u-boot/board/trab/cmd_trab.c
kevin.morfitt@fearnside-systems.co.uk eb0ae7f549 Clean-up of s3c24x0 drivers excluding nand driver
This patch re-formats the arm920t s3c24x0 driver files, excluding the nand
driver, in preparation for changes to add support for the Embest SBC2440-II Board.

The changes are as follows:
- re-indent the code using Lindent
- make sure register layouts are defined using a C struct
- replace the upper-case typedef'ed C struct names with lower case
  non-typedef'ed ones
- make sure registers are accessed using the proper accessor functions
- run checkpatch.pl and fix any error reports

It assumes the following patch has been applied first:
- [U-Boot][PATCH-ARM] CONFIG_SYS_HZ fix for ARM902T S3C24X0 Boards, 05/09/2009
- patches 1/4 and 2/4 of this series

Tested on an Embest SBC2440-II Board with local u-boot patches as I don't have
any s3c2400 or s3c2410 boards but need this patch applying before I can submit
patches for the SBC2440-II Board. Also, temporarily modified sbc2410x, smdk2400,
smdk2410 and trab configs to use the mtd nand driver (which isn't used by any
board at the moment), ran MAKEALL for all ARM9 targets and no new warnings or
errors were found.

Signed-off-by: Kevin Morfitt <kevin.morfitt@fearnside-systems.co.uk>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
2009-10-13 21:13:56 -05:00

