mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-16 01:38:22 +00:00
b5152a653d
Some platforms, like MIPS Octeon, use mapped addresses (virtual address != physical address). On these platforms we need to make sure, that the local virtual addresses are converted to physical (DMA) addresses for the xHCI controller. This patch adds the missing virt_to_phys() calls, so that the correct addresses are used. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> Cc: Bin Meng <bmeng.cn@gmail.com> Cc: Marek Vasut <marex@denx.de>
1589 lines
43 KiB
C
1589 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* USB HOST XHCI Controller stack
|
|
*
|
|
* Based on xHCI host controller driver in linux-kernel
|
|
* by Sarah Sharp.
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
* Author: Sarah Sharp
|
|
*
|
|
* Copyright (C) 2013 Samsung Electronics Co.Ltd
|
|
* Authors: Vivek Gautam <gautam.vivek@samsung.com>
|
|
* Vikas Sajjan <vikas.sajjan@samsung.com>
|
|
*/
|
|
|
|
/**
|
|
* This file gives the xhci stack for usb3.0 looking into
|
|
* xhci specification Rev1.0 (5/21/10).
|
|
* The quirk devices support hasn't been given yet.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <cpu_func.h>
|
|
#include <dm.h>
|
|
#include <log.h>
|
|
#include <asm/byteorder.h>
|
|
#include <usb.h>
|
|
#include <malloc.h>
|
|
#include <watchdog.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/unaligned.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <usb/xhci.h>
|
|
|
|
#ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
|
|
#define CONFIG_USB_MAX_CONTROLLER_COUNT 1
|
|
#endif
|
|
|
|
static struct descriptor {
|
|
struct usb_hub_descriptor hub;
|
|
struct usb_device_descriptor device;
|
|
struct usb_config_descriptor config;
|
|
struct usb_interface_descriptor interface;
|
|
struct usb_endpoint_descriptor endpoint;
|
|
struct usb_ss_ep_comp_descriptor ep_companion;
|
|
} __attribute__ ((packed)) descriptor = {
|
|
{
|
|
0xc, /* bDescLength */
|
|
0x2a, /* bDescriptorType: hub descriptor */
|
|
2, /* bNrPorts -- runtime modified */
|
|
cpu_to_le16(0x8), /* wHubCharacteristics */
|
|
10, /* bPwrOn2PwrGood */
|
|
0, /* bHubCntrCurrent */
|
|
{ /* Device removable */
|
|
} /* at most 7 ports! XXX */
|
|
},
|
|
{
|
|
0x12, /* bLength */
|
|
1, /* bDescriptorType: UDESC_DEVICE */
|
|
cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
|
|
9, /* bDeviceClass: UDCLASS_HUB */
|
|
0, /* bDeviceSubClass: UDSUBCLASS_HUB */
|
|
3, /* bDeviceProtocol: UDPROTO_SSHUBSTT */
|
|
9, /* bMaxPacketSize: 512 bytes 2^9 */
|
|
0x0000, /* idVendor */
|
|
0x0000, /* idProduct */
|
|
cpu_to_le16(0x0100), /* bcdDevice */
|
|
1, /* iManufacturer */
|
|
2, /* iProduct */
|
|
0, /* iSerialNumber */
|
|
1 /* bNumConfigurations: 1 */
|
|
},
|
|
{
|
|
0x9,
|
|
2, /* bDescriptorType: UDESC_CONFIG */
|
|
cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
|
|
1, /* bNumInterface */
|
|
1, /* bConfigurationValue */
|
|
0, /* iConfiguration */
|
|
0x40, /* bmAttributes: UC_SELF_POWER */
|
|
0 /* bMaxPower */
|
|
},
|
|
{
|
|
0x9, /* bLength */
|
|
4, /* bDescriptorType: UDESC_INTERFACE */
|
|
0, /* bInterfaceNumber */
|
|
0, /* bAlternateSetting */
|
|
1, /* bNumEndpoints */
|
|
9, /* bInterfaceClass: UICLASS_HUB */
|
|
0, /* bInterfaceSubClass: UISUBCLASS_HUB */
|
|
0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */
|
|
0 /* iInterface */
|
|
},
|
|
{
|
|
0x7, /* bLength */
|
|
5, /* bDescriptorType: UDESC_ENDPOINT */
|
|
0x81, /* bEndpointAddress: IN endpoint 1 */
|
|
3, /* bmAttributes: UE_INTERRUPT */
|
|
8, /* wMaxPacketSize */
|
|
255 /* bInterval */
|
|
},
|
|
{
|
|
0x06, /* ss_bLength */
|
|
0x30, /* ss_bDescriptorType: SS EP Companion */
|
|
0x00, /* ss_bMaxBurst: allows 1 TX between ACKs */
|
|
/* ss_bmAttributes: 1 packet per service interval */
|
|
0x00,
|
|
/* ss_wBytesPerInterval: 15 bits for max 15 ports */
|
|
cpu_to_le16(0x02),
|
|
},
|
|
};
|
|
|
|
#if !CONFIG_IS_ENABLED(DM_USB)
|
|
static struct xhci_ctrl xhcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
|
|
#endif
|
|
|
|
struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
|
|
{
|
|
#if CONFIG_IS_ENABLED(DM_USB)
|
|
struct udevice *dev;
|
|
|
|
/* Find the USB controller */
|
|
for (dev = udev->dev;
|
|
device_get_uclass_id(dev) != UCLASS_USB;
|
|
dev = dev->parent)
|
|
;
|
|
return dev_get_priv(dev);
|
|
#else
|
|
return udev->controller;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Waits for as per specified amount of time
|
|
* for the "result" to match with "done"
|
|
*
|
|
* @param ptr pointer to the register to be read
|
|
* @param mask mask for the value read
|
|
* @param done value to be campared with result
|
|
* @param usec time to wait till
|
|
* @return 0 if handshake is success else < 0 on failure
|
|
*/
|
|
static int handshake(uint32_t volatile *ptr, uint32_t mask,
|
|
uint32_t done, int usec)
|
|
{
|
|
uint32_t result;
|
|
|
|
do {
|
|
result = xhci_readl(ptr);
|
|
if (result == ~(uint32_t)0)
|
|
return -ENODEV;
|
|
result &= mask;
|
|
if (result == done)
|
|
return 0;
|
|
usec--;
|
|
udelay(1);
|
|
} while (usec > 0);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* Set the run bit and wait for the host to be running.
