mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-21 18:53:06 +00:00
5a515132d9
Defining static functions in includes should be avoided. Function lmb_is_nomap() is only used in the unit test. So move it to the unit test. Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
819 lines
23 KiB
C
819 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2018 Simon Goldschmidt
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <lmb.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <dm/test.h>
|
|
#include <test/test.h>
|
|
#include <test/ut.h>
|
|
|
|
static inline bool lmb_is_nomap(struct lmb_property *m)
|
|
{
|
|
return m->flags & LMB_NOMAP;
|
|
}
|
|
|
|
static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
|
|
phys_addr_t ram_base, phys_size_t ram_size,
|
|
unsigned long num_reserved,
|
|
phys_addr_t base1, phys_size_t size1,
|
|
phys_addr_t base2, phys_size_t size2,
|
|
phys_addr_t base3, phys_size_t size3)
|
|
{
|
|
if (ram_size) {
|
|
ut_asserteq(lmb->memory.cnt, 1);
|
|
ut_asserteq(lmb->memory.region[0].base, ram_base);
|
|
ut_asserteq(lmb->memory.region[0].size, ram_size);
|
|
}
|
|
|
|
ut_asserteq(lmb->reserved.cnt, num_reserved);
|
|
if (num_reserved > 0) {
|
|
ut_asserteq(lmb->reserved.region[0].base, base1);
|
|
ut_asserteq(lmb->reserved.region[0].size, size1);
|
|
}
|
|
if (num_reserved > 1) {
|
|
ut_asserteq(lmb->reserved.region[1].base, base2);
|
|
ut_asserteq(lmb->reserved.region[1].size, size2);
|
|
}
|
|
if (num_reserved > 2) {
|
|
ut_asserteq(lmb->reserved.region[2].base, base3);
|
|
ut_asserteq(lmb->reserved.region[2].size, size3);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
|
|
base2, size2, base3, size3) \
|
|
ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
|
|
num_reserved, base1, size1, base2, size2, base3, \
|
|
size3))
|
|
|
|
/*
|
|
* Test helper function that reserves 64 KiB somewhere in the simulated RAM and
|
|
* then does some alloc + free tests.
|
|
*/
|
|
static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
|
|
const phys_size_t ram_size, const phys_addr_t ram0,
|
|
const phys_size_t ram0_size,
|
|
const phys_addr_t alloc_64k_addr)
|
|
{
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
|
|
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_addr_t a, a2, b, b2, c, d;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
ut_assert(alloc_64k_end > alloc_64k_addr);
|
|
/* check input addresses + size */
|
|
ut_assert(alloc_64k_addr >= ram + 8);
|
|
ut_assert(alloc_64k_end <= ram_end - 8);
|
|
|
|
lmb_init(&lmb);
|
|
|
|
if (ram0_size) {
|
|
ret = lmb_add(&lmb, ram0, ram0_size);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
if (ram0_size) {
|
|
ut_asserteq(lmb.memory.cnt, 2);
|
|
ut_asserteq(lmb.memory.region[0].base, ram0);
|
|
ut_asserteq(lmb.memory.region[0].size, ram0_size);
|
|
ut_asserteq(lmb.memory.region[1].base, ram);
|
|
ut_asserteq(lmb.memory.region[1].size, ram_size);
|
|
} else {
|
|
ut_asserteq(lmb.memory.cnt, 1);
|
|
ut_asserteq(lmb.memory.region[0].base, ram);
|
|
ut_asserteq(lmb.memory.region[0].size, ram_size);
|
|
}
|
|
|
|
/* reserve 64KiB somewhere */
|
|
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate somewhere, should be at the end of RAM */
|
|
a = lmb_alloc(&lmb, 4, 1);
|
|
ut_asserteq(a, ram_end - 4);
|
|
ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000,
|
|
ram_end - 4, 4, 0, 0);
|
|
/* alloc below end of reserved region -> below reserved region */
|
|
b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
|
|
ut_asserteq(b, alloc_64k_addr - 4);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
|
|
|
|
/* 2nd time */
|
|
c = lmb_alloc(&lmb, 4, 1);
|
|
ut_asserteq(c, ram_end - 8);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
|
|
d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
|
|
ut_asserteq(d, alloc_64k_addr - 8);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
|
|
|
|
ret = lmb_free(&lmb, a, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
/* allocate again to ensure we get the same address */
|
|
a2 = lmb_alloc(&lmb, 4, 1);
|
|
ut_asserteq(a, a2);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
|
|
ret = lmb_free(&lmb, a2, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
|
|
ret = lmb_free(&lmb, b, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 3,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
|
|
ram_end - 8, 4);
|
|
/* allocate again to ensure we get the same address */
|
|
b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
|
|
ut_asserteq(b, b2);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
ret = lmb_free(&lmb, b2, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 3,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
|
|
ram_end - 8, 4);
|
|
|
|
ret = lmb_free(&lmb, c, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 2,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
|
|
ret = lmb_free(&lmb, d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
if (ram0_size) {
|
|