896 lines
20 KiB
C

/*
* (C) Copyright 2003
* Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#undef DEBUG
#include <common.h>
#include <command.h>
#include <s3c2400.h>
#include <rtc.h>
/*
* TRAB board specific commands. Especially commands for burn-in and function
* test.
*/
#if defined(CONFIG_CMD_BSP)
/* limits for valid range of VCC5V in mV */
#define VCC5V_MIN 4500
#define VCC5V_MAX 5500
/*
* Test strings for EEPROM test. Length of string 2 must not exceed length of
* string 1. Otherwise a buffer overrun could occur!
*/
#define EEPROM_TEST_STRING_1 "0987654321 :tset a si siht"
#define EEPROM_TEST_STRING_2 "this is a test: 1234567890"
/*
* min/max limits for valid contact temperature during burn in test (in
* degree Centigrade * 100)
*/
#define MIN_CONTACT_TEMP -1000
#define MAX_CONTACT_TEMP +9000
/* blinking frequency of status LED */
#define LED_BLINK_FREQ 5
/* delay time between burn in cycles in seconds */
#ifndef BURN_IN_CYCLE_DELAY /* if not defined in include/configs/trab.h */
#define BURN_IN_CYCLE_DELAY 5
#endif
/* physical SRAM parameters */
#define SRAM_ADDR 0x02000000 /* GCS1 */
#define SRAM_SIZE 0x40000 /* 256 kByte */
/* CPLD-Register for controlling TRAB hardware functions */
#define CPLD_BUTTONS ((volatile unsigned long *)0x04020000)
#define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000)
#define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000)
#define CPLD_RS485_RE ((volatile unsigned long *)0x04028000)
/* I2C EEPROM device address */
#define I2C_EEPROM_DEV_ADDR 0x54
/* EEPROM address map */
#define EE_ADDR_TEST 192
#define EE_ADDR_MAX_CYCLES 256
#define EE_ADDR_STATUS 258
#define EE_ADDR_PASS_CYCLES 259
#define EE_ADDR_FIRST_ERROR_CYCLE 261
#define EE_ADDR_FIRST_ERROR_NUM 263
#define EE_ADDR_FIRST_ERROR_NAME 264
#define EE_ADDR_ACT_CYCLE 280
/* Bit definitions for ADCCON */
#define ADC_ENABLE_START 0x1
#define ADC_READ_START 0x2
#define ADC_STDBM 0x4
#define ADC_INP_AIN0 (0x0 << 3)
#define ADC_INP_AIN1 (0x1 << 3)
#define ADC_INP_AIN2 (0x2 << 3)
#define ADC_INP_AIN3 (0x3 << 3)
#define ADC_INP_AIN4 (0x4 << 3)
#define ADC_INP_AIN5 (0x5 << 3)
#define ADC_INP_AIN6 (0x6 << 3)
#define ADC_INP_AIN7 (0x7 << 3)
#define ADC_PRSCEN 0x4000
#define ADC_ECFLG 0x800
/* misc */
/* externals */
extern int memory_post_tests (unsigned long start, unsigned long size);
extern int i2c_write (uchar, uint, int , uchar* , int);
extern int i2c_read (uchar, uint, int , uchar* , int);
extern void tsc2000_reg_init (void);
extern s32 tsc2000_contact_temp (void);
extern void tsc2000_spi_init(void);
/* function declarations */
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
int i2c_read_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
/* helper functions */
static void adc_init (void);
static int adc_read (unsigned int channel);
static int read_dip (void);
static int read_vcc5v (void);
static int test_dip (void);
static int test_vcc5v (void);
static int test_rotary_switch (void);
static int test_sram (void);
static int test_eeprom (void);
static int test_contact_temp (void);
static void led_set (unsigned int);
static void led_blink (void);
static void led_init (void);
static void sdelay (unsigned long seconds); /* delay in seconds */
static int dummy (void);
static int read_max_cycles(void);
static void test_function_table_init (void);
static void global_vars_init (void);
static int global_vars_write_to_eeprom (void);
/* globals */
u16 max_cycles;
u8 status;
u16 pass_cycles;
u16 first_error_cycle;
u8 first_error_num;
char first_error_name[16];
u16 act_cycle;
typedef struct test_function_s {
char *name;
int (*pf)(void);
} test_function_t;
/* max number of Burn In Functions */
#define BIF_MAX 6
/* table with burn in functions */
test_function_t test_function[BIF_MAX];
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i;
int cycle_status;
if (argc > 1) {
cmd_usage(cmdtp);
return 1;
}
led_init ();
global_vars_init ();
test_function_table_init ();
tsc2000_spi_init ();
if (global_vars_write_to_eeprom () != 0) {
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
return (1);
}
if (read_max_cycles () != 0) {
printf ("%s: error reading max_cycles from eeprom\n",
__FUNCTION__);
return (1);
}
if (max_cycles == 0) {
printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__);
return (1);
}
status = 0;
for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) {
cycle_status = 0;
/*
* avoid timestamp overflow problem after about 68 minutes of
* udelay() time.
*/
reset_timer_masked ();
for (i = 0; i < BIF_MAX; i++) {
/* call test function */
if ((*test_function[i].pf)() != 0) {
printf ("error in %s test\n",
test_function[i].name);
/* is it the first error? */
if (status == 0) {
status = 1;
first_error_cycle = act_cycle;
/* do not use error_num 0 */
first_error_num = i+1;
strncpy (first_error_name,
test_function[i].name,
sizeof (first_error_name));
led_set (0);
}
cycle_status = 1;
}
}
/* were all tests of actual cycle OK? */
if (cycle_status == 0)
pass_cycles++;
/* set status LED if no error is occoured since yet */
if (status == 0)
led_set (1);
printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle);
/* pause between cycles */
sdelay (BURN_IN_CYCLE_DELAY);
}
if (global_vars_write_to_eeprom () != 0) {
led_set (0);
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
status = 1;
}
if (status == 0) {
led_blink (); /* endless loop!! */
return (0);
} else {
led_set (0);
return (1);
}
}
U_BOOT_CMD(
burn_in, 1, 1, do_burn_in,
"start burn-in test application on TRAB",
"\n"
" - start burn-in test application\n"
" The burn-in test could took a while to finish!\n"
" The content of the onboard EEPROM is modified!"
);
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i, dip;
if (argc > 1) {
cmd_usage(cmdtp);
return 1;
}
if ((dip = read_dip ()) == -1) {
return 1;
}
for (i = 0; i < 4; i++) {
if ((dip & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
U_BOOT_CMD(
dip, 1, 1, do_dip,
"read dip switch on TRAB",
"\n"
" - read state of dip switch (S1) on TRAB board\n"
" read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\""
