mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-05 17:58:52 +00:00
9876ae7db6
When OF_LIVE flag is enabled on a 64 bits platform, there is an issue when dev_read_addr() is called and need to perform an address translation using __of_translate_address(). In case of error, __of_translate_address() return's value is OF_BAD_ADDR (wich is defined in include/dm/of.h to ((u64)-1) = 0xffffffffffffffff). The return value of dev_read_addr() is often compared to FDT_ADDR_T_NONE which is defined as (-1U) = 0xffffffff. In this case the comparison is always false. To fix this issue, define FDT_ADDR_T_NONE to (ulong)(-1) in case of AARCH64. Update accordingly related tests. Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com> Reviewed-by: Simon Glass <sjg@chromium.org>
1200 lines
35 KiB
C
1200 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <fdtdec.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <asm/global_data.h>
|
|
#include <asm/io.h>
|
|
#include <dm/test.h>
|
|
#include <dm/root.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/devres.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <dm/util.h>
|
|
#include <dm/lists.h>
|
|
#include <dm/of_access.h>
|
|
#include <linux/ioport.h>
|
|
#include <test/test.h>
|
|
#include <test/ut.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
struct dm_testprobe_pdata {
|
|
int probe_err;
|
|
};
|
|
|
|
static int testprobe_drv_probe(struct udevice *dev)
|
|
{
|
|
struct dm_testprobe_pdata *pdata = dev_get_plat(dev);
|
|
|
|
return pdata->probe_err;
|
|
}
|
|
|
|
static const struct udevice_id testprobe_ids[] = {
|
|
{ .compatible = "denx,u-boot-probe-test" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(testprobe_drv) = {
|
|
.name = "testprobe_drv",
|
|
.of_match = testprobe_ids,
|
|
.id = UCLASS_TEST_PROBE,
|
|
.probe = testprobe_drv_probe,
|
|
.plat_auto = sizeof(struct dm_testprobe_pdata),
|
|
};
|
|
|
|
UCLASS_DRIVER(testprobe) = {
|
|
.name = "testprobe",
|
|
.id = UCLASS_TEST_PROBE,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
struct dm_testdevres_pdata {
|
|
void *ptr;
|
|
};
|
|
|
|
struct dm_testdevres_priv {
|
|
void *ptr;
|
|
void *ptr_ofdata;
|
|
};
|
|
|
|
static int testdevres_drv_bind(struct udevice *dev)
|
|
{
|
|
struct dm_testdevres_pdata *pdata = dev_get_plat(dev);
|
|
|
|
pdata->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testdevres_drv_of_to_plat(struct udevice *dev)
|
|
{
|
|
struct dm_testdevres_priv *priv = dev_get_priv(dev);
|
|
|
|
priv->ptr_ofdata = devm_kmalloc(dev, TEST_DEVRES_SIZE3, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testdevres_drv_probe(struct udevice *dev)
|
|
{
|
|
struct dm_testdevres_priv *priv = dev_get_priv(dev);
|
|
|
|
priv->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE2, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct udevice_id testdevres_ids[] = {
|
|
{ .compatible = "denx,u-boot-devres-test" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(testdevres_drv) = {
|
|
.name = "testdevres_drv",
|
|
.of_match = testdevres_ids,
|
|
.id = UCLASS_TEST_DEVRES,
|
|
.bind = testdevres_drv_bind,
|
|
.of_to_plat = testdevres_drv_of_to_plat,
|
|
.probe = testdevres_drv_probe,
|
|
.plat_auto = sizeof(struct dm_testdevres_pdata),
|
|
.priv_auto = sizeof(struct dm_testdevres_priv),
|
|
};
|
|
|
|
UCLASS_DRIVER(testdevres) = {
|
|
.name = "testdevres",
|
|
.id = UCLASS_TEST_DEVRES,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
int dm_check_devices(struct unit_test_state *uts, int num_devices)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
int i;
|
|
|
|
/*
|
|
* Now check that the ping adds are what we expect. This is using the
|
|
* ping-add property in each node.
|
|
*/
|
|
for (i = 0; i < num_devices; i++) {
|
|
uint32_t base;
|
|
|
|
ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
|
|
ut_assert(!ret);
|
|
|
|
/*
|
|
* Get the 'ping-expect' property, which tells us what the
|
|
* ping add should be. We don't use the plat because we
|
|
* want to test the code that sets that up
|
|
* (testfdt_drv_probe()).