ut_asserteq(lmb.memory.cnt, 2);
|
|
ut_asserteq(lmb.memory.region[0].base, ram0);
|
|
ut_asserteq(lmb.memory.region[0].size, ram0_size);
|
|
ut_asserteq(lmb.memory.region[1].base, ram);
|
|
ut_asserteq(lmb.memory.region[1].size, ram_size);
|
|
} else {
|
|
ut_asserteq(lmb.memory.cnt, 1);
|
|
ut_asserteq(lmb.memory.region[0].base, ram);
|
|
ut_asserteq(lmb.memory.region[0].size, ram_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_multi_alloc_512mb(struct unit_test_state *uts,
|
|
const phys_addr_t ram)
|
|
{
|
|
return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
|
|
}
|
|
|
|
static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
|
|
const phys_addr_t ram,
|
|
const phys_addr_t ram0)
|
|
{
|
|
return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
|
|
ram + 0x10000000);
|
|
}
|
|
|
|
/* Create a memory region with one reserved region and allocate */
|
|
static int lib_test_lmb_simple(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_multi_alloc_512mb(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_multi_alloc_512mb(uts, 0xE0000000);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_simple, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Create two memory regions with one reserved region and allocate */
|
|
static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
|
|
ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
|
|
return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_simple_x2, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
|
|
static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_size_t big_block_size = 0x10000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_addr_t alloc_64k_addr = ram + 0x10000000;
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 64KiB in the middle of RAM */
|
|
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate a big block, should be below reserved */
|
|
a = lmb_alloc(&lmb, big_block_size, 1);
|
|
ut_asserteq(a, ram);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
|
|
big_block_size + 0x10000, 0, 0, 0, 0);
|
|
/* allocate 2nd big block */
|
|
/* This should fail, printing an error */
|
|
b = lmb_alloc(&lmb, big_block_size, 1);
|
|
ut_asserteq(b, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
|
|
big_block_size + 0x10000, 0, 0, 0, 0);
|
|
|
|
ret = lmb_free(&lmb, a, big_block_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate too big block */
|
|
/* This should fail, printing an error */
|
|
a = lmb_alloc(&lmb, ram_size, 1);
|
|
ut_asserteq(a, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_big(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_bigblock(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_bigblock(uts, 0xE0000000);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_big, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Simulate 512 MiB RAM, allocate a block without previous reservation */
|
|
static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
|
|
const phys_addr_t alloc_size, const ulong align)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
|
|
~(align - 1);
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* allocate a block */
|
|
a = lmb_alloc(&lmb, alloc_size, align);
|
|
ut_assert(a != 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
|
|
alloc_size, 0, 0, 0, 0);
|
|
/* allocate another block */
|
|
b = lmb_alloc(&lmb, alloc_size, align);
|
|
ut_assert(b != 0);
|
|
if (alloc_size == alloc_size_aligned) {
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size -
|
|
(alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
|
|
0);
|
|
} else {
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size -
|
|
(alloc_size_aligned * 2), alloc_size, ram + ram_size
|
|
- alloc_size_aligned, alloc_size, 0, 0);
|
|
}
|
|
/* and free them */
|
|
ret = lmb_free(&lmb, b, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
|
|
alloc_size, 0, 0, 0, 0);
|
|
ret = lmb_free(&lmb, a, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* allocate a block with base*/
|
|
b = lmb_alloc_base(&lmb, alloc_size, align, ram_end);
|
|
ut_assert(a == b);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
|
|
alloc_size, 0, 0, 0, 0);
|
|
/* and free it */
|
|
ret = lmb_free(&lmb, b, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_noreserved(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_noreserved(uts, 0x40000000, 4, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_noreserved(uts, 0xE0000000, 4, 1);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_noreserved, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_noreserved(uts, 0x40000000, 5, 8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_noreserved(uts, 0xE0000000, 5, 8);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_unaligned_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
/*
|
|
* Simulate a RAM that starts at 0 and allocate down to address 0, which must
|
|
* fail as '0' means failure for the lmb_alloc functions.
