/* Remap DCCM to another memory region if it exists */
|
|
val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
|
|
if (val != NO_CCM)
|
|
write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
|
|
|
|
if (arc_read_uncached_32(&cross_cpu_data.icache))
|
|
icache_enable();
|
|
else
|
|
icache_disable();
|
|
|
|
if (arc_read_uncached_32(&cross_cpu_data.dcache))
|
|
dcache_enable();
|
|
else
|
|
dcache_disable();
|
|
}
|
|
|
|
static void init_cluster_nvlim(void)
|
|
{
|
|
u32 val = env_common.nvlim.val << APERTURE_SHIFT;
|
|
|
|
flush_dcache_all();
|
|
write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
|
|
write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
|
|
flush_n_invalidate_dcache_all();
|
|
}
|
|
|
|
static void init_master_icache(void)
|
|
{
|
|
if (icache_status()) {
|
|
/* I$ is enabled - we need to disable it */
|
|
if (!env_common.icache.val)
|
|
icache_disable();
|
|
} else {
|
|
/* I$ is disabled - we need to enable it */
|
|
if (env_common.icache.val) {
|
|
icache_enable();
|
|
|
|
/* invalidate I$ right after enable */
|
|
invalidate_icache_all();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_master_dcache(void)
|
|
{
|
|
if (dcache_status()) {
|
|
/* D$ is enabled - we need to disable it */
|
|
if (!env_common.dcache.val)
|
|
dcache_disable();
|
|
} else {
|
|
/* D$ is disabled - we need to enable it */
|
|
if (env_common.dcache.val)
|
|
dcache_enable();
|
|
|
|
/* TODO: probably we need ti invalidate D$ right after enable */
|
|
}
|
|
}
|
|
|
|
static int cleanup_before_go(void)
|
|
{
|
|
disable_interrupts();
|
|
sync_n_cleanup_cache_all();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void slave_cpu_set_boot_addr(u32 addr)
|
|
{
|
|
/* All cores have reset vector pointing to 0 */
|
|
writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
|
|
|
|
/* Make sure other cores see written value in memory */
|
|
sync_n_cleanup_cache_all();
|
|
}
|
|
|
|
static inline void halt_this_cpu(void)
|
|
{
|
|
__builtin_arc_flag(1);
|
|
}
|
|
|
|
static void smp_kick_cpu_x(u32 cpu_id)
|
|
{
|
|
int cmd = readl((void __iomem *)CREG_CPU_START);
|
|
|
|
if (cpu_id > NR_CPUS)
|
|
return;
|
|
|
|
cmd &= ~CREG_CPU_START_MASK;
|
|
cmd |= (1 << cpu_id);
|
|
writel(cmd, (void __iomem *)CREG_CPU_START);
|
|
}
|
|
|
|
static u32 prepare_cpu_ctart_reg(void)
|
|
{
|
|
int cmd = readl((void __iomem *)CREG_CPU_START);
|
|
|
|
cmd &= ~CREG_CPU_START_MASK;
|
|
|
|
return cmd | env_common.core_mask.val;
|
|
}
|
|
|
|
/* slave CPU entry for configuration */
|
|
__attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
"ld.di r8, [%0]\n"
|
|
"mov %%sp, r8\n"
|
|
"mov %%fp, %%sp\n"
|
|
: /* no output */
|
|
: "r" (&cross_cpu_data.stack_ptr));
|
|
|
|
invalidate_icache_all();
|
|
|
|
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
|
|
init_slave_cpu_func(CPU_ID_GET());
|
|
|
|
arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
|
|
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
|
|
|
|
/* Halt the processor until the master kick us again */
|
|
halt_this_cpu();
|
|
|
|
/*
|
|
* 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
|
|
* cores but we leave them for gebug purposes.