|
|
*
|
|
* @param hcor pointer to host controller operation registers
|
|
* @return status of the Handshake
|
|
*/
|
|
static int xhci_start(struct xhci_hcor *hcor)
|
|
{
|
|
u32 temp;
|
|
int ret;
|
|
|
|
puts("Starting the controller\n");
|
|
temp = xhci_readl(&hcor->or_usbcmd);
|
|
temp |= (CMD_RUN);
|
|
xhci_writel(&hcor->or_usbcmd, temp);
|
|
|
|
/*
|
|
* Wait for the HCHalted Status bit to be 0 to indicate the host is
|
|
* running.
|
|
*/
|
|
ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
|
|
if (ret)
|
|
debug("Host took too long to start, "
|
|
"waited %u microseconds.\n",
|
|
XHCI_MAX_HALT_USEC);
|
|
return ret;
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(DM_USB)
|
|
/**
|
|
* Resets XHCI Hardware
|
|
*
|
|
* @param ctrl pointer to host controller
|
|
* @return 0 if OK, or a negative error code.
|
|
*/
|
|
static int xhci_reset_hw(struct xhci_ctrl *ctrl)
|
|
{
|
|
int ret;
|
|
|
|
ret = reset_get_by_index(ctrl->dev, 0, &ctrl->reset);
|
|
if (ret && ret != -ENOENT && ret != -ENOTSUPP) {
|
|
dev_err(ctrl->dev, "failed to get reset\n");
|
|
return ret;
|
|
}
|
|
|
|
if (reset_valid(&ctrl->reset)) {
|
|
ret = reset_assert(&ctrl->reset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = reset_deassert(&ctrl->reset);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Resets the XHCI Controller
|
|
*
|
|
* @param hcor pointer to host controller operation registers
|
|
* @return -EBUSY if XHCI Controller is not halted else status of handshake
|
|
*/
|
|
static int xhci_reset(struct xhci_hcor *hcor)
|
|
{
|
|
u32 cmd;
|
|
u32 state;
|
|
int ret;
|
|
|
|
/* Halting the Host first */
|
|
debug("// Halt the HC: %p\n", hcor);
|
|
state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
|
|
if (!state) {
|
|
cmd = xhci_readl(&hcor->or_usbcmd);
|
|
cmd &= ~CMD_RUN;
|
|
xhci_writel(&hcor->or_usbcmd, cmd);
|
|
}
|
|
|
|
ret = handshake(&hcor->or_usbsts,
|
|
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
|
|
if (ret) {
|
|
printf("Host not halted after %u microseconds.\n",
|
|
XHCI_MAX_HALT_USEC);
|
|
return -EBUSY;
|
|
}
|
|
|
|
debug("// Reset the HC\n");
|
|
cmd = xhci_readl(&hcor->or_usbcmd);
|
|
cmd |= CMD_RESET;
|
|
xhci_writel(&hcor->or_usbcmd, cmd);
|
|
|
|
ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* xHCI cannot write to any doorbells or operational registers other
|
|
* than status until the "Controller Not Ready" flag is cleared.
|
|
*/
|
|
return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
|
|
}
|
|
|
|
/**
|
|
* Used for passing endpoint bitmasks between the core and HCDs.
|
|
* Find the index for an endpoint given its descriptor.
|
|
* Use the return value to right shift 1 for the bitmask.
|
|
*
|
|
* Index = (epnum * 2) + direction - 1,
|
|
* where direction = 0 for OUT, 1 for IN.
|
|
* For control endpoints, the IN index is used (OUT index is unused), so
|
|
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
|
|
*
|
|
* @param desc USB enpdoint Descriptor
|
|
* @return index of the Endpoint
|
|
*/
|
|
static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned int index;
|
|
|
|
if (usb_endpoint_xfer_control(desc))
|
|
index = (unsigned int)(usb_endpoint_num(desc) * 2);
|
|
else
|
|
index = (unsigned int)((usb_endpoint_num(desc) * 2) -
|
|
(usb_endpoint_dir_in(desc) ? 0 : 1));
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
|
|
* microframes, rounded down to nearest power of 2.
|
|
*/
|
|
static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
|
|
unsigned int min_exponent,
|
|
unsigned int max_exponent)
|
|
{
|
|
unsigned int interval;
|
|
|
|
interval = fls(desc_interval) - 1;
|
|
interval = clamp_val(interval, min_exponent, max_exponent);
|
|
if ((1 << interval) != desc_interval)
|
|
debug("rounding interval to %d microframes, "\
|
|
"ep desc says %d microframes\n",
|
|
1 << interval, desc_interval);
|
|
|
|
return interval;
|
|
}
|
|
|
|
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc)
|
|
{
|
|
if (endpt_desc->bInterval == 0)
|
|
return 0;
|
|
|
|
return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
|
|
}
|
|
|
|
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc)
|
|
{
|
|
return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
|
|
}
|
|
|
|
/*
|
|
* Convert interval expressed as 2^(bInterval - 1) == interval into
|
|
* straight exponent value 2^n == interval.
|
|
*/
|
|
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc)
|
|
{
|
|
unsigned int interval;
|
|
|
|
interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
|
|
if (interval != endpt_desc->bInterval - 1)
|
|
debug("ep %#x - rounding interval to %d %sframes\n",
|
|
endpt_desc->bEndpointAddress, 1 << interval,
|
|
udev->speed == USB_SPEED_FULL ? "" : "micro");
|
|
|
|
if (udev->speed == USB_SPEED_FULL) {
|
|
/*
|
|
* Full speed isoc endpoints specify interval in frames,
|
|
* not microframes. We are using microframes everywhere,
|
|
* so adjust accordingly.
|
|
*/
|
|
interval += 3; /* 1 frame = 2^3 uframes */
|
|
}
|
|
|
|
return interval;
|
|
}
|
|
|
|
/*
|
|
* Return the polling or NAK interval.
|
|
*
|
|
* The polling interval is expressed in "microframes". If xHCI's Interval field
|
|
* is set to N, it will service the endpoint every 2^(Interval)*125us.
|
|
*
|
|
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
|
|
* is set to 0.