|
|
*/
|
|
base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
|
|
"ping-expect");
|
|
debug("dev=%d, base=%d: %s\n", i, base,
|
|
fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
|
|
|
|
ut_assert(!dm_check_operations(uts, dev, base,
|
|
dev_get_priv(dev)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test that FDT-based binding works correctly */
|
|
static int dm_test_fdt(struct unit_test_state *uts)
|
|
{
|
|
const int num_devices = 9;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = dm_extended_scan(false);
|
|
ut_assert(!ret);
|
|
|
|
ret = uclass_get(UCLASS_TEST_FDT, &uc);
|
|
ut_assert(!ret);
|
|
|
|
/* These are num_devices compatible root-level device tree nodes */
|
|
ut_asserteq(num_devices, list_count_items(&uc->dev_head));
|
|
|
|
/* Each should have platform data but no private data */
|
|
for (i = 0; i < num_devices; i++) {
|
|
ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
|
|
ut_assert(!ret);
|
|
ut_assert(!dev_get_priv(dev));
|
|
ut_assert(dev_get_plat(dev));
|
|
}
|
|
|
|
ut_assertok(dm_check_devices(uts, num_devices));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt, 0);
|
|
|
|
static int dm_test_alias_highest_id(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
ret = dev_read_alias_highest_id("ethernet");
|
|
ut_asserteq(5, ret);
|
|
|
|
ret = dev_read_alias_highest_id("gpio");
|
|
ut_asserteq(3, ret);
|
|
|
|
ret = dev_read_alias_highest_id("pci");
|
|
ut_asserteq(2, ret);
|
|
|
|
ret = dev_read_alias_highest_id("i2c");
|
|
ut_asserteq(0, ret);
|
|
|
|
ret = dev_read_alias_highest_id("deadbeef");
|
|
ut_asserteq(-1, ret);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_alias_highest_id, 0);
|
|
|
|
static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
int ret;
|
|
|
|
ret = dm_scan_fdt(true);
|
|
ut_assert(!ret);
|
|
|
|
ret = uclass_get(UCLASS_TEST_FDT, &uc);
|
|
ut_assert(!ret);
|
|
|
|
/*
|
|
* These are 2 pre-reloc devices:
|
|
* one with "u-boot,dm-pre-reloc" property (a-test node), and the other
|
|
* one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node).
|
|
*/
|
|
ut_asserteq(2, list_count_items(&uc->dev_head));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_pre_reloc, 0);
|
|
|
|
/* Test that sequence numbers are allocated properly */
|
|
static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
/* A few basic santiy tests */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
|
|
ut_asserteq_str("b-test", dev->name);
|
|
ut_asserteq(3, dev_seq(dev));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
ut_asserteq(8, dev_seq(dev));
|
|
|
|
/*
|
|
* This device has no alias so gets the next value after all available
|
|
* aliases. The last alias is testfdt12
|
|
*/
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 13, &dev));
|
|
ut_asserteq_str("d-test", dev->name);
|
|
ut_asserteq(13, dev_seq(dev));
|
|
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
|
|
&dev));
|
|
ut_asserteq_ptr(NULL, dev);
|
|
|
|
/* Test aliases */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
|
|
ut_asserteq_str("e-test", dev->name);
|
|
ut_asserteq(6, dev_seq(dev));
|
|
|
|
/*
|
|
* Note that c-test nodes are not probed since it is not a top-level
|
|
* node
|
|
*/
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
|
|
ut_asserteq_str("b-test", dev->name);
|
|
ut_asserteq(3, dev_seq(dev));
|
|
|
|
/*
|
|
* d-test wants sequence number 3 also, but it can't have it because
|
|
* b-test gets it first.
