u-boot/drivers/ram/k3-ddrss/lpddr4_16bit.c
Dave Gerlach 9f9b5c1c16 ram: k3-ddrss: Introduce support for AM642 SoCs
Introduce support for the AM64 DDRSS controller which uses the 16bit
variation of the controller. This controller shares much functionality
with the existing J721e support, so this patch introduces only the new
code needed for am64 specific support from "_16bit_" files with headers
under "16bit/" include path/.

Also add a CONFIG_K3_AM64_DDRSS option to the choice required for use
with CONFIG_K3_DDRSS to allow selecting AM64 support.

Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
2021-05-12 16:30:52 +05:30

396 lines
15 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/*
* Cadence DDR Driver
*
* Copyright (C) 2012-2021 Cadence Design Systems, Inc.
* Copyright (C) 2018-2021 Texas Instruments Incorporated - https://www.ti.com/
*/
#include <errno.h>
#include "cps_drv_lpddr4.h"
#include "lpddr4_ctl_regs.h"
#include "lpddr4_if.h"
#include "lpddr4.h"
#include "lpddr4_structs_if.h"
static u32 ctlintmap[51][3] = {
{ 0, 0, 7 },
{ 1, 0, 8 },
{ 2, 0, 9 },
{ 3, 0, 14 },
{ 4, 0, 15 },
{ 5, 0, 16 },
{ 6, 0, 17 },
{ 7, 0, 19 },
{ 8, 1, 0 },
{ 9, 2, 0 },
{ 10, 2, 3 },
{ 11, 3, 0 },
{ 12, 4, 0 },
{ 13, 5, 11 },
{ 14, 5, 12 },
{ 15, 5, 13 },
{ 16, 5, 14 },
{ 17, 5, 15 },
{ 18, 6, 0 },
{ 19, 6, 1 },
{ 20, 6, 2 },
{ 21, 6, 6 },
{ 22, 6, 7 },
{ 23, 7, 3 },
{ 24, 7, 4 },
{ 25, 7, 5 },
{ 26, 7, 6 },
{ 27, 7, 7 },
{ 28, 8, 0 },
{ 29, 9, 0 },
{ 30, 10, 0 },
{ 31, 10, 1 },
{ 32, 10, 2 },
{ 33, 10, 3 },
{ 34, 10, 4 },
{ 35, 10, 5 },
{ 36, 11, 0 },
{ 37, 12, 0 },
{ 38, 12, 1 },
{ 39, 12, 2 },
{ 40, 12, 3 },
{ 41, 12, 4 },
{ 42, 12, 5 },
{ 43, 13, 0 },
{ 44, 13, 1 },
{ 45, 13, 3 },
{ 46, 14, 0 },
{ 47, 14, 2 },
{ 48, 14, 3 },
{ 49, 15, 2 },
{ 50, 16, 0 },
};
static void lpddr4_checkctlinterrupt_4(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr, u32 *ctlgrpirqstatus, u32 *ctlmasterintflag);
static void lpddr4_checkctlinterrupt_3(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr, u32 *ctlgrpirqstatus, u32 *ctlmasterintflag);
static void lpddr4_checkctlinterrupt_2(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr, u32 *ctlgrpirqstatus, u32 *ctlmasterintflag);
static void lpddr4_ackctlinterrupt_4(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr);
static void lpddr4_ackctlinterrupt_3(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr);
static void lpddr4_ackctlinterrupt_2(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr);
u32 lpddr4_enablepiinitiator(const lpddr4_privatedata *pd)
{
u32 result = 0U;
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_NORMAL_LVL_SEQ__REG)));
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_NORMAL_LVL_SEQ__REG)), regval);
regval = CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)));
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)), regval);
return result;
}
u32 lpddr4_getctlinterruptmask(const lpddr4_privatedata *pd, u64 *mask)
{
u32 result = 0U;
result = lpddr4_getctlinterruptmasksf(pd, mask);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
*mask = (u64)(CPS_FLD_READ(LPDDR4__INT_MASK_MASTER__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_MASTER__REG))));
}
return result;
}
u32 lpddr4_setctlinterruptmask(const lpddr4_privatedata *pd, const u64 *mask)
{
u32 result;
u32 regval = 0;
const u64 ui64one = 1ULL;
const u32 ui32irqcount = (u32)32U;
result = lpddr4_setctlinterruptmasksf(pd, mask);
if ((result == (u32)0) && (ui32irqcount < 64U)) {
if (*mask >= (ui64one << ui32irqcount))
