u-boot/drivers/power/regulator/anatop_regulator.c
Ying-Chun Liu (PaulLiu) 6ab0286ae1 power: regulator: add driver for ANATOP regulator
Anatop is an integrated regulator inside i.MX6 SoC.
There are 3 digital regulators which controls PU, CORE (ARM), and SOC.
And 3 analog regulators which controls 1P1, 2P5, 3P0 (USB).
This patch adds the Anatop regulator driver.

Signed-off-by: Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
Reviewed-by: Sean Anderson <sean.anderson@seco.com>
Cc: Fabio Estevam <fabio.estevam@nxp.com>
Cc: Jaehoon Chung <jh80.chung@samsung.com>
Cc: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Jaehoon Chung <jh80.chung@samsung.com>
2021-04-20 07:31:12 -04:00

278 lines
6.5 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2011 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2021 Linaro
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <regmap.h>
#include <syscon.h>
#include <dm/device-internal.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <power/pmic.h>
#include <power/regulator.h>
#define LDO_RAMP_UP_UNIT_IN_CYCLES 64 /* 64 cycles per step */
#define LDO_RAMP_UP_FREQ_IN_MHZ 24 /* cycle based on 24M OSC */
#define LDO_POWER_GATE 0x00
#define LDO_FET_FULL_ON 0x1f
#define BIT_WIDTH_MAX 32
#define ANATOP_REGULATOR_STEP 25000
#define MIN_DROPOUT_UV 125000
struct anatop_regulator {
const char *name;
struct regmap *regmap;
struct udevice *supply;
u32 control_reg;
u32 vol_bit_shift;
u32 vol_bit_width;
u32 min_bit_val;
u32 min_voltage;
u32 max_voltage;
u32 delay_reg;
u32 delay_bit_shift;
u32 delay_bit_width;
};
static u32 anatop_get_bits(struct udevice *dev, u32 addr, int bit_shift,
int bit_width)
{
const struct anatop_regulator *anatop_reg = dev_get_plat(dev);
int err;
u32 val, mask;
if (bit_width == BIT_WIDTH_MAX)
mask = ~0;
else
mask = (1 << bit_width) - 1;
err = regmap_read(anatop_reg->regmap, addr, &val);
if (err) {
dev_dbg(dev, "cannot read reg (%d)\n", err);
return err;
}
val = (val >> bit_shift) & mask;
return val;
}
static int anatop_set_bits(struct udevice *dev, u32 addr, int bit_shift,
int bit_width, u32 data)
{
const struct anatop_regulator *anatop_reg = dev_get_plat(dev);
int err;
u32 val, mask;
if (bit_width == 32)
mask = ~0;
else
mask = (1 << bit_width) - 1;
err = regmap_read(anatop_reg->regmap, addr, &val);
if (err) {
dev_dbg(dev, "cannot read reg (%d)\n", err);
return err;
}
val = val & ~(mask << bit_shift);
err = regmap_write(anatop_reg->regmap,
addr, (data << bit_shift) | val);
if (err) {
dev_dbg(dev, "cannot write reg (%d)\n", err);
return err;
}
return 0;
}
static int anatop_get_voltage(struct udevice *dev)
{
const struct anatop_regulator *anatop_reg = dev_get_plat(dev);
u32 sel;
u32 val;
if (!anatop_reg->control_reg)
return -ENOSYS;
val = anatop_get_bits(dev,
anatop_reg->control_reg,
anatop_reg->vol_bit_shift,
anatop_reg->vol_bit_width);
sel = val - anatop_reg->min_bit_val;
return sel * ANATOP_REGULATOR_STEP + anatop_reg->min_voltage;
}
static int anatop_set_voltage(struct udevice *dev, int uV)
{
const struct anatop_regulator *anatop_reg = dev_get_plat(dev);
u32 val;
u32 sel;
int ret;
dev_dbg(dev, "uv %d, min %d, max %d\n", uV, anatop_reg->min_voltage,
anatop_reg->max_voltage);
if (uV < anatop_reg->min_voltage)
return -EINVAL;
if (!anatop_reg->control_reg)
return -ENOSYS;
sel = DIV_ROUND_UP(uV - anatop_reg->min_voltage,
ANATOP_REGULATOR_STEP);