|
|
*/
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
|
|
ut_asserteq_str("d-test", dev->name);
|
|
ut_asserteq(13, dev_seq(dev));
|
|
|
|
/* g-test gets the next value after f-test */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 15, &dev));
|
|
ut_asserteq_str("g-test", dev->name);
|
|
ut_asserteq(15, dev_seq(dev));
|
|
|
|
/* And we should still have holes in our sequence numbers */
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 0,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 1,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 2,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 4,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 10,
|
|
&dev));
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 11,
|
|
&dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_uclass_seq, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* More tests for sequence numbers */
|
|
static int dm_test_fdt_uclass_seq_manual(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
/*
|
|
* Since DM_UC_FLAG_NO_AUTO_SEQ is set for this uclass, only testfdtm1
|
|
* should get a sequence number assigned
|
|
*/
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 0, &dev));
|
|
ut_asserteq_str("testfdtm0", dev->name);
|
|
ut_asserteq(-1, dev_seq(dev));
|
|
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT_MANUAL, 1, &dev));
|
|
ut_asserteq_str("testfdtm1", dev->name);
|
|
ut_asserteq(1, dev_seq(dev));
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 2, &dev));
|
|
ut_asserteq_str("testfdtm2", dev->name);
|
|
ut_asserteq(-1, dev_seq(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_uclass_seq_manual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_uclass_seq_more(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
ofnode node;
|
|
|
|
/* Check creating a device with an alias */
|
|
node = ofnode_path("/some-bus/c-test@1");
|
|
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
|
|
"c-test@1", NULL, node, &dev));
|
|
ut_asserteq(12, dev_seq(dev));
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 12, &dev));
|
|
ut_asserteq_str("c-test@1", dev->name);
|
|
|
|
/*
|
|
* Now bind a device without an alias. It should not get the next
|
|
* sequence number after all aliases, and existing bound devices. The
|
|
* last alias is 12, so we have:
|
|
*
|
|
* 13 d-test
|
|
* 14 f-test
|
|
* 15 g-test
|
|
* 16 h-test
|
|
* 17 another-test
|
|
* 18 chosen-test
|
|
*
|
|
* So next available is 19
|
|
*/
|
|
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
|
|
"fred", NULL, ofnode_null(), &dev));
|
|
ut_asserteq(19, dev_seq(dev));
|
|
|
|
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
|
|
"fred2", NULL, ofnode_null(), &dev));
|
|
ut_asserteq(20, dev_seq(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_uclass_seq_more, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test that we can find a device by device tree offset */
|
|
static int dm_test_fdt_offset(struct unit_test_state *uts)
|
|
{
|
|
const void *blob = gd->fdt_blob;
|
|
struct udevice *dev;
|
|
int node;
|
|
|
|
node = fdt_path_offset(blob, "/e-test");
|
|
ut_assert(node > 0);
|
|
ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
|
|
&dev));
|
|
ut_asserteq_str("e-test", dev->name);
|
|
|
|
/* This node should not be bound */
|
|
node = fdt_path_offset(blob, "/junk");
|
|
ut_assert(node > 0);
|
|
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
|
|
node, &dev));
|
|
|
|
/* This is not a top level node so should not be probed */
|
|
node = fdt_path_offset(blob, "/some-bus/c-test@5");
|
|
ut_assert(node > 0);
|
|
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
|
|
node, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_offset,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
|
|
|
|
/**
|
|
* Test various error conditions with uclass_first_device() and
|
|
* uclass_next_device()
|
|
*/
|
|
static int dm_test_first_next_device(struct unit_test_state *uts)
|
|
{
|
|
struct dm_testprobe_pdata *pdata;
|
|
struct udevice *dev, *parent = NULL;
|
|
int count;
|
|
int ret;
|
|
|
|
/* There should be 4 devices */
|
|
for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
|
|
dev;
|
|
ret = uclass_next_device(&dev)) {
|
|
count++;
|
|
parent = dev_get_parent(dev);
|
|
}
|
|
ut_assertok(ret);
|
|
ut_asserteq(4, count);
|
|
|
|
/* Remove them and try again, with an error on the second one */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
|
|
pdata = dev_get_plat(dev);
|
|
pdata->probe_err = -ENOMEM;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
|
|
ut_asserteq(-ENOMEM, uclass_next_device(&dev));
|
|
ut_asserteq_ptr(dev, NULL);
|
|
|
|
/* Now an error on the first one */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
|
|
pdata = dev_get_plat(dev);
|
|
pdata->probe_err = -ENOENT;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_next_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test iteration through devices in a uclass */
|
|
static int dm_test_uclass_foreach(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
int count;
|
|
|
|
count = 0;
|
|
uclass_id_foreach_dev(UCLASS_TEST_FDT, dev, uc)
|
|
count++;
|
|
ut_asserteq(9, count);
|
|
|
|
count = 0;
|
|
uclass_foreach_dev(dev, uc)
|
|
count++;
|
|
ut_asserteq(9, count);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_foreach, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/**
|
|
* check_devices() - Check return values and pointers
|
|
*
|
|
* This runs through a full sequence of uclass_first_device_check()...