result = (u32)EINVAL;
}
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_MASTER__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_MASTER__REG)), *mask);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_MASTER__REG), regval);
}
return result;
}
static void lpddr4_checkctlinterrupt_4(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr,
u32 *ctlgrpirqstatus, u32 *ctlmasterintflag)
{
if ((intr >= LPDDR4_INTR_INIT_MEM_RESET_DONE) && (intr <= LPDDR4_INTR_INIT_POWER_ON_STATE))
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_INIT__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_INIT__REG)));
else if ((intr >= LPDDR4_INTR_MRR_ERROR) && (intr <= LPDDR4_INTR_MR_WRITE_DONE))
*ctlgrpirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_MODE__REG));
else if (intr == LPDDR4_INTR_BIST_DONE)
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_BIST__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_BIST__REG)));
else if (intr == LPDDR4_INTR_PARITY_ERROR)
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_PARITY__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_PARITY__REG)));
else
*ctlmasterintflag = (u32)1U;
}
static void lpddr4_checkctlinterrupt_3(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr,
u32 *ctlgrpirqstatus, u32 *ctlmasterintflag)
{
if ((intr >= LPDDR4_INTR_FREQ_DFS_REQ_HW_IGNORE) && (intr <= LPDDR4_INTR_FREQ_DFS_SW_DONE))
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_FREQ__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_FREQ__REG)));
else if ((intr >= LPDDR4_INTR_LP_DONE) && (intr <= LPDDR4_INTR_LP_TIMEOUT))
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_LOWPOWER__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_LOWPOWER__REG)));
else
lpddr4_checkctlinterrupt_4(ctlregbase, intr, ctlgrpirqstatus, ctlmasterintflag);
}
static void lpddr4_checkctlinterrupt_2(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr,
u32 *ctlgrpirqstatus, u32 *ctlmasterintflag)
{
if (intr <= LPDDR4_INTR_TIMEOUT_AUTO_REFRESH_MAX)
*ctlgrpirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_TIMEOUT__REG));
else if ((intr >= LPDDR4_INTR_TRAINING_ZQ_STATUS) && (intr <= LPDDR4_INTR_TRAINING_DQS_OSC_VAR_OUT))
*ctlgrpirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_TRAINING__REG));
else if ((intr >= LPDDR4_INTR_USERIF_OUTSIDE_MEM_ACCESS) && (intr <= LPDDR4_INTR_USERIF_INVAL_SETTING))
*ctlgrpirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_USERIF__REG));
else if ((intr >= LPDDR4_INTR_MISC_MRR_TRAFFIC) && (intr <= LPDDR4_INTR_MISC_REFRESH_STATUS))
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_MISC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_MISC__REG)));
else if ((intr >= LPDDR4_INTR_DFI_UPDATE_ERROR) && (intr <= LPDDR4_INTR_DFI_TIMEOUT))
*ctlgrpirqstatus = CPS_FLD_READ(LPDDR4__INT_STATUS_DFI__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_DFI__REG)));
else
lpddr4_checkctlinterrupt_3(ctlregbase, intr, ctlgrpirqstatus, ctlmasterintflag);
}
u32 lpddr4_checkctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr, bool *irqstatus)
{
u32 result;
u32 ctlmasterirqstatus = 0U;
u32 ctlgrpirqstatus = 0U;
u32 ctlmasterintflag = 0U;
result = LPDDR4_INTR_CheckCtlIntSF(pd, intr, irqstatus);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
ctlmasterirqstatus = (CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_MASTER__REG)) & (~((u32)1 << 31)));
lpddr4_checkctlinterrupt_2(ctlregbase, intr, &ctlgrpirqstatus, &ctlmasterintflag);
if ((ctlintmap[intr][INT_SHIFT] < WORD_SHIFT) && (ctlintmap[intr][GRP_SHIFT] < WORD_SHIFT)) {