|
|
*/
|
|
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc)
|
|
{
|
|
unsigned int interval = 0;
|
|
|
|
switch (udev->speed) {
|
|
case USB_SPEED_HIGH:
|
|
/* Max NAK rate */
|
|
if (usb_endpoint_xfer_control(endpt_desc) ||
|
|
usb_endpoint_xfer_bulk(endpt_desc)) {
|
|
interval = xhci_parse_microframe_interval(udev,
|
|
endpt_desc);
|
|
break;
|
|
}
|
|
/* Fall through - SS and HS isoc/int have same decoding */
|
|
|
|
case USB_SPEED_SUPER:
|
|
if (usb_endpoint_xfer_int(endpt_desc) ||
|
|
usb_endpoint_xfer_isoc(endpt_desc)) {
|
|
interval = xhci_parse_exponent_interval(udev,
|
|
endpt_desc);
|
|
}
|
|
break;
|
|
|
|
case USB_SPEED_FULL:
|
|
if (usb_endpoint_xfer_isoc(endpt_desc)) {
|
|
interval = xhci_parse_exponent_interval(udev,
|
|
endpt_desc);
|
|
break;
|
|
}
|
|
/*
|
|
* Fall through for interrupt endpoint interval decoding
|
|
* since it uses the same rules as low speed interrupt
|
|
* endpoints.
|
|
*/
|
|
|
|
case USB_SPEED_LOW:
|
|
if (usb_endpoint_xfer_int(endpt_desc) ||
|
|
usb_endpoint_xfer_isoc(endpt_desc)) {
|
|
interval = xhci_parse_frame_interval(udev, endpt_desc);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return interval;
|
|
}
|
|
|
|
/*
|
|
* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
|
|
* High speed endpoint descriptors can define "the number of additional
|
|
* transaction opportunities per microframe", but that goes in the Max Burst
|
|
* endpoint context field.
|
|
*/
|
|
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc,
|
|
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
|
|
{
|
|
if (udev->speed < USB_SPEED_SUPER ||
|
|
!usb_endpoint_xfer_isoc(endpt_desc))
|
|
return 0;
|
|
|
|
return ss_ep_comp_desc->bmAttributes;
|
|
}
|
|
|
|
static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc,
|
|
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
|
|
{
|
|
/* Super speed and Plus have max burst in ep companion desc */
|
|
if (udev->speed >= USB_SPEED_SUPER)
|
|
return ss_ep_comp_desc->bMaxBurst;
|
|
|
|
if (udev->speed == USB_SPEED_HIGH &&
|
|
(usb_endpoint_xfer_isoc(endpt_desc) ||
|
|
usb_endpoint_xfer_int(endpt_desc)))
|
|
return usb_endpoint_maxp_mult(endpt_desc) - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the maximum endpoint service interval time (ESIT) payload.
|
|
* Basically, this is the maxpacket size, multiplied by the burst size
|
|
* and mult size.
|
|
*/
|
|
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *endpt_desc,
|
|
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
|
|
{
|
|
int max_burst;
|
|
int max_packet;
|
|
|
|
/* Only applies for interrupt or isochronous endpoints */
|
|
if (usb_endpoint_xfer_control(endpt_desc) ||
|
|
usb_endpoint_xfer_bulk(endpt_desc))
|
|
return 0;
|
|
|
|
/* SuperSpeed Isoc ep with less than 48k per esit */
|
|
if (udev->speed >= USB_SPEED_SUPER)
|
|
return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
|
|
|
|
max_packet = usb_endpoint_maxp(endpt_desc);
|
|
max_burst = usb_endpoint_maxp_mult(endpt_desc);
|
|
|
|
/* A 0 in max burst means 1 transfer per ESIT */
|
|
return max_packet * max_burst;
|
|
}
|
|
|
|
/**
|
|
* Issue a configure endpoint command or evaluate context command
|
|
* and wait for it to finish.
|
|
*
|
|
* @param udev pointer to the Device Data Structure
|
|
* @param ctx_change flag to indicate the Context has changed or NOT
|
|
* @return 0 on success, -1 on failure
|
|
*/
|
|
static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
|
|
{
|
|
struct xhci_container_ctx *in_ctx;
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
union xhci_trb *event;
|
|
|
|
virt_dev = ctrl->devs[udev->slot_id];
|
|
in_ctx = virt_dev->in_ctx;
|
|
|
|
xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
|
|
xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0,
|
|
ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
|
|
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
|
|
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
|
|
!= udev->slot_id);
|
|
|
|
switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
|
|
case COMP_SUCCESS:
|
|
debug("Successful %s command\n",
|
|
ctx_change ? "Evaluate Context" : "Configure Endpoint");
|
|
break;
|
|
default:
|
|
printf("ERROR: %s command returned completion code %d.\n",
|
|
ctx_change ? "Evaluate Context" : "Configure Endpoint",
|
|
GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
|
|
return -EINVAL;
|
|
}
|
|
|
|
xhci_acknowledge_event(ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Configure the endpoint, programming the device contexts.
|
|
*
|
|
* @param udev pointer to the USB device structure
|
|
* @return returns the status of the xhci_configure_endpoints
|
|
*/
|
|
static int xhci_set_configuration(struct usb_device *udev)
|
|
{
|
|
struct xhci_container_ctx *in_ctx;
|
|
struct xhci_container_ctx *out_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
|
|
int cur_ep;
|
|
int max_ep_flag = 0;
|
|
int ep_index;
|
|
unsigned int dir;
|
|
unsigned int ep_type;
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
int num_of_ep;
|
|
int ep_flag = 0;
|
|
u64 trb_64 = 0;
|
|
int slot_id = udev->slot_id;
|
|
struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
|
|
struct usb_interface *ifdesc;
|
|
u32 max_esit_payload;
|
|
unsigned int interval;
|
|
unsigned int mult;
|
|
unsigned int max_burst;
|
|
unsigned int avg_trb_len;
|
|
unsigned int err_count = 0;
|
|
|
|
out_ctx = virt_dev->out_ctx;
|
|
in_ctx = virt_dev->in_ctx;
|
|
|
|
num_of_ep = udev->config.if_desc[0].no_of_ep;
|
|
ifdesc = &udev->config.if_desc[0];
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
/* Initialize the input context control */
|
|
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
/* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
|
|
for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
|
|
ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
|
|
ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
|
|
if (max_ep_flag < ep_flag)
|
|
max_ep_flag = ep_flag;
|
|
}
|
|
|
|
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
|
|
|
|
/* slot context */
|
|
xhci_slot_copy(ctrl, in_ctx, out_ctx);
|
|
slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
|
|
slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK));
|
|
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
|
|
|
|
xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
|
|
|
|
/* filling up ep contexts */
|
|
for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
|
|
struct usb_endpoint_descriptor *endpt_desc = NULL;
|
|
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
|
|
|
|
endpt_desc = &ifdesc->ep_desc[cur_ep];
|
|
ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
|
|
trb_64 = 0;
|
|
|
|
/*
|
|
* Get values to fill the endpoint context, mostly from ep
|
|
* descriptor. The average TRB buffer lengt for bulk endpoints
|
|
* is unclear as we have no clue on scatter gather list entry
|
|
* size. For Isoc and Int, set it to max available.