|
|
*/
|
|
__builtin_arc_nop();
|
|
__builtin_arc_nop();
|
|
__builtin_arc_nop();
|
|
|
|
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
|
|
|
|
/* get the updated entry - invalidate i$ */
|
|
invalidate_icache_all();
|
|
|
|
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
|
|
|
|
/* Run our program */
|
|
((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
|
|
|
|
/* This bootstage is unreachable as we don't return from app we launch */
|
|
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
|
|
|
|
/* Something went terribly wrong */
|
|
while (true)
|
|
halt_this_cpu();
|
|
}
|
|
|
|
static void clear_cross_cpu_data(void)
|
|
{
|
|
arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
|
|
arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
|
|
|
|
for (u32 i = 0; i < NR_CPUS; i++)
|
|
arc_write_uncached_32(&cross_cpu_data.status[i], 0);
|
|
}
|
|
|
|
static noinline void do_init_slave_cpu(u32 cpu_id)
|
|
{
|
|
/* attempts number for check clave CPU ready_flag */
|
|
u32 attempts = 100;
|
|
u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
|
|
|
|
if (cpu_id >= NR_CPUS)
|
|
return;
|
|
|
|
arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
|
|
|
|
/* Use global unique place for each slave cpu stack */
|
|
arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
|
|
|
|
debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
|
|
debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
|
|
slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
|
|
|
|
smp_kick_cpu_x(cpu_id);
|
|
|
|
debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
|
|
arc_read_uncached_32(&cross_cpu_data.ready_flag));
|
|
|
|
while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
|
|
mdelay(10);
|
|
|
|
/* Just to be sure that slave cpu is halted after it set ready_flag */
|
|
mdelay(20);
|
|
|
|
/*
|
|
* Only print error here if we reach timeout as there is no option to
|
|
* halt slave cpu (or check that slave cpu is halted)
|
|
*/
|
|
if (!attempts)
|
|
pr_err("CPU %u is not responding after init!\n", cpu_id);
|
|
|
|
/* Check current stage of slave cpu */
|
|
if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
|
|
pr_err("CPU %u status is unexpected: %d\n", cpu_id,
|
|
arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
|
|
|
|
debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
|
|
arc_read_uncached_32(&cross_cpu_data.ready_flag));
|
|
debug("CPU %u: status: %d [after timeout]\n", cpu_id,
|
|
arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
|
|
}
|
|
|
|
static void do_init_slave_cpus(void)
|
|
{
|
|
clear_cross_cpu_data();
|
|
sync_cross_cpu_data();
|
|
|
|
debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
|
|
|
|
for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
|
|
if (is_cpu_used(i))
|
|
do_init_slave_cpu(i);
|
|
}
|
|
|
|
static void do_init_master_cpu(void)
|
|
{
|
|
/*
|
|
* Setup master caches even if master isn't used as we want to use
|
|
* same cache configuration on all running CPUs
|
|
*/
|
|
init_master_icache();
|
|
init_master_dcache();
|
|
}
|
|
|
|
enum hsdk_axi_masters {
|
|
M_HS_CORE = 0,
|
|
M_HS_RTT,
|
|
M_AXI_TUN,
|
|
M_HDMI_VIDEO,
|
|
M_HDMI_AUDIO,
|
|
M_USB_HOST,
|
|
M_ETHERNET,
|
|
M_SDIO,
|
|
M_GPU,
|
|
M_DMAC_0,
|
|
M_DMAC_1,
|
|
M_DVFS
|
|
};
|
|
|
|
#define UPDATE_VAL 1
|
|
|
|
/*
|
|
* m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
|
|
* 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210
|
|
* 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
|
|
* 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
|
|
* 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
|
|
* 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
|
|
* 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
|
|
* 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
|
|
*
|
|
* Please read ARC HS Development IC Specification, section 17.2 for more
|
|
* information about apertures configuration.
|
|
* NOTE: we intentionally modify default settings in U-boot. Default settings
|
|
* are specified in "Table 111 CREG Address Decoder register reset values".
|
|
*/
|
|
|
|
#define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m)))
|
|
#define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
|
|
#define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
|
|
#define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
|
|
#define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
|
|
|
|
#define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010))
|
|
|
|
#define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180))
|
|
#define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194))
|
|
|
|
void init_memory_bridge(void)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* M_HS_CORE has one unic register - BOOT.
|
|
* We need to clean boot mirror (BOOT[1:0]) bits in them.