);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int vcc5v;
if (argc > 1) {
cmd_usage(cmdtp);
return 1;
}
if ((vcc5v = read_vcc5v ()) == -1) {
return (1);
}
printf ("%d", (vcc5v / 1000));
printf (".%d", (vcc5v % 1000) / 100);
printf ("%d V\n", (vcc5v % 100) / 10) ;
return 0;
}
U_BOOT_CMD(
vcc5v, 1, 1, do_vcc5v,
"read VCC5V on TRAB",
"\n"
" - read actual value of voltage VCC5V"
);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int contact_temp;
if (argc > 1) {
cmd_usage(cmdtp);
return 1;
}
tsc2000_spi_init ();
contact_temp = tsc2000_contact_temp();
printf ("%d degree C * 100\n", contact_temp) ;
return 0;
}
U_BOOT_CMD(
c_temp, 1, 1, do_contact_temp,
"read contact temperature on TRAB",
""
" - reads the onboard temperature (=contact temperature)\n"
);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
if (argc > 1) {
cmd_usage(cmdtp);
return 1;
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
1, (unsigned char*)first_error_name,
sizeof (first_error_name))) {
return (1);
}
if (read_max_cycles () != 0) {
return (1);
}
printf ("max_cycles = %d\n", max_cycles);
printf ("status = %d\n", status);
printf ("pass_cycles = %d\n", pass_cycles);
printf ("first_error_cycle = %d\n", first_error_cycle);
printf ("first_error_num = %d\n", first_error_num);
printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name),
first_error_name);
return 0;
}
U_BOOT_CMD(
bis, 1, 1, do_burn_in_status,
"print burn in status on TRAB",
"\n"
" - prints the status variables of the last burn in test\n"
" stored in the onboard EEPROM on TRAB board"
);
static int read_dip (void)
{
unsigned int result = 0;
int adc_val;
int i;
/***********************************************************
DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3):
SW1 - AIN4
SW2 - AIN5
SW3 - AIN6
SW4 - AIN7
"On" DIP switch position short-circuits the voltage from
the input channel (i.e. '0' conversion result means "on").
*************************************************************/
for (i = 7; i > 3; i--) {
if ((adc_val = adc_read (i)) == -1) {
printf ("%s: Channel %d could not be read\n",
__FUNCTION__, i);
return (-1);
}
/*
* Input voltage (switch open) is 1.8 V.
* (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736
* Set trigger at halve that value.
*/
if (adc_val < 368)
result |= (1 << (i-4));
}
return (result);
}
static int read_vcc5v (void)
{
s32 result;
/* VCC5V is connected to channel 2 */
if ((result = adc_read (2)) == -1) {
printf ("%s: VCC5V could not be read\n", __FUNCTION__);
return (-1);
}
/*
* Calculate voltage value. Split in two parts because there is no
* floating point support. VCC5V is connected over an resistor divider:
* VCC5V=ADCval*2,5V/1023*(10K+30K)/10K.
*/
result = result * 10 * 1000 / 1023; /* result in mV */
return (result);
}
static int test_dip (void)
{
static int first_run = 1;
static int first_dip;
if (first_run) {
if ((first_dip = read_dip ()) == -1) {
return (1);
}
first_run = 0;
debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip);
}
if (first_dip != read_dip ()) {
return (1);
} else {
return (0);
}
}
static int test_vcc5v (void)
{
int vcc5v;
if ((vcc5v = read_vcc5v ()) == -1) {
return (1);
}
if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) {
printf ("%s: vcc5v[V/100]=%d\n", __FUNCTION__, vcc5v);
return (1);
} else {
return (0);
}
}
static int test_rotary_switch (void)
{
static int first_run = 1;
static int first_rs;
if (first_run) {
/*
* clear bits in CPLD, because they have random values after
* power-up or reset.
*/
*CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17);
first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7);
first_run = 0;
debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs);
}
if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) {
return (1);
} else {
return (0);
}
}
static int test_sram (void)
{
return (memory_post_tests (SRAM_ADDR, SRAM_SIZE));
}
static int test_eeprom (void)
{
unsigned char temp[sizeof (EEPROM_TEST_STRING_1)];
int result = 0;
/* write test string 1, read back and verify */
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
(unsigned char*)EEPROM_TEST_STRING_1,
sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
if (strcmp ((char *)temp, EEPROM_TEST_STRING_1) != 0) {
result = 1;
printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp);
}
/* write test string 2, read back and verify */
if (result == 0) {
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
(unsigned char*)EEPROM_TEST_STRING_2,
sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
if (strcmp ((char *)temp, EEPROM_TEST_STRING_2) != 0) {
result = 1;
printf ("%s: error; read str = \"%s\"\n",
__FUNCTION__, temp);
}
}
return (result);
}
static int test_contact_temp (void)
{
int contact_temp;
contact_temp = tsc2000_contact_temp ();
if ((contact_temp < MIN_CONTACT_TEMP)
|| (contact_temp > MAX_CONTACT_TEMP))
return (1);
else
return (0);
}
int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_write (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not write to i2c device %d"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
#if 0
printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
"%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i,
alen, buffer, i, buffer+i, buffer+i);
#endif
udelay (30000);
}
return (0);
}
int i2c_read_multiple ( uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_read (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not read from i2c device %#x"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
}
return (0);
}
static int adc_read (unsigned int channel)
{
int j = 1000; /* timeout value for wait loop in us */
int result;
struct s3c2400_adc *padc;
padc = s3c2400_get_base_adc();
channel &= 0x7;
adc_init ();
padc->ADCCON &= ~ADC_STDBM; /* select normal mode */
padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */
padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START);
while (j--) {
if ((padc->ADCCON & ADC_ENABLE_START) == 0)
break;
udelay (1);
}
if (j == 0) {
printf("%s: ADC timeout\n", __FUNCTION__);
padc->ADCCON |= ADC_STDBM; /* select standby mode */
return -1;
}
result = padc->ADCDAT & 0