|
|
* See xHCI 1.1 spec 4.14.1.1 for details.
|
|
*/
|
|
max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
|
|
ss_ep_comp_desc);
|
|
interval = xhci_get_endpoint_interval(udev, endpt_desc);
|
|
mult = xhci_get_endpoint_mult(udev, endpt_desc,
|
|
ss_ep_comp_desc);
|
|
max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
|
|
ss_ep_comp_desc);
|
|
avg_trb_len = max_esit_payload;
|
|
|
|
ep_index = xhci_get_ep_index(endpt_desc);
|
|
ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
|
|
|
|
/* Allocate the ep rings */
|
|
virt_dev->eps[ep_index].ring = xhci_ring_alloc(1, true);
|
|
if (!virt_dev->eps[ep_index].ring)
|
|
return -ENOMEM;
|
|
|
|
/*NOTE: ep_desc[0] actually represents EP1 and so on */
|
|
dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
|
|
ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
|
|
|
|
ep_ctx[ep_index]->ep_info =
|
|
cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
|
|
EP_INTERVAL(interval) | EP_MULT(mult));
|
|
|
|
ep_ctx[ep_index]->ep_info2 =
|
|
cpu_to_le32(ep_type << EP_TYPE_SHIFT);
|
|
ep_ctx[ep_index]->ep_info2 |=
|
|
cpu_to_le32(MAX_PACKET
|
|
(get_unaligned(&endpt_desc->wMaxPacketSize)));
|
|
|
|
/* Allow 3 retries for everything but isoc, set CErr = 3 */
|
|
if (!usb_endpoint_xfer_isoc(endpt_desc))
|
|
err_count = 3;
|
|
ep_ctx[ep_index]->ep_info2 |=
|
|
cpu_to_le32(MAX_BURST(max_burst) |
|
|
ERROR_COUNT(err_count));
|
|
|
|
trb_64 = virt_to_phys(virt_dev->eps[ep_index].ring->enqueue);
|
|
ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
|
|
virt_dev->eps[ep_index].ring->cycle_state);
|
|
|
|
/*
|
|
* xHCI spec 6.2.3:
|
|
* 'Average TRB Length' should be 8 for control endpoints.
|
|
*/
|
|
if (usb_endpoint_xfer_control(endpt_desc))
|
|
avg_trb_len = 8;
|
|
ep_ctx[ep_index]->tx_info =
|
|
cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
|
|
EP_AVG_TRB_LENGTH(avg_trb_len));
|
|
|
|
/*
|
|
* The MediaTek xHCI defines some extra SW parameters which
|
|
* are put into reserved DWs in Slot and Endpoint Contexts
|
|
* for synchronous endpoints.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_USB_XHCI_MTK)) {
|
|
ep_ctx[ep_index]->reserved[0] =
|
|
cpu_to_le32(EP_BPKTS(1) | EP_BBM(1));
|
|
}
|
|
}
|
|
|
|
return xhci_configure_endpoints(udev, false);
|
|
}
|
|
|
|
/**
|
|
* Issue an Address Device command (which will issue a SetAddress request to
|
|
* the device).
|
|
*
|
|
* @param udev pointer to the Device Data Structure
|
|
* @return 0 if successful else error code on failure
|
|
*/
|
|
static int xhci_address_device(struct usb_device *udev, int root_portnr)
|
|
{
|
|
int ret = 0;
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_virt_device *virt_dev;
|
|
int slot_id = udev->slot_id;
|
|
union xhci_trb *event;
|
|
|
|
virt_dev = ctrl->devs[slot_id];
|
|
|
|
/*
|
|
* This is the first Set Address since device plug-in
|
|
* so setting up the slot context.
|
|
*/
|
|
debug("Setting up addressable devices %p\n", ctrl->dcbaa);
|
|
xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
|
|
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV);
|
|
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
|
|
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
|
|
|
|
switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
|
|
case COMP_CTX_STATE:
|
|
case COMP_EBADSLT:
|
|
printf("Setup ERROR: address device command for slot %d.\n",
|
|
slot_id);
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_TX_ERR:
|
|
puts("Device not responding to set address.\n");
|
|
ret = -EPROTO;
|
|
break;
|
|
case COMP_DEV_ERR:
|
|
puts("ERROR: Incompatible device"
|
|
"for address device command.\n");
|
|
ret = -ENODEV;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
debug("Successful Address Device command\n");
|
|
udev->status = 0;
|
|
break;
|
|
default:
|
|
printf("ERROR: unexpected command completion code 0x%x.\n",
|
|
GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
xhci_acknowledge_event(ctrl);
|
|
|
|
if (ret < 0)
|
|
/*
|
|
* TODO: Unsuccessful Address Device command shall leave the
|
|
* slot in default state. So, issue Disable Slot command now.
|
|
*/
|
|
return ret;
|
|
|
|
xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
|
|
virt_dev->out_ctx->size);
|
|
slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
|
|
|
|
debug("xHC internal address is: %d\n",
|
|
le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Issue Enable slot command to the controller to allocate
|
|
* device slot and assign the slot id. It fails if the xHC
|
|
* ran out of device slots, the Enable Slot command timed out,
|
|
* or allocating memory failed.
|
|
*
|
|
* @param udev pointer to the Device Data Structure
|
|
* @return Returns 0 on succes else return error code on failure
|
|
*/
|
|
static int _xhci_alloc_device(struct usb_device *udev)
|
|
{
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
union xhci_trb *event;
|
|
int ret;
|
|
|
|
/*
|
|
* Root hub will be first device to be initailized.
|
|
* If this device is root-hub, don't do any xHC related
|
|
* stuff.
|
|
*/
|
|
if (ctrl->rootdev == 0) {
|
|
udev->speed = USB_SPEED_SUPER;
|
|
return 0;
|
|
}
|
|
|
|
xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT);
|
|
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
|
|
BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
|
|
!= COMP_SUCCESS);
|
|
|
|
udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
|
|
|
|
xhci_acknowledge_event(ctrl);
|
|
|
|
ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
|
|
if (ret < 0) {
|
|
/*
|
|
* TODO: Unsuccessful Address Device command shall leave
|
|
* the slot in default. So, issue Disable Slot command now.