|
|
*/
|
|
reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
|
|
writel(reg, CREG_AXI_M_HS_CORE_BOOT);
|
|
writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
|
|
writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
|
|
writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
|
|
|
|
writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
|
|
writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
|
|
writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
|
|
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
|
|
writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
|
|
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
|
|
writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
|
|
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
|
|
|
|
writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
|
|
writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
|
|
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
|
|
writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
|
|
|
|
writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
|
|
writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
|
|
writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
|
|
writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
|
|
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
|
|
|
|
writel(0x00000000, CREG_PAE);
|
|
writel(UPDATE_VAL, CREG_PAE_UPDT);
|
|
}
|
|
|
|
static void setup_clocks(void)
|
|
{
|
|
ulong rate;
|
|
|
|
/* Setup CPU clock */
|
|
if (env_common.cpu_freq.set) {
|
|
rate = env_common.cpu_freq.val;
|
|
soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
|
|
}
|
|
|
|
/* Setup TUN clock */
|
|
if (env_common.tun_freq.set) {
|
|
rate = env_common.tun_freq.val;
|
|
if (rate)
|
|
soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
|
|
else
|
|
soc_clk_ctl("tun-clk", NULL, CLK_OFF);
|
|
}
|
|
|
|
if (env_common.axi_freq.set) {
|
|
rate = env_common.axi_freq.val;
|
|
soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
|
|
}
|
|
}
|
|
|
|
static void do_init_cluster(void)
|
|
{
|
|
/*
|
|
* A multi-core ARC HS configuration always includes only one
|
|
* ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
|
|
* cores.
|
|
*/
|
|
init_cluster_nvlim();
|
|
}
|
|
|
|
static int check_master_cpu_id(void)
|
|
{
|
|
if (CPU_ID_GET() == MASTER_CPU_ID)
|
|
return 0;
|
|
|
|
pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static noinline int prepare_cpus(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = check_master_cpu_id();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
|
|
if (ret)
|
|
return ret;
|
|
|
|
printf("CPU start mask is %#x\n", env_common.core_mask.val);
|
|
|
|
do_init_slave_cpus();
|
|
do_init_master_cpu();
|
|
do_init_cluster();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hsdk_go_run(u32 cpu_start_reg)
|
|
{
|
|
/* Cleanup caches, disable interrupts */
|
|
cleanup_before_go();
|
|
|
|
if (env_common.halt_on_boot)
|
|
halt_this_cpu();
|
|
|
|
/*
|
|
* 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
|
|
* cores but we leave them for gebug purposes.
|
|
*/
|
|
__builtin_arc_nop();
|
|
__builtin_arc_nop();
|
|
__builtin_arc_nop();
|
|
|
|
/* Kick chosen slave CPUs */
|
|
writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
|
|
|
|
if (is_cpu_used(MASTER_CPU_ID))
|
|
((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
|
|
else
|
|
halt_this_cpu();
|
|
|
|
pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
|
|
|
|
/*
|
|
* We will never return after executing our program if master cpu used
|
|
* otherwise halt master cpu manually.
|
|
*/
|
|
while (true)
|
|
halt_this_cpu();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int board_prep_linux(bootm_headers_t *images)
|
|
{
|
|
int ret, ofst;
|
|
char mask[15];
|
|
|
|
ret = envs_read_validate_common(env_map_mask);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Rollback to default values */
|
|
if (!env_common.core_mask.set) {
|
|
env_common.core_mask.val = ALL_CPU_MASK;
|
|
env_common.core_mask.set = true;
|
|
}
|
|
|
|
printf("CPU start mask is %#x\n", env_common.core_mask.val);
|
|
|
|
if (!is_cpu_used(MASTER_CPU_ID))
|
|
pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
|
|
|
|
/*
|
|
* If we want to launch linux on all CPUs we don't need to patch
|
|
* linux DTB as it is default configuration
|
|
*/
|
|
if (env_common.core_mask.val == ALL_CPU_MASK)
|
|
return 0;
|
|
|
|
if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
|
|
pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
|
|
return 0;
|
|
}
|
|
|
|
/* patch '/possible-cpus' property according to cpu mask */
|
|
ofst = fdt_path_offset(images->ft_addr, "/");
|
|
sprintf(mask, "%s%s%s%s",
|
|
is_cpu_used(0) ? "0," : "",
|
|
is_cpu_used(1) ? "1," : "",
|
|
is_cpu_used(2) ? "2," : "",
|
|
is_cpu_used(3) ? "3," : "");
|
|
ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
|
|
/*
|
|
* If we failed to patch '/possible-cpus' property we don't need break
|
|
* linux loading process: kernel will handle it but linux will print
|
|
* warning like "Timeout: CPU1 FAILED to comeup !!!".