|
|
* uclass_next_device_check() checking that the return values and devices
|
|
* are correct.
|
|
*
|
|
* @uts: Test state
|
|
* @devlist: List of expected devices
|
|
* @mask: Indicates which devices should return an error. Device n should
|
|
* return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
|
|
* bit n is clear.
|
|
*/
|
|
static int check_devices(struct unit_test_state *uts,
|
|
struct udevice *devlist[], int mask)
|
|
{
|
|
int expected_ret;
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
expected_ret = (mask & 1) ? -ENOENT : 0;
|
|
mask >>= 1;
|
|
ut_asserteq(expected_ret,
|
|
uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
|
|
for (i = 0; i < 4; i++) {
|
|
ut_asserteq_ptr(devlist[i], dev);
|
|
expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
|
|
mask >>= 1;
|
|
ut_asserteq(expected_ret, uclass_next_device_check(&dev));
|
|
}
|
|
ut_asserteq_ptr(NULL, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test uclass_first_device_check() and uclass_next_device_check() */
|
|
static int dm_test_first_next_ok_device(struct unit_test_state *uts)
|
|
{
|
|
struct dm_testprobe_pdata *pdata;
|
|
struct udevice *dev, *parent = NULL, *devlist[4];
|
|
int count;
|
|
int ret;
|
|
|
|
/* There should be 4 devices */
|
|
count = 0;
|
|
for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
|
|
dev;
|
|
ret = uclass_next_device_check(&dev)) {
|
|
ut_assertok(ret);
|
|
devlist[count++] = dev;
|
|
parent = dev_get_parent(dev);
|
|
}
|
|
ut_asserteq(4, count);
|
|
ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
|
|
ut_assertok(check_devices(uts, devlist, 0));
|
|
|
|
/* Remove them and try again, with an error on the second one */
|
|
pdata = dev_get_plat(devlist[1]);
|
|
pdata->probe_err = -ENOENT - 1;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 1 << 1));
|
|
|
|
/* Now an error on the first one */
|
|
pdata = dev_get_plat(devlist[0]);
|
|
pdata->probe_err = -ENOENT - 0;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 3 << 0));
|
|
|
|
/* Now errors on all */
|
|
pdata = dev_get_plat(devlist[2]);
|
|
pdata->probe_err = -ENOENT - 2;
|
|
pdata = dev_get_plat(devlist[3]);
|
|
pdata->probe_err = -ENOENT - 3;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 0xf << 0));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_next_ok_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static const struct udevice_id fdt_dummy_ids[] = {
|
|
{ .compatible = "denx,u-boot-fdt-dummy", },
|
|
{ }
|
|
};
|
|
|
|
UCLASS_DRIVER(fdt_dummy) = {
|
|
.name = "fdt-dummy",
|
|
.id = UCLASS_TEST_DUMMY,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
U_BOOT_DRIVER(fdt_dummy_drv) = {
|
|
.name = "fdt_dummy_drv",
|
|
.of_match = fdt_dummy_ids,
|
|
.id = UCLASS_TEST_DUMMY,
|
|
};
|
|
|
|
static int dm_test_fdt_translation(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt32_t dma_addr[2];
|
|
|
|
/* Some simple translations */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
ut_asserteq_str("dev@0,0", dev->name);
|
|
ut_asserteq(0x8000, dev_read_addr(dev));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
|
|
ut_asserteq_str("dev@1,100", dev->name);
|
|
ut_asserteq(0x9000, dev_read_addr(dev));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, &dev));
|
|
ut_asserteq_str("dev@2,200", dev->name);
|
|
ut_asserteq(0xA000, dev_read_addr(dev));
|
|
|
|
/* No translation for busses with #size-cells == 0 */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, &dev));
|
|
ut_asserteq_str("dev@42", dev->name);
|
|
ut_asserteq(0x42, dev_read_addr(dev));
|
|
|
|
/* dma address translation */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
dma_addr[0] = cpu_to_be32(0);
|
|
dma_addr[1] = cpu_to_be32(0);
|
|
ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
|
|
dma_addr[0] = cpu_to_be32(1);
|
|
dma_addr[1] = cpu_to_be32(0x100);
|
|
ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_translation, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_get_addr_ptr_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *gpio, *dev;
|
|
void *ptr;
|
|
|
|
/* Test for missing reg property */
|
|
ut_assertok(uclass_first_device_err(UCLASS_GPIO, &gpio));
|
|
ut_assertnull(devfdt_get_addr_ptr(gpio));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
ptr = devfdt_get_addr_ptr(dev);
|
|