|
|
*/
|
|
puts("Could not allocate xHCI USB device data structures\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if !CONFIG_IS_ENABLED(DM_USB)
|
|
int usb_alloc_device(struct usb_device *udev)
|
|
{
|
|
return _xhci_alloc_device(udev);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Full speed devices may have a max packet size greater than 8 bytes, but the
|
|
* USB core doesn't know that until it reads the first 8 bytes of the
|
|
* descriptor. If the usb_device's max packet size changes after that point,
|
|
* we need to issue an evaluate context command and wait on it.
|
|
*
|
|
* @param udev pointer to the Device Data Structure
|
|
* @return returns the status of the xhci_configure_endpoints
|
|
*/
|
|
int xhci_check_maxpacket(struct usb_device *udev)
|
|
{
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
unsigned int slot_id = udev->slot_id;
|
|
int ep_index = 0; /* control endpoint */
|
|
struct xhci_container_ctx *in_ctx;
|
|
struct xhci_container_ctx *out_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
int max_packet_size;
|
|
int hw_max_packet_size;
|
|
int ret = 0;
|
|
|
|
out_ctx = ctrl->devs[slot_id]->out_ctx;
|
|
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
|
|
|
|
ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
|
|
hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
|
|
max_packet_size = udev->epmaxpacketin[0];
|
|
if (hw_max_packet_size != max_packet_size) {
|
|
debug("Max Packet Size for ep 0 changed.\n");
|
|
debug("Max packet size in usb_device = %d\n", max_packet_size);
|
|
debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
|
|
debug("Issuing evaluate context command.\n");
|
|
|
|
/* Set up the modified control endpoint 0 */
|
|
xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
|
|
ctrl->devs[slot_id]->out_ctx, ep_index);
|
|
in_ctx = ctrl->devs[slot_id]->in_ctx;
|
|
ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
|
|
ep_ctx->ep_info2 &= cpu_to_le32(~((0xffff & MAX_PACKET_MASK)
|
|
<< MAX_PACKET_SHIFT));
|
|
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
|
|
|
|
/*
|
|
* Set up the input context flags for the command
|
|
* FIXME: This won't work if a non-default control endpoint
|
|
* changes max packet sizes.
|
|
*/
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
ret = xhci_configure_endpoints(udev, true);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Clears the Change bits of the Port Status Register
|
|
*
|
|
* @param wValue request value
|
|
* @param wIndex request index
|
|
* @param addr address of posrt status register
|
|
* @param port_status state of port status register
|
|
* @return none
|
|
*/
|
|
static void xhci_clear_port_change_bit(u16 wValue,
|
|
u16 wIndex, volatile uint32_t *addr, u32 port_status)
|
|
{
|
|
char *port_change_bit;
|
|
u32 status;
|
|
|
|
switch (wValue) {
|
|
case USB_PORT_FEAT_C_RESET:
|
|
status = PORT_RC;
|
|
port_change_bit = "reset";
|
|
break;
|
|
case USB_PORT_FEAT_C_CONNECTION:
|
|
status = PORT_CSC;
|
|
port_change_bit = "connect";
|
|
break;
|
|
case USB_PORT_FEAT_C_OVER_CURRENT:
|
|
status = PORT_OCC;
|
|
port_change_bit = "over-current";
|
|
break;
|
|
case USB_PORT_FEAT_C_ENABLE:
|
|
status = PORT_PEC;
|
|
port_change_bit = "enable/disable";
|
|
break;
|
|
case USB_PORT_FEAT_C_SUSPEND:
|
|
status = PORT_PLC;
|
|
port_change_bit = "suspend/resume";
|
|
break;
|
|
default:
|
|
/* Should never happen */
|
|
return;
|
|
}
|
|
|
|
/* Change bits are all write 1 to clear */
|
|
xhci_writel(addr, port_status | status);
|
|
|
|
port_status = xhci_readl(addr);
|
|
debug("clear port %s change, actual port %d status = 0x%x\n",
|
|
port_change_bit, wIndex, port_status);
|
|
}
|
|
|
|
/**
|
|
* Save Read Only (RO) bits and save read/write bits where
|
|
* writing a 0 clears the bit and writing a 1 sets the bit (RWS).
|
|
* For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
|
|
*
|
|
* @param state state of the Port Status and Control Regsiter
|
|
* @return a value that would result in the port being in the
|
|
* same state, if the value was written to the port
|
|
* status control register.
|
|
*/
|
|
static u32 xhci_port_state_to_neutral(u32 state)
|
|
{
|
|
/* Save read-only status and port state */
|
|
return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
|
|
}
|
|
|
|
/**
|
|
* Submits the Requests to the XHCI Host Controller
|
|
*
|
|
* @param udev pointer to the USB device structure
|
|
* @param pipe contains the DIR_IN or OUT , devnum
|
|
* @param buffer buffer to be read/written based on the request
|
|
* @return returns 0 if successful else -1 on failure
|
|
*/
|
|
static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
|
|
void *buffer, struct devrequest *req)
|
|
{
|
|
uint8_t tmpbuf[4];
|
|
u16 typeReq;
|
|
void *srcptr = NULL;
|
|
int len, srclen;
|
|
uint32_t reg;
|
|
volatile uint32_t *status_reg;
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
struct xhci_hccr *hccr = ctrl->hccr;
|
|
struct xhci_hcor *hcor = ctrl->hcor;
|
|
int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
|
|
|
|
if ((req->requesttype & USB_RT_PORT) &&
|
|
le16_to_cpu(req->index) > max_ports) {
|
|
printf("The request port(%d) exceeds maximum port number\n",
|
|
le16_to_cpu(req->index) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
status_reg = (volatile uint32_t *)
|
|
(&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
|
|
srclen = 0;
|
|
|
|
typeReq = req->request | req->requesttype << 8;
|
|
|
|
switch (typeReq) {
|
|
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
|
|
switch (le16_to_cpu(req->value) >> 8) {
|
|
case USB_DT_DEVICE:
|
|
debug("USB_DT_DEVICE request\n");
|
|
srcptr = &descriptor.device;
|
|
srclen = 0x12;
|
|
break;
|
|
case USB_DT_CONFIG:
|
|
debug("USB_DT_CONFIG config\n");
|
|
srcptr = &descriptor.config;
|
|
srclen = 0x19;
|
|
break;
|
|
case USB_DT_STRING:
|