|
|
* So warn here about error, but return 0 like no error had occurred.
|
|
*/
|
|
if (ret)
|
|
pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
|
|
ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void board_jump_and_run(ulong entry, int zero, int arch, uint params)
|
|
{
|
|
void (*kernel_entry)(int zero, int arch, uint params);
|
|
u32 cpu_start_reg;
|
|
|
|
kernel_entry = (void (*)(int, int, uint))entry;
|
|
|
|
/* Prepare CREG_CPU_START for kicking chosen CPUs */
|
|
cpu_start_reg = prepare_cpu_ctart_reg();
|
|
|
|
/* In case of run without hsdk_init */
|
|
slave_cpu_set_boot_addr(entry);
|
|
|
|
/* In case of run with hsdk_init */
|
|
for (u32 i = 0; i < NR_CPUS; i++) {
|
|
env_core.entry[i].val = entry;
|
|
env_core.entry[i].set = true;
|
|
}
|
|
/* sync cross_cpu struct as we updated core-entry variables */
|
|
sync_cross_cpu_data();
|
|
|
|
/* Kick chosen slave CPUs */
|
|
writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
|
|
|
|
if (is_cpu_used(0))
|
|
kernel_entry(zero, arch, params);
|
|
}
|
|
|
|
static int hsdk_go_prepare_and_run(void)
|
|
{
|
|
/* Prepare CREG_CPU_START for kicking chosen CPUs */
|
|
u32 reg = prepare_cpu_ctart_reg();
|
|
|
|
if (env_common.halt_on_boot)
|
|
printf("CPU will halt before application start, start application with debugger.\n");
|
|
|
|
return hsdk_go_run(reg);
|
|
}
|
|
|
|
static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Check for 'halt' parameter. 'halt' = enter halt-mode just before
|
|
* starting the application; can be used for debug.
|
|
*/
|
|
if (argc > 1) {
|
|
env_common.halt_on_boot = !strcmp(argv[1], "halt");
|
|
if (!env_common.halt_on_boot) {
|
|
pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
|
|
return CMD_RET_FAILURE;
|
|
}
|
|
}
|
|
|
|
ret = check_master_cpu_id();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* sync cross_cpu struct as we updated core-entry variables */
|
|
sync_cross_cpu_data();
|
|
|
|
ret = hsdk_go_prepare_and_run();
|
|
|
|
return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
hsdk_go, 3, 0, do_hsdk_go,
|
|
"Synopsys HSDK specific command",
|
|
" - Boot stand-alone application on HSDK\n"
|
|
"hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
|
|
);
|
|
|
|
static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
|
|
{
|
|
static bool done = false;
|
|
int ret;
|
|
|
|
/* hsdk_init can be run only once */
|
|
if (done) {
|
|
printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
|
|
return CMD_RET_FAILURE;
|
|
}
|
|
|
|
ret = prepare_cpus();
|
|
if (!ret)
|
|
done = true;
|
|
|
|
return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
hsdk_init, 1, 0, do_hsdk_init,
|
|
"Synopsys HSDK specific command",
|
|
"- Init HSDK HW\n"
|
|
);
|
|
|
|
static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char *const argv[])
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Strip off leading subcommand argument */
|
|
argc--;
|
|
argv++;
|
|
|
|
envs_cleanup_common(env_map_clock);
|
|
|
|
if (!argc) {
|
|
printf("Set clocks to values specified in environment\n");
|
|
ret = envs_read_common(env_map_clock);
|
|
} else {
|
|
printf("Set clocks to values specified in args\n");
|
|
ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
|
|
}
|
|
|
|
if (ret)
|
|
return CMD_RET_FAILURE;
|
|
|
|
ret = envs_validate_common(env_map_clock);
|
|
if (ret)
|
|
return CMD_RET_FAILURE;
|
|
|
|
/* Setup clock tree HW */
|
|
setup_clocks();
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char *const argv[])
|
|
{
|
|
ulong rate;
|
|
|
|
if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (env_set_ulong("cpu_freq", rate))
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (env_set_ulong("tun_freq", rate))
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (env_set_ulong("axi_freq", rate))
|
|
return CMD_RET_FAILURE;
|
|
|
|
printf("Clock values are saved to environment\n");
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char *const argv[])