if ((((ctlmasterirqstatus >> ctlintmap[intr][GRP_SHIFT]) & LPDDR4_BIT_MASK) > 0U) &&
(((ctlgrpirqstatus >> ctlintmap[intr][INT_SHIFT]) & LPDDR4_BIT_MASK) > 0U) &&
(ctlmasterintflag == (u32)0))
*irqstatus = true;
else if ((((ctlmasterirqstatus >> ctlintmap[intr][GRP_SHIFT]) & LPDDR4_BIT_MASK) > 0U) &&
(ctlmasterintflag == (u32)1U))
*irqstatus = true;
else
*irqstatus = false;
}
}
return result;
}
static void lpddr4_ackctlinterrupt_4(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr)
{
u32 regval = 0;
if ((intr >= LPDDR4_INTR_MRR_ERROR) && (intr <= LPDDR4_INTR_MR_WRITE_DONE) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_MODE__REG), (u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]);
} else if ((intr == LPDDR4_INTR_BIST_DONE) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
regval = CPS_FLD_WRITE(LPDDR4__INT_ACK_BIST__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_ACK_BIST__REG)),
(u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_BIST__REG), regval);
} else if ((intr == LPDDR4_INTR_PARITY_ERROR) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
regval = CPS_FLD_WRITE(LPDDR4__INT_ACK_PARITY__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_ACK_PARITY__REG)),
(u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_PARITY__REG), regval);
} else {
}
}
static void lpddr4_ackctlinterrupt_3(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr)
{
u32 regval = 0;
if ((intr >= LPDDR4_INTR_LP_DONE) && (intr <= LPDDR4_INTR_LP_TIMEOUT) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
regval = CPS_FLD_WRITE(LPDDR4__INT_ACK_LOWPOWER__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_ACK_LOWPOWER__REG)),
(u32)((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_LOWPOWER__REG), regval);
} else if ((intr >= LPDDR4_INTR_INIT_MEM_RESET_DONE) && (intr <= LPDDR4_INTR_INIT_POWER_ON_STATE) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
regval = CPS_FLD_WRITE(LPDDR4__INT_ACK_INIT__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_ACK_INIT__REG)),
(u32)((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_INIT__REG), regval);
} else {
lpddr4_ackctlinterrupt_4(ctlregbase, intr);
}
}
static void lpddr4_ackctlinterrupt_2(lpddr4_ctlregs *ctlregbase, lpddr4_intr_ctlinterrupt intr)
{
u32 regval = 0;
if ((intr >= LPDDR4_INTR_DFI_UPDATE_ERROR) && (intr <= LPDDR4_INTR_DFI_TIMEOUT) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_DFI__REG), (u32)((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
} else if ((intr >= LPDDR4_INTR_FREQ_DFS_REQ_HW_IGNORE) && (intr <= LPDDR4_INTR_FREQ_DFS_SW_DONE) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
regval = CPS_FLD_WRITE(LPDDR4__INT_ACK_FREQ__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_ACK_FREQ__REG)),
(u32)((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_FREQ__REG), regval);
} else {
lpddr4_ackctlinterrupt_3(ctlregbase, intr);
}
}
u32 lpddr4_ackctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr)
{
u32 result;
result = LPDDR4_INTR_AckCtlIntSF(pd, intr);
if ((result == (u32)0) && ((u32)ctlintmap[intr][INT_SHIFT] < WORD_SHIFT)) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (intr <= LPDDR4_INTR_TIMEOUT_AUTO_REFRESH_MAX)
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_TIMEOUT__REG), ((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
else if ((intr >= LPDDR4_INTR_TRAINING_ZQ_STATUS) && (intr <= LPDDR4_INTR_TRAINING_DQS_OSC_VAR_OUT))
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_TRAINING__REG), ((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