|
debug("USB_DT_STRING config\n");
|
|
switch (le16_to_cpu(req->value) & 0xff) {
|
|
case 0: /* Language */
|
|
srcptr = "\4\3\11\4";
|
|
srclen = 4;
|
|
break;
|
|
case 1: /* Vendor String */
|
|
srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
|
|
srclen = 14;
|
|
break;
|
|
case 2: /* Product Name */
|
|
srcptr = "\52\3X\0H\0C\0I\0 "
|
|
"\0H\0o\0s\0t\0 "
|
|
"\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
|
|
srclen = 42;
|
|
break;
|
|
default:
|
|
printf("unknown value DT_STRING %x\n",
|
|
le16_to_cpu(req->value));
|
|
goto unknown;
|
|
}
|
|
break;
|
|
default:
|
|
printf("unknown value %x\n", le16_to_cpu(req->value));
|
|
goto unknown;
|
|
}
|
|
break;
|
|
case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
|
|
switch (le16_to_cpu(req->value) >> 8) {
|
|
case USB_DT_HUB:
|
|
case USB_DT_SS_HUB:
|
|
debug("USB_DT_HUB config\n");
|
|
srcptr = &descriptor.hub;
|
|
srclen = 0x8;
|
|
break;
|
|
default:
|
|
printf("unknown value %x\n", le16_to_cpu(req->value));
|
|
goto unknown;
|
|
}
|
|
break;
|
|
case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
|
|
debug("USB_REQ_SET_ADDRESS\n");
|
|
ctrl->rootdev = le16_to_cpu(req->value);
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
|
|
/* Do nothing */
|
|
break;
|
|
case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
|
|
tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */
|
|
tmpbuf[1] = 0;
|
|
srcptr = tmpbuf;
|
|
srclen = 2;
|
|
break;
|
|
case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
|
|
memset(tmpbuf, 0, 4);
|
|
reg = xhci_readl(status_reg);
|
|
if (reg & PORT_CONNECT) {
|
|
tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
|
|
switch (reg & DEV_SPEED_MASK) {
|
|
case XDEV_FS:
|
|
debug("SPEED = FULLSPEED\n");
|
|
break;
|
|
case XDEV_LS:
|
|
debug("SPEED = LOWSPEED\n");
|
|
tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
|
|
break;
|
|
case XDEV_HS:
|
|
debug("SPEED = HIGHSPEED\n");
|
|
tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
|
|
break;
|
|
case XDEV_SS:
|
|
debug("SPEED = SUPERSPEED\n");
|
|
tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
|
|
break;
|
|
}
|
|
}
|
|
if (reg & PORT_PE)
|
|
tmpbuf[0] |= USB_PORT_STAT_ENABLE;
|
|
if ((reg & PORT_PLS_MASK) == XDEV_U3)
|
|
tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
|
|
if (reg & PORT_OC)
|
|
tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
|
|
if (reg & PORT_RESET)
|
|
tmpbuf[0] |= USB_PORT_STAT_RESET;
|
|
if (reg & PORT_POWER)
|
|
/*
|
|
* XXX: This Port power bit (for USB 3.0 hub)
|
|
* we are faking in USB 2.0 hub port status;
|
|
* since there's a change in bit positions in
|
|
* two:
|
|
* USB 2.0 port status PP is at position[8]
|
|
* USB 3.0 port status PP is at position[9]
|
|
* So, we are still keeping it at position [8]
|
|
*/
|
|
tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
|
|
if (reg & PORT_CSC)
|
|
tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
|
|
if (reg & PORT_PEC)
|
|
tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
|
|
if (reg & PORT_OCC)
|
|
tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
|
|
if (reg & PORT_RC)
|
|
tmpbuf[2] |= USB_PORT_STAT_C_RESET;
|
|
|
|
srcptr = tmpbuf;
|
|
srclen = 4;
|
|
break;
|
|
case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
|
|
reg = xhci_readl(status_reg);
|
|
reg = xhci_port_state_to_neutral(reg);
|
|
switch (le16_to_cpu(req->value)) {
|
|
case USB_PORT_FEAT_ENABLE:
|
|
reg |= PORT_PE;
|
|
xhci_writel(status_reg, reg);
|
|
break;
|
|
case USB_PORT_FEAT_POWER:
|
|
reg |= PORT_POWER;
|
|
xhci_writel(status_reg, reg);
|
|
break;
|
|
case USB_PORT_FEAT_RESET:
|
|
reg |= PORT_RESET;
|
|
xhci_writel(status_reg, reg);
|
|
break;
|
|
default:
|
|
printf("unknown feature %x\n", le16_to_cpu(req->value));
|
|
goto unknown;
|
|
}
|
|
break;
|
|
case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
|
|
reg = xhci_readl(status_reg);
|
|
reg = xhci_port_state_to_neutral(reg);
|
|
switch (le16_to_cpu(req->value)) {
|
|
case USB_PORT_FEAT_ENABLE:
|
|
reg &= ~PORT_PE;
|
|
break;
|
|
case USB_PORT_FEAT_POWER:
|
|
reg &= ~PORT_POWER;
|
|
break;
|
|
case USB_PORT_FEAT_C_RESET:
|
|
case USB_PORT_FEAT_C_CONNECTION:
|
|
case USB_PORT_FEAT_C_OVER_CURRENT:
|
|
case USB_PORT_FEAT_C_ENABLE:
|
|
xhci_clear_port_change_bit((le16_to_cpu(req->value)),
|
|
le16_to_cpu(req->index),
|
|
status_reg, reg);
|
|
break;
|
|
default:
|
|
printf("unknown feature %x\n", le16_to_cpu(req->value));
|
|
goto unknown;
|
|
}
|
|
xhci_writel(status_reg, reg);
|
|
break;
|
|
default:
|
|
puts("Unknown request\n");
|
|
goto unknown;
|
|
}
|
|
|
|
debug("scrlen = %d\n req->length = %d\n",
|
|
srclen, le16_to_cpu(req->length));
|
|
|
|
len = min(srclen, (int)le16_to_cpu(req->length));
|
|
|
|
if (srcptr != NULL && len > 0)
|
|
memcpy(buffer, srcptr, len);
|
|
else
|
|
debug("Len is 0\n");
|
|
|
|
udev->act_len = len;
|
|
udev->status = 0;
|
|
|
|
return 0;
|
|
|
|
unknown:
|
|
udev->act_len = 0;
|
|
udev->status = USB_ST_STALLED;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* Submits the INT request to XHCI Host cotroller
|
|
*
|
|
* @param udev pointer to the USB device
|
|
* @param pipe contains the DIR_IN or OUT , devnum
|
|
* @param buffer buffer to be read/written based on the request
|
|
* @param length length of the buffer
|
|
* @param interval interval of the interrupt
|
|
* @return 0
|
|
*/
|
|
static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
|
|
void *buffer, int length, int interval,
|
|
bool nonblock)
|
|
{
|
|
if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
|
|
printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* xHCI uses normal TRBs for both bulk and interrupt. When the
|
|
* interrupt endpoint is to be serviced, the xHC will consume
|
|
* (at most) one TD. A TD (comprised of sg list entries) can
|
|
* take several service intervals to transmit.