if (sel * ANATOP_REGULATOR_STEP + anatop_reg->min_voltage >
anatop_reg->max_voltage)
return -EINVAL;
val = anatop_reg->min_bit_val + sel;
dev_dbg(dev, "calculated val %d\n", val);
if (anatop_reg->supply) {
ret = regulator_set_value(anatop_reg->supply,
uV + MIN_DROPOUT_UV);
if (ret)
return ret;
}
ret = anatop_set_bits(dev,
anatop_reg->control_reg,
anatop_reg->vol_bit_shift,
anatop_reg->vol_bit_width,
val);
return ret;
}
static const struct dm_regulator_ops anatop_regulator_ops = {
.set_value = anatop_set_voltage,
.get_value = anatop_get_voltage,
};
static int anatop_regulator_probe(struct udevice *dev)
{
struct anatop_regulator *anatop_reg;
struct dm_regulator_uclass_plat *uc_pdata;
struct udevice *syscon;
int ret = 0;
u32 val;
anatop_reg = dev_get_plat(dev);
uc_pdata = dev_get_uclass_plat(dev);
anatop_reg->name = ofnode_read_string(dev_ofnode(dev),
"regulator-name");
if (!anatop_reg->name)
return log_msg_ret("regulator-name", -EINVAL);
ret = device_get_supply_regulator(dev, "vin-supply",
&anatop_reg->supply);
if (ret != -ENODEV) {
if (ret)
return log_msg_ret("get vin-supply", ret);
ret = regulator_set_enable(anatop_reg->supply, true);
if (ret)
return ret;
}
ret = dev_read_u32(dev,
"anatop-reg-offset",
&anatop_reg->control_reg);
if (ret)
return log_msg_ret("anatop-reg-offset", ret);
ret = dev_read_u32(dev,
"anatop-vol-bit-width",
&anatop_reg->vol_bit_width);
if (ret)
return log_msg_ret("anatop-vol-bit-width", ret);
ret = dev_read_u32(dev,
"anatop-vol-bit-shift",
&anatop_reg->vol_bit_shift);
if (ret)
return log_msg_ret("anatop-vol-bit-shift", ret);
ret = dev_read_u32(dev,
"anatop-min-bit-val",
&anatop_reg->min_bit_val);
if (ret)
return log_msg_ret("anatop-min-bit-val", ret);
ret = dev_read_u32(dev,
"anatop-min-voltage",
&anatop_reg->min_voltage);
if (ret)
return log_msg_ret("anatop-min-voltage", ret);
ret = dev_read_u32(dev,
"anatop-max-voltage",
&anatop_reg->max_voltage);
if (ret)
return log_msg_ret("anatop-max-voltage", ret);
/* read LDO ramp up setting, only for core reg */
dev_read_u32(dev, "anatop-delay-reg-offset",
&anatop_reg->delay_reg);
dev_read_u32(dev, "anatop-delay-bit-width",
&anatop_reg->delay_bit_width);
dev_read_u32(dev, "anatop-delay-bit-shift",
&anatop_reg->delay_bit_shift);
syscon = dev_get_parent(dev);
if (!syscon) {
dev_dbg(dev, "unable to find syscon device\n");
return -ENOENT;
}
anatop_reg->regmap = syscon_get_regmap(syscon);
if (IS_ERR(anatop_reg->regmap)) {
dev_dbg(dev, "unable to find regmap (%ld)\n",
PTR_ERR(anatop_reg->regmap));
return -ENOENT;
}
/* check whether need to care about LDO ramp up speed */
if (anatop_reg->delay_bit_width) {
/*
* the delay for LDO ramp up time is
* based on the register setting, we need
* to calculate how many steps LDO need to
* ramp up, and how much delay needed. (us)
*/
val = anatop_get_bits(dev,
anatop_reg->delay_reg,
anatop_reg->delay_bit_shift,
anatop_reg->delay_bit_width);
uc_pdata->ramp_delay = (LDO_RAMP_UP_UNIT_IN_CYCLES << val)
/ LDO_RAMP_UP_FREQ_IN_MHZ + 1;
}
return 0;
}
static const struct udevice_id of_anatop_regulator_match_tbl[] = {
{ .compatible = "fsl,anatop-regulator", },
{ /* end */ }
};
U_BOOT_DRIVER(anatop_regulator) = {
.name = "anatop_regulator",
.id = UCLASS_REGULATOR,
.ops = &anatop_regulator_ops,
.of_match = of_anatop_regulator_match_tbl,
.plat_auto = sizeof(struct anatop_regulator),
.probe = anatop_regulator_probe,
};