|
|
*/
|
|
static int lib_test_lmb_at_0(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* allocate nearly everything */
|
|
a = lmb_alloc(&lmb, ram_size - 4, 1);
|
|
ut_asserteq(a, ram + 4);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
/* allocate the rest */
|
|
/* This should fail as the allocated address would be 0 */
|
|
b = lmb_alloc(&lmb, 4, 1);
|
|
ut_asserteq(b, 0);
|
|
/* check that this was an error by checking lmb */
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
/* check that this was an error by freeing b */
|
|
ret = lmb_free(&lmb, b, 4);
|
|
ut_asserteq(ret, -1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
|
|
ret = lmb_free(&lmb, a, ram_size - 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_at_0, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Check that calling lmb_reserve with overlapping regions fails. */
|
|
static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0x40000000;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
struct lmb lmb;
|
|
long ret;
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
ret = lmb_reserve(&lmb, 0x40010000, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
/* allocate overlapping region should fail */
|
|
ret = lmb_reserve(&lmb, 0x40011000, 0x10000);
|
|
ut_asserteq(ret, -1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
/* allocate 3nd region */
|
|
ret = lmb_reserve(&lmb, 0x40030000, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000,
|
|
0x40030000, 0x10000, 0, 0);
|
|
/* allocate 2nd region */
|
|
ret = lmb_reserve(&lmb, 0x40020000, 0x10000);
|
|
ut_assert(ret >= 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000,
|
|
0, 0, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_overlapping_reserve,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/*
|
|
* Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
|
|
* Expect addresses outside the memory range to fail.
|
|
*/
|
|
static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_size_t alloc_addr_a = ram + 0x8000000;
|
|
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
|
|
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_addr_t a, b, c, d, e;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 3 blocks */
|
|
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
|
|
/* allocate blocks */
|
|
a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram);
|
|
ut_asserteq(a, ram);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000,
|
|
alloc_addr_b - alloc_addr_a - 0x10000);
|
|
ut_asserteq(b, alloc_addr_a + 0x10000);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000,
|
|
alloc_addr_c, 0x10000, 0, 0);
|
|
c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000,
|
|
alloc_addr_c - alloc_addr_b - 0x10000);
|
|
ut_asserteq(c, alloc_addr_b + 0x10000);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000,
|
|
ram_end - alloc_addr_c - 0x10000);
|
|
ut_asserteq(d, alloc_addr_c + 0x10000);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocating anything else should fail */
|
|
e = lmb_alloc(&lmb, 1, 1);
|
|
ut_asserteq(e, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
|
|
0, 0, 0, 0);
|
|
|
|
ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* allocate at 3 points in free range */
|
|
|
|
d = lmb_alloc_addr(&lmb, ram_end - 4, 4);
|
|
ut_asserteq(d, ram_end - 4);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
|
|
d, 4, 0, 0);
|
|
ret = lmb_free(&lmb, d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
d = lmb_alloc_addr(&lmb, ram_end - 128, 4);
|
|
ut_asserteq(d, ram_end - 128);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
|
|
d, 4, 0, 0);
|
|
ret = lmb_free(&lmb, d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4);
|
|
ut_asserteq(d, alloc_addr_c + 0x10000);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004,
|
|
0, 0, 0, 0);
|
|
ret = lmb_free(&lmb, d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate at the bottom */
|
|
ret = lmb_free(&lmb, a, alloc_addr_a - ram);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000,
|
|
0, 0, 0, 0);
|
|
d = lmb_alloc_addr(&lmb, ram, 4);
|
|
ut_asserteq(d, ram);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4,
|
|
ram + 0x8000000, 0x10010000, 0, 0);
|
|
|
|
/* check that allocating outside memory fails */
|
|
if (ram_end != 0) {
|
|
ret = lmb_alloc_addr(&lmb, ram_end, 1);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
if (ram != 0) {
|
|
ret = lmb_alloc_addr(&lmb, ram - 1, 1);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_alloc_addr(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_alloc_addr(uts, 0xE0000000);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_alloc_addr, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
|
|
static int test_get_unreserved_size(struct unit_test_state *uts,
|
|
const phys_addr_t ram)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_size_t alloc_addr_a = ram + 0x8000000;
|
|
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
|
|
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
|
|
struct lmb lmb;
|
|
long ret;
|
|