|
|
*/
|
|
return xhci_bulk_tx(udev, pipe, length, buffer);
|
|
}
|
|
|
|
/**
|
|
* submit the BULK type of request to the USB Device
|
|
*
|
|
* @param udev pointer to the USB device
|
|
* @param pipe contains the DIR_IN or OUT , devnum
|
|
* @param buffer buffer to be read/written based on the request
|
|
* @param length length of the buffer
|
|
* @return returns 0 if successful else -1 on failure
|
|
*/
|
|
static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
|
|
void *buffer, int length)
|
|
{
|
|
if (usb_pipetype(pipe) != PIPE_BULK) {
|
|
printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return xhci_bulk_tx(udev, pipe, length, buffer);
|
|
}
|
|
|
|
/**
|
|
* submit the control type of request to the Root hub/Device based on the devnum
|
|
*
|
|
* @param udev pointer to the USB device
|
|
* @param pipe contains the DIR_IN or OUT , devnum
|
|
* @param buffer buffer to be read/written based on the request
|
|
* @param length length of the buffer
|
|
* @param setup Request type
|
|
* @param root_portnr Root port number that this device is on
|
|
* @return returns 0 if successful else -1 on failure
|
|
*/
|
|
static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
|
|
void *buffer, int length,
|
|
struct devrequest *setup, int root_portnr)
|
|
{
|
|
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
|
|
int ret = 0;
|
|
|
|
if (usb_pipetype(pipe) != PIPE_CONTROL) {
|
|
printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (usb_pipedevice(pipe) == ctrl->rootdev)
|
|
return xhci_submit_root(udev, pipe, buffer, setup);
|
|
|
|
if (setup->request == USB_REQ_SET_ADDRESS &&
|
|
(setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
|
|
return xhci_address_device(udev, root_portnr);
|
|
|
|
if (setup->request == USB_REQ_SET_CONFIGURATION &&
|
|
(setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
|
|
ret = xhci_set_configuration(udev);
|
|
if (ret) {
|
|
puts("Failed to configure xHCI endpoint\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
|
|
}
|
|
|
|
static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
|
|
{
|
|
struct xhci_hccr *hccr;
|
|
struct xhci_hcor *hcor;
|
|
uint32_t val;
|
|
uint32_t val2;
|
|
uint32_t reg;
|
|
|
|
hccr = ctrl->hccr;
|
|
hcor = ctrl->hcor;
|
|
/*
|
|
* Program the Number of Device Slots Enabled field in the CONFIG
|
|
* register with the max value of slots the HC can handle.
|
|
*/
|
|
val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
|
|
val2 = xhci_readl(&hcor->or_config);
|
|
val |= (val2 & ~HCS_SLOTS_MASK);
|
|
xhci_writel(&hcor->or_config, val);
|
|
|
|
/* initializing xhci data structures */
|
|
if (xhci_mem_init(ctrl, hccr, hcor) < 0)
|
|
return -ENOMEM;
|
|
|
|
reg = xhci_readl(&hccr->cr_hcsparams1);
|
|
descriptor.hub.bNbrPorts = ((reg & HCS_MAX_PORTS_MASK) >>
|
|
HCS_MAX_PORTS_SHIFT);
|
|
printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
|
|
|
|
/* Port Indicators */
|
|
reg = xhci_readl(&hccr->cr_hccparams);
|
|
if (HCS_INDICATOR(reg))
|
|
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
|
|
| 0x80, &descriptor.hub.wHubCharacteristics);
|
|
|
|
/* Port Power Control */
|
|
if (HCC_PPC(reg))
|
|
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
|
|
| 0x01, &descriptor.hub.wHubCharacteristics);
|
|
|
|
if (xhci_start(hcor)) {
|
|
xhci_reset(hcor);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Zero'ing IRQ control register and IRQ pending register */
|
|
xhci_writel(&ctrl->ir_set->irq_control, 0x0);
|
|
xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
|
|
|
|
reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
|
|
printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
|
|
{
|
|
u32 temp;
|
|
|
|
xhci_reset(ctrl->hcor);
|
|
|
|
debug("// Disabling event ring interrupts\n");
|
|
temp = xhci_readl(&ctrl->hcor->or_usbsts);
|
|
xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
|
|
temp = xhci_readl(&ctrl->ir_set->irq_pending);
|
|
xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if !CONFIG_IS_ENABLED(DM_USB)
|
|
int submit_control_msg(struct usb_device *udev, unsigned long pipe,
|
|
void *buffer, int length, struct devrequest *setup)
|
|
{
|
|
struct usb_device *hop = udev;
|
|
|
|
if (hop->parent)
|
|
while (hop->parent->parent)
|
|
hop = hop->parent;
|
|
|
|
return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
|
|
hop->portnr);
|
|
}
|
|
|
|
int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
|
|
int length)
|
|
{
|
|
return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
|
|
}
|
|
|
|
int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
|
|
int length, int interval, bool nonblock)
|
|
{
|
|
return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
|
|
nonblock);
|
|
}
|
|
|
|
/**
|
|
* Intialises the XHCI host controller
|
|
* and allocates the necessary data structures
|
|
*
|
|
* @param index index to the host controller data structure
|
|
* @return pointer to the intialised controller
|
|
*/
|
|
int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
|
|
{
|
|
struct xhci_hccr *hccr;
|
|
struct xhci_hcor *hcor;
|
|
struct xhci_ctrl *ctrl;
|
|
int ret;
|
|
|
|
*controller = NULL;
|
|
|
|
if (xhci_hcd_init(index, &hccr, (struct xhci_hcor **)&hcor) != 0)
|
|
return -ENODEV;
|
|
|
|
if (xhci_reset(hcor) != 0)
|
|
return -ENODEV;
|
|
|
|
ctrl = &xhcic[index];
|
|
|
|
ctrl->hccr = hccr;
|
|
ctrl->hcor = hcor;
|
|
|
|
ret = xhci_lowlevel_init(ctrl);
|
|
|
|
if (ret) {
|
|
ctrl->hccr = NULL;
|
|
ctrl->hcor = NULL;
|
|
} else {
|
|
*controller = &xhcic[index];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Stops the XHCI host controller
|
|
* and cleans up all the related data structures
|
|
*
|
|
* @param index index to the host controller data structure
|
|
* @return none
|
|
*/
|
|
int usb_lowlevel_stop(int index)
|
|
{
|
|
struct xhci_ctrl *ctrl = (xhcic + index);
|
|
|
|
if (ctrl->hcor) {