|
|
{
|
|
/* Main clocks */
|
|
soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char *const argv[])
|
|
{
|
|
/*
|
|
* NOTE: as of today we don't use some peripherals like HDMI / EBI
|
|
* so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
|
|
* "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
|
|
* functional and we can print their clocks if it is required
|
|
*/
|
|
|
|
/* CPU clock domain */
|
|
soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
printf("\n");
|
|
|
|
/* SYS clock domain */
|
|
soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
/* soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */
|
|
soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
/* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
|
|
soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
printf("\n");
|
|
|
|
/* DDR clock domain */
|
|
soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
printf("\n");
|
|
|
|
/* HDMI clock domain */
|
|
/* soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */
|
|
/* soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */
|
|
/* printf("\n"); */
|
|
|
|
/* TUN clock domain */
|
|
soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
|
|
printf("\n");
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
cmd_tbl_t cmd_hsdk_clock[] = {
|
|
U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
|
|
U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
|
|
U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
|
|
U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
|
|
};
|
|
|
|
static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
|
|
{
|
|
cmd_tbl_t *c;
|
|
|
|
if (argc < 2)
|
|
return CMD_RET_USAGE;
|
|
|
|
/* Strip off leading 'hsdk_clock' command argument */
|
|
argc--;
|
|
argv++;
|
|
|
|
c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
|
|
if (!c)
|
|
return CMD_RET_USAGE;
|
|
|
|
return c->cmd(cmdtp, flag, argc, argv);
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
|
|
"Synopsys HSDK specific clock command",
|
|
"set - Set clock to values specified in environment / command line arguments\n"
|
|
"hsdk_clock get - Save clock values to environment\n"
|
|
"hsdk_clock print - Print main clock values to console\n"
|
|
"hsdk_clock print_all - Print all clock values to console\n"
|
|
);
|
|
|
|
/* init calls */
|
|
int board_early_init_f(void)
|
|
{
|
|
/*
|
|
* Setup AXI apertures unconditionally as we want to have DDR
|
|
* in 0x00000000 region when we are kicking slave cpus.
|
|
*/
|
|
init_memory_bridge();
|
|
|
|
/*
|
|
* Switch SDIO external ciu clock divider from default div-by-8 to
|
|
* minimum possible div-by-2.
|
|
*/
|
|
writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int board_early_init_r(void)
|
|
{
|
|
/*
|
|
* TODO: Init USB here to be able read environment from USB MSD.
|
|
* It can be done with usb_init() call. We can't do it right now
|
|
* due to brocken USB IP SW reset and lack of USB IP HW reset in
|
|
* linux kernel (if we init USB here we will break USB in linux)
|
|
*/
|
|
|
|
/*
|
|
* Flush all d$ as we want to use uncached area with st.di / ld.di
|
|
* instructions and we don't want to have any dirty line in L1d$ or SL$
|
|
* in this area. It is enough to flush all d$ once here as we access to
|
|
* uncached area with regular st (non .di) instruction only when we copy
|
|
* data during u-boot relocation.
|
|
*/
|
|
flush_dcache_all();
|
|
|
|
printf("Relocation Offset is: %08lx\n", gd->reloc_off);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int board_late_init(void)
|
|
{
|
|
/*
|
|
* Populate environment with clock frequency values -
|
|
* run hsdk_clock get callback without uboot command run.
|
|
*/
|
|
do_hsdk_clock_get(NULL, 0, 0, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int checkboard(void)
|
|
{
|
|
puts("Board: Synopsys ARC HS Development Kit\n");
|
|
return 0;
|
|
};
|