else if ((intr >= LPDDR4_INTR_USERIF_OUTSIDE_MEM_ACCESS) && (intr <= LPDDR4_INTR_USERIF_INVAL_SETTING))
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_USERIF__REG), ((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
else if ((intr >= LPDDR4_INTR_MISC_MRR_TRAFFIC) && (intr <= LPDDR4_INTR_MISC_REFRESH_STATUS))
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_MISC__REG), ((u32)LPDDR4_BIT_MASK << (u32)ctlintmap[intr][INT_SHIFT]));
else
lpddr4_ackctlinterrupt_2(ctlregbase, intr);
}
return result;
}
void lpddr4_checkwrlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WRLVL_STATUS_OBS_0__REG));
errbitmask = ((u32)LPDDR4_BIT_MASK << (u32)12U);
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->wrlvlerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
u32 lpddr4_getdebuginitinfo(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo)
{
u32 result = 0U;
bool errorfound = false;
result = lpddr4_getdebuginitinfosf(pd, debuginfo);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_seterrors(ctlregbase, debuginfo, (u8 *)&errorfound);
lpddr4_setsettings(ctlregbase, errorfound);
errorfound = (bool)lpddr4_checklvlerrors(pd, debuginfo, errorfound);
}
if (errorfound == (bool)true)
result = (u32)EPROTO;
return result;
}
u32 lpddr4_getreducmode(const lpddr4_privatedata *pd, lpddr4_reducmode *mode)
{
u32 result = 0U;
result = lpddr4_getreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (CPS_FLD_READ(LPDDR4__MEM_DP_REDUCTION__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MEM_DP_REDUCTION__REG))) == 0U)
*mode = LPDDR4_REDUC_ON;
else
*mode = LPDDR4_REDUC_OFF;
}
return result;
}
u32 lpddr4_setreducmode(const lpddr4_privatedata *pd, const lpddr4_reducmode *mode)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_setreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = (u32)CPS_FLD_WRITE(LPDDR4__MEM_DP_REDUCTION__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MEM_DP_REDUCTION__REG)), *mode);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__MEM_DP_REDUCTION__REG), regval);
}
return result;
}
u32 lpddr4_checkmmrreaderror(const lpddr4_privatedata *pd, u64 *mmrvalue, u8 *mrrstatus)
{
u32 lowerdata;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
u32 result = (u32)0;
if (lpddr4_pollctlirq(pd, LPDDR4_INTR_MRR_ERROR, 100) == 0U) {
*mrrstatus = (u8)CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRR_ERROR_STATUS__REG)));
*mmrvalue = (u64)0;
result = (u32)EIO;
} else {
*mrrstatus = (u8)0;
lowerdata = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA__REG));
*mmrvalue = (u64)((*mmrvalue << WORD_SHIFT) | lowerdata);
result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_READ_DONE);
}
return result;
}
#ifdef REG_WRITE_VERIF
u32 lpddr4_getdslicemask(u32 dslicenum, u32 arrayoffset)
{
u32 rwmask = 0U;
switch (dslicenum) {
case 0:
if (arrayoffset < DSLICE0_REG_COUNT)
rwmask = g_lpddr4_data_slice_0_rw_mask[arrayoffset];
break;
default:
if (arrayoffset < DSLICE1_REG_COUNT)
rwmask = g_lpddr4_data_slice_1_rw_mask[arrayoffset];
break;
}
return rwmask;
}
#endif
u32 lpddr4_geteccenable(const lpddr4_privatedata *pd, lpddr4_eccenable *eccparam)
{
u32 result = 0U;
result = lpddr4_geteccenablesf(pd, eccparam);
if (result == (u32)0) {
*eccparam = LPDDR4_ECC_DISABLED;
result = (u32)EOPNOTSUPP;
}
return result;
}
u32 lpddr4_seteccenable(const lpddr4_privatedata *pd, const lpddr4_eccenable *eccparam)
{
u32 result = 0U;
result = lpddr4_seteccenablesf(pd, eccparam);
if (result == (u32)0)
result = (u32)EOPNOTSUPP;
return result;
}