|
|
xhci_lowlevel_stop(ctrl);
|
|
xhci_hcd_stop(index);
|
|
xhci_cleanup(ctrl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_IS_ENABLED(DM_USB) */
|
|
|
|
#if CONFIG_IS_ENABLED(DM_USB)
|
|
|
|
static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
|
|
unsigned long pipe, void *buffer, int length,
|
|
struct devrequest *setup)
|
|
{
|
|
struct usb_device *uhop;
|
|
struct udevice *hub;
|
|
int root_portnr = 0;
|
|
|
|
debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
|
|
dev->name, udev, udev->dev->name, udev->portnr);
|
|
hub = udev->dev;
|
|
if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
|
|
/* Figure out our port number on the root hub */
|
|
if (usb_hub_is_root_hub(hub)) {
|
|
root_portnr = udev->portnr;
|
|
} else {
|
|
while (!usb_hub_is_root_hub(hub->parent))
|
|
hub = hub->parent;
|
|
uhop = dev_get_parent_priv(hub);
|
|
root_portnr = uhop->portnr;
|
|
}
|
|
}
|
|
/*
|
|
struct usb_device *hop = udev;
|
|
|
|
if (hop->parent)
|
|
while (hop->parent->parent)
|
|
hop = hop->parent;
|
|
*/
|
|
return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
|
|
root_portnr);
|
|
}
|
|
|
|
static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
|
|
unsigned long pipe, void *buffer, int length)
|
|
{
|
|
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
|
|
return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
|
|
}
|
|
|
|
static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
|
|
unsigned long pipe, void *buffer, int length,
|
|
int interval, bool nonblock)
|
|
{
|
|
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
|
|
return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
|
|
nonblock);
|
|
}
|
|
|
|
static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
|
|
{
|
|
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
|
|
return _xhci_alloc_device(udev);
|
|
}
|
|
|
|
static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
|
|
{
|
|
struct xhci_ctrl *ctrl = dev_get_priv(dev);
|
|
struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_container_ctx *out_ctx;
|
|
struct xhci_container_ctx *in_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
int slot_id = udev->slot_id;
|
|
unsigned think_time;
|
|
|
|
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
|
|
|
|
/* Ignore root hubs */
|
|
if (usb_hub_is_root_hub(udev->dev))
|
|
return 0;
|
|
|
|
virt_dev = ctrl->devs[slot_id];
|
|
BUG_ON(!virt_dev);
|
|
|
|
out_ctx = virt_dev->out_ctx;
|
|
in_ctx = virt_dev->in_ctx;
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
/* Initialize the input context control */
|
|
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
|
|
|
|
/* slot context */
|
|
xhci_slot_copy(ctrl, in_ctx, out_ctx);
|
|
slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
|
|
|
|
/* Update hub related fields */
|
|
slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
|
|
/*
|
|
* refer to section 6.2.2: MTT should be 0 for full speed hub,
|
|
* but it may be already set to 1 when setup an xHCI virtual
|
|
* device, so clear it anyway.
|
|
*/
|
|
if (hub->tt.multi)
|
|
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
|
|
else if (udev->speed == USB_SPEED_FULL)
|
|
slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
|
|
slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
|
|
/*
|
|
* Set TT think time - convert from ns to FS bit times.
|
|
* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
|
|
*
|
|
* 0 = 8 FS bit times, 1 = 16 FS bit times,
|
|
* 2 = 24 FS bit times, 3 = 32 FS bit times.
|
|
*
|
|
* This field shall be 0 if the device is not a high-spped hub.
|
|
*/
|
|
think_time = hub->tt.think_time;
|
|
if (think_time != 0)
|
|
think_time = (think_time / 666) - 1;
|
|
if (udev->speed == USB_SPEED_HIGH)
|
|
slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
|
|
slot_ctx->dev_state = 0;
|
|
|
|
return xhci_configure_endpoints(udev, false);
|
|
}
|
|
|
|
static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
|
|
{
|
|
/*
|
|
* xHCD allocates one segment which includes 64 TRBs for each endpoint
|
|
* and the last TRB in this segment is configured as a link TRB to form
|
|
* a TRB ring. Each TRB can transfer up to 64K bytes, however data
|
|
* buffers referenced by transfer TRBs shall not span 64KB boundaries.
|
|
* Hence the maximum number of TRBs we can use in one transfer is 62.
|
|
*/
|
|
*size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
|
|
struct xhci_hcor *hcor)
|
|
{
|
|
struct xhci_ctrl *ctrl = dev_get_priv(dev);
|
|
struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
|
|
int ret;
|
|
|
|
debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
|
|
ctrl, hccr, hcor);
|
|
|
|
ctrl->dev = dev;
|
|
|
|
ret = xhci_reset_hw(ctrl);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/*
|
|
* XHCI needs to issue a Address device command to setup
|
|
* proper device context structures, before it can interact
|
|
* with the device. So a get_descriptor will fail before any
|
|
* of that is done for XHCI unlike EHCI.
|
|
*/
|
|
priv->desc_before_addr = false;
|
|
|
|
ret = xhci_reset(hcor);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ctrl->hccr = hccr;
|
|
ctrl->hcor = hcor;
|
|
ret = xhci_lowlevel_init(ctrl);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
free(ctrl);
|
|
debug("%s: failed, ret=%d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
int xhci_deregister(struct udevice *dev)
|
|
{
|
|
struct xhci_ctrl *ctrl = dev_get_priv(dev);
|
|
|
|
xhci_lowlevel_stop(ctrl);
|
|
xhci_cleanup(ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct dm_usb_ops xhci_usb_ops = {
|
|
.control = xhci_submit_control_msg,
|
|
.bulk = xhci_submit_bulk_msg,
|
|
.interrupt = xhci_submit_int_msg,
|
|
.alloc_device = xhci_alloc_device,
|
|
.update_hub_device = xhci_update_hub_device,
|
|
.get_max_xfer_size = xhci_get_max_xfer_size,
|
|
};
|
|
|
|
#endif
|