ut_asserteq_ptr((void *)0x8000, ptr);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_get_addr_ptr_flat,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
|
|
|
|
static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = devfdt_get_addr(dev);
|
|
ut_asserteq(0x8000, addr);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_flat,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
|
|
|
|
static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
fdt_size_t size;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = devfdt_get_addr_size_index(dev, 0, &size);
|
|
ut_asserteq(0x8000, addr);
|
|
ut_asserteq(0x1000, size);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_index_flat,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
|
|
|
|
static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
fdt_size_t size;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = devfdt_get_addr_size_name(dev, "sandbox-dummy-0", &size);
|
|
ut_asserteq(0x8000, addr);
|
|
ut_asserteq(0x1000, size);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_name_flat,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
|
|
|
|
static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = dev_read_addr(dev);
|
|
ut_asserteq(0x8000, addr);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, dev_remap_addr(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_live,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
fdt_size_t size;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = dev_read_addr_size_index(dev, 0, &size);
|
|
ut_asserteq(0x8000, addr);
|
|
ut_asserteq(0x1000, size);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_index_live,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
fdt_size_t size;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
|
|
|
|
addr = dev_read_addr_size_name(dev, "sandbox-dummy-0", &size);
|
|
ut_asserteq(0x8000, addr);
|
|
ut_asserteq(0x1000, size);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_name_live,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_livetree_writing(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
ofnode node;
|
|
|
|
if (!of_live_active()) {
|
|
printf("Live tree not active; ignore test\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Test enabling devices */
|
|
|
|
node = ofnode_path("/usb@2");
|
|
|
|
ut_assert(!of_device_is_available(ofnode_to_np(node)));
|
|
ofnode_set_enabled(node, true);
|
|
ut_assert(of_device_is_available(ofnode_to_np(node)));
|
|
|
|
device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node,
|
|
&dev);
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, &dev));
|
|
|
|
/* Test string property setting */
|
|
|
|
ut_assert(device_is_compatible(dev, "sandbox,usb"));
|
|
ofnode_write_string(node, "compatible", "gdsys,super-usb");
|
|
ut_assert(device_is_compatible(dev, "gdsys,super-usb"));
|
|
ofnode_write_string(node, "compatible", "sandbox,usb");
|
|
ut_assert(device_is_compatible(dev, "sandbox,usb"));
|
|
|
|
/* Test setting generic properties */
|
|
|
|
/* Non-existent in DTB */
|
|
ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr(dev));
|
|
/* reg = 0x42, size = 0x100 */
|
|
ut_assertok(ofnode_write_prop(node, "reg", 8,
|
|
"\x00\x00\x00\x42\x00\x00\x01\x00"));
|
|
ut_asserteq(0x42, dev_read_addr(dev));
|
|
|
|
/* Test disabling devices */
|
|
|
|
device_remove(dev, DM_REMOVE_NORMAL);
|
|
device_unbind(dev);
|
|
|
|
ut_assert(of_device_is_available(ofnode_to_np(node)));
|
|
ofnode_set_enabled(node, false);
|
|
ut_assert(!of_device_is_available(ofnode_to_np(node)));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_livetree_writing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts)
|
|
{
|
|
ofnode node;
|
|
|
|
if (!of_live_active()) {
|
|
printf("Live tree not active; ignore test\n");
|
|
return 0;
|
|
}
|
|
|
|
node = ofnode_path("/usb@2");
|
|
|
|
/* Test enabling devices */
|
|
|
|
ut_assert(!of_device_is_available(ofnode_to_np(node)));
|
|
dev_enable_by_path("/usb@2");
|
|
ut_assert(of_device_is_available(ofnode_to_np(node)));
|
|
|
|
/* Test disabling devices */
|
|
|
|
ut_assert(of_device_is_available(ofnode_to_np(node)));
|
|
dev_disable_by_path("/usb@2");
|
|
ut_assert(!of_device_is_available(ofnode_to_np(node)));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_disable_enable_by_path, UT_TESTF_SCAN_PDATA |