phys_size_t s;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 3 blocks */
|
|
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
|
|
/* check addresses in between blocks */
|
|
s = lmb_get_free_size(&lmb, ram);
|
|
ut_asserteq(s, alloc_addr_a - ram);
|
|
s = lmb_get_free_size(&lmb, ram + 0x10000);
|
|
ut_asserteq(s, alloc_addr_a - ram - 0x10000);
|
|
s = lmb_get_free_size(&lmb, alloc_addr_a - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000);
|
|
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
|
|
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000);
|
|
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
|
|
s = lmb_get_free_size(&lmb, alloc_addr_b - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000);
|
|
ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
|
|
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000);
|
|
ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
|
|
s = lmb_get_free_size(&lmb, ram_end - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_get_unreserved_size(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_get_unreserved_size(uts, 0xE0000000);
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_get_free_size,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int lib_test_lmb_max_regions(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0x00000000;
|
|
const phys_size_t ram_size = 0x8000000;
|
|
const phys_size_t blk_size = 0x10000;
|
|
phys_addr_t offset;
|
|
struct lmb lmb;
|
|
int ret, i;
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ut_asserteq(lmb.memory.cnt, 0);
|
|
ut_asserteq(lmb.memory.max, 8);
|
|
ut_asserteq(lmb.reserved.cnt, 0);
|
|
ut_asserteq(lmb.reserved.max, 8);
|
|
|
|
/* Add 8 memory regions */
|
|
for (i = 0; i < 8; i++) {
|
|
offset = ram + 2 * i * ram_size;
|
|
ret = lmb_add(&lmb, offset, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
ut_asserteq(lmb.memory.cnt, 8);
|
|
ut_asserteq(lmb.reserved.cnt, 0);
|
|
|
|
/* error for the 9th memory regions */
|
|
offset = ram + 2 * 8 * ram_size;
|
|
ret = lmb_add(&lmb, offset, ram_size);
|
|
ut_asserteq(ret, -1);
|
|
|
|
ut_asserteq(lmb.memory.cnt, 8);
|
|
ut_asserteq(lmb.reserved.cnt, 0);
|
|
|
|
/* reserve 8 regions */
|
|
for (i = 0; i < 8; i++) {
|
|
offset = ram + 2 * i * blk_size;
|
|
ret = lmb_reserve(&lmb, offset, blk_size);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
|
|
ut_asserteq(lmb.memory.cnt, 8);
|
|
ut_asserteq(lmb.reserved.cnt, 8);
|
|
|
|
/* error for the 9th reserved blocks */
|
|
offset = ram + 2 * 8 * blk_size;
|
|
ret = lmb_reserve(&lmb, offset, blk_size);
|
|
ut_asserteq(ret, -1);
|
|
|
|
ut_asserteq(lmb.memory.cnt, 8);
|
|
ut_asserteq(lmb.reserved.cnt, 8);
|
|
|
|
/* check each regions */
|
|
for (i = 0; i < 8; i++)
|
|
ut_asserteq(lmb.memory.region[i].base, ram + 2 * i * ram_size);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ut_asserteq(lmb.reserved.region[i].base, ram + 2 * i * blk_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_max_regions,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
static int lib_test_lmb_flags(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0x40000000;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
struct lmb lmb;
|
|
long ret;
|
|
|
|
lmb_init(&lmb);
|
|
|
|
ret = lmb_add(&lmb, ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve, same flag */
|
|
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* reserve again, same flag */
|
|
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* reserve again, new flag */
|
|
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NONE);
|
|
ut_asserteq(ret, -1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
|
|
|
|
/* merge after */
|
|
ret = lmb_reserve_flags(&lmb, 0x40020000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x20000,
|
|
0, 0, 0, 0);
|
|
|
|
/* merge before */
|
|
ret = lmb_reserve_flags(&lmb, 0x40000000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x30000,
|
|
0, 0, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
|
|
|
|
ret = lmb_reserve_flags(&lmb, 0x40030000, 0x10000, LMB_NONE);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000,
|
|
0x40030000, 0x10000, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
|
|
|
|
/* test that old API use LMB_NONE */
|
|
ret = lmb_reserve(&lmb, 0x40040000, 0x10000);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
|
|
|
|
ret = lmb_reserve_flags(&lmb, 0x40070000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40070000, 0x10000);
|
|
|
|
ret = lmb_reserve_flags(&lmb, 0x40050000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 4, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40050000, 0x10000);
|
|
|
|
/* merge with 2 adjacent regions */
|
|
ret = lmb_reserve_flags(&lmb, 0x40060000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 2);
|
|
ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40050000, 0x30000);
|
|
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
|
|
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[2]), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(lib_test_lmb_flags,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|