|
|
UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test a few uclass phandle functions */
|
|
static int dm_test_fdt_phandle(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *back, *dev, *dev2;
|
|
|
|
ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back));
|
|
ut_assertnonnull(back);
|
|
ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR,
|
|
back, "missing", &dev));
|
|
ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back,
|
|
"power-supply", &dev));
|
|
ut_assertnonnull(dev);
|
|
ut_asserteq(0, device_active(dev));
|
|
ut_asserteq_str("ldo1", dev->name);
|
|
ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back,
|
|
"power-supply", &dev2));
|
|
ut_asserteq_ptr(dev, dev2);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test device_find_first_child_by_uclass() */
|
|
static int dm_test_first_child(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *i2c, *dev, *dev2;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c));
|
|
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev));
|
|
ut_asserteq_str("rtc@43", dev->name);
|
|
ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2));
|
|
ut_asserteq_ptr(dev, dev2);
|
|
ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2));
|
|
ut_asserteq_str("rtc@61", dev2->name);
|
|
|
|
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM,
|
|
&dev));
|
|
ut_asserteq_str("eeprom@2c", dev->name);
|
|
ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2));
|
|
ut_asserteq_ptr(dev, dev2);
|
|
|
|
ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c,
|
|
UCLASS_VIDEO, &dev));
|
|
ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_child, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test integer functions in dm_read_...() */
|
|
static int dm_test_read_int(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
u32 val32;
|
|
s32 sval;
|
|
uint val;
|
|
u64 val64;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
ut_assertok(dev_read_u32(dev, "int-value", &val32));
|
|
ut_asserteq(1234, val32);
|
|
|
|
ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32));
|
|
ut_asserteq(6, dev_read_u32_default(dev, "missing", 6));
|
|
|
|
ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6));
|
|
ut_asserteq(1234, val32);
|
|
|
|
ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval));
|
|
ut_asserteq(6, dev_read_s32_default(dev, "missing", 6));
|
|
|
|
ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6));
|
|
ut_assertok(dev_read_s32(dev, "uint-value", &sval));
|
|
ut_asserteq(-1234, sval);
|
|
|
|
val = 0;
|
|
ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val));
|
|
ut_assertok(dev_read_u32u(dev, "uint-value", &val));
|
|
ut_asserteq(-1234, val);
|
|
|
|
ut_assertok(dev_read_u64(dev, "int64-value", &val64));
|
|
ut_asserteq_64(0x1111222233334444, val64);
|
|
|
|
ut_asserteq_64(-EINVAL, dev_read_u64(dev, "missing", &val64));
|
|
ut_asserteq_64(6, dev_read_u64_default(dev, "missing", 6));
|
|
|
|
ut_asserteq_64(0x1111222233334444,
|
|
dev_read_u64_default(dev, "int64-value", 6));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_read_int, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_read_int_index(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
u32 val32;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
|
|
ut_asserteq(-EINVAL, dev_read_u32_index(dev, "missing", 0, &val32));
|
|
ut_asserteq(19, dev_read_u32_index_default(dev, "missing", 0, 19));
|
|
|
|
ut_assertok(dev_read_u32_index(dev, "int-array", 0, &val32));
|
|
ut_asserteq(5678, val32);
|
|
ut_assertok(dev_read_u32_index(dev, "int-array", 1, &val32));
|
|
ut_asserteq(9123, val32);
|
|
ut_assertok(dev_read_u32_index(dev, "int-array", 2, &val32));
|
|
ut_asserteq(4567, val32);
|
|
ut_asserteq(-EOVERFLOW, dev_read_u32_index(dev, "int-array", 3,
|
|
&val32));
|
|
|
|
ut_asserteq(5678, dev_read_u32_index_default(dev, "int-array", 0, 2));
|
|
ut_asserteq(9123, dev_read_u32_index_default(dev, "int-array", 1, 2));
|
|
ut_asserteq(4567, dev_read_u32_index_default(dev, "int-array", 2, 2));
|
|
ut_asserteq(2, dev_read_u32_index_default(dev, "int-array", 3, 2));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_read_int_index, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_read_phandle(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
struct ofnode_phandle_args args;
|
|
int ret;
|
|
const char prop[] = "test-gpios";
|
|
const char cell[] = "#gpio-cells";
|
|
const char prop2[] = "phandle-value";
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
|
|
/* Test dev_count_phandle_with_args with cell name */
|
|
ret = dev_count_phandle_with_args(dev, "missing", cell, 0);
|
|
ut_asserteq(-ENOENT, ret);
|
|
ret = dev_count_phandle_with_args(dev, prop, "#invalid", 0);
|
|
ut_asserteq(-EINVAL, ret);
|
|
ut_asserteq(5, dev_count_phandle_with_args(dev, prop, cell, 0));
|
|
|
|
/* Test dev_read_phandle_with_args with cell name */
|
|
ret = dev_read_phandle_with_args(dev, "missing", cell, 0, 0, &args);
|
|
ut_asserteq(-ENOENT, ret);
|
|
ret = dev_read_phandle_with_args(dev, prop, "#invalid", 0, 0, &args);
|
|
ut_asserteq(-EINVAL, ret);
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 0, &args));
|
|
ut_asserteq(1, args.args_count);
|
|
ut_asserteq(1, args.args[0]);
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 1, &args));
|
|
ut_asserteq(1, args.args_count);
|
|
ut_asserteq(4, args.args[0]);
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 2, &args));
|
|
ut_asserteq(5, args.args_count);
|
|
ut_asserteq(5, args.args[0]);
|
|
ut_asserteq(1, args.args[4]);
|
|
ret = dev_read_phandle_with_args(dev, prop, cell, 0, 3, &args);
|
|
ut_asserteq(-ENOENT, ret);
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 4, &args));
|
|
ut_asserteq(1, args.args_count);
|
|
ut_asserteq(12, args.args[0]);
|
|
ret = dev_read_phandle_with_args(dev, prop, cell, 0, 5, &args);
|
|
ut_asserteq(-ENOENT, ret);
|
|
|
|
/* Test dev_count_phandle_with_args with cell count */
|
|
ret = dev_count_phandle_with_args(dev, "missing", NULL, 2);
|
|
ut_asserteq(-ENOENT, ret);
|
|
ut_asserteq(3, dev_count_phandle_with_args(dev, prop2, NULL, 1));
|
|
|
|
/* Test dev_read_phandle_with_args with cell count */
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 0, &args));
|
|
ut_asserteq(1, ofnode_valid(args.node));
|
|
ut_asserteq(1, args.args_count);
|
|
ut_asserteq(10, args.args[0]);
|
|
ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 1, &args);
|
|
ut_asserteq(-EINVAL, ret);
|
|
ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 2, &args));
|
|
ut_asserteq(1, ofnode_valid(args.node));
|
|
ut_asserteq(1, args.args_count);
|
|
ut_asserteq(30, args.args[0]);
|
|
ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 3, &args);
|
|
ut_asserteq(-ENOENT, ret);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_read_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test iteration through devices by drvdata */
|
|
static int dm_test_uclass_drvdata(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
|
|
DM_TEST_TYPE_FIRST, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
|
|
ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
|
|
DM_TEST_TYPE_SECOND, &dev));
|
|
ut_asserteq_str("d-test", dev->name);
|
|
|
|
ut_asserteq(-ENODEV, uclass_first_device_drvdata(UCLASS_TEST_FDT,
|
|
DM_TEST_TYPE_COUNT,
|
|
&dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test device_first_child_ofdata_err(), etc. */
|
|
static int dm_test_child_ofdata(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *dev;
|
|
int count;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
|
|
count = 0;
|
|
device_foreach_child_of_to_plat(dev, bus) {
|
|
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
|
|
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
|
|
count++;
|
|
}
|
|
ut_asserteq(3, count);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_child_ofdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test device_first_child_err(), etc. */
|
|
static int dm_test_first_child_probe(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *dev;
|
|
int count;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
|
|
count = 0;
|
|
device_foreach_child_probe(dev, bus) {
|
|
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
|
|
ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
|
|
count++;
|
|
}
|
|
ut_asserteq(3, count);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_child_probe, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test that ofdata is read for parents before children */
|
|
static int dm_test_ofdata_order(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *dev;
|
|
|
|
ut_assertok(uclass_find_first_device(UCLASS_I2C, &bus));
|
|
ut_assertnonnull(bus);
|
|
ut_assert(!(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID));
|
|
|
|
ut_assertok(device_find_first_child(bus, &dev));
|
|
ut_assertnonnull(dev);
|
|
ut_assert(!(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID));
|
|
|
|
/* read the child's ofdata which should cause the parent's to be read */
|
|
ut_assertok(device_of_to_plat(dev));
|
|
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
|
|
ut_assert(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID);
|
|
|
|
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
|
|
ut_assert(!(dev_get_flags(bus) & DM_FLAG_ACTIVATED));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ofdata_order, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test dev_decode_display_timing() */
|
|
static int dm_test_decode_display_timing(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
struct display_timing timing;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
|
|
ut_assertok(dev_decode_display_timing(dev, 0, &timing));
|
|
ut_assert(timing.hactive.typ == 240);
|
|
ut_assert(timing.hback_porch.typ == 7);
|
|
ut_assert(timing.hfront_porch.typ == 6);
|
|
ut_assert(timing.hsync_len.typ == 1);
|
|
ut_assert(timing.vactive.typ == 320);
|
|
ut_assert(timing.vback_porch.typ == 5);
|
|
ut_assert(timing.vfront_porch.typ == 8);
|
|
ut_assert(timing.vsync_len.typ == 2);
|
|
ut_assert(timing.pixelclock.typ == 6500000);
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW);
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED);
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN);
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK);
|
|
|
|
ut_assertok(dev_decode_display_timing(dev, 1, &timing));
|
|
ut_assert(timing.hactive.typ == 480);
|
|
ut_assert(timing.hback_porch.typ == 59);
|
|
ut_assert(timing.hfront_porch.typ == 10);
|
|
ut_assert(timing.hsync_len.typ == 12);
|
|
ut_assert(timing.vactive.typ == 800);
|
|
ut_assert(timing.vback_porch.typ == 15);
|
|
ut_assert(timing.vfront_porch.typ == 17);
|
|
ut_assert(timing.vsync_len.typ == 16);
|
|
ut_assert(timing.pixelclock.typ == 9000000);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_LOW);
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_DE_LOW);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
|
|
ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
|
|
|
|
ut_assertok(dev_decode_display_timing(dev, 2, &timing));
|
|
ut_assert(timing.hactive.typ == 800);
|
|
ut_assert(timing.hback_porch.typ == 89);
|
|
ut_assert(timing.hfront_porch.typ == 164);
|
|
ut_assert(timing.hsync_len.typ == 11);
|
|
ut_assert(timing.vactive.typ == 480);
|
|
ut_assert(timing.vback_porch.typ == 23);
|
|
ut_assert(timing.vfront_porch.typ == 10);
|
|
ut_assert(timing.vsync_len.typ == 13);
|
|
ut_assert(timing.pixelclock.typ == 33500000);
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
|
|
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
|
|
|
|
ut_assert(dev_decode_display_timing(dev, 3, &timing));
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_decode_display_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test read_resourcee() */
|
|
static int dm_test_read_resource(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
struct resource res;
|
|
|
|
/* test resource without translation */
|
|
ut_assertok(uclass_find_device_by_name(UCLASS_SIMPLE_BUS, "syscon@2", &dev));
|
|
ut_assertok(dev_read_resource(dev, 0, &res));
|
|
ut_asserteq(0x40, res.start);
|
|
ut_asserteq(0x44, res.end);
|
|
ut_assertok(dev_read_resource(dev, 1, &res));
|
|
ut_asserteq(0x48, res.start);
|
|
ut_asserteq(0x4d, res.end);
|
|
|
|
/* test resource with translation */
|
|
ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@1,100", &dev));
|
|
ut_assertok(dev_read_resource(dev, 0, &res));
|
|
ut_asserteq(0x9000, res.start);
|
|
ut_asserteq(0x9fff, res.end);
|
|
|
|
/* test named resource */
|
|
ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@0,0", &dev));
|
|
ut_assertok(dev_read_resource_byname(dev, "sandbox-dummy-0", &res));
|
|
ut_asserteq(0x8000, res.start);
|
|
ut_asserteq(0x8fff, res.end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(dm_test_read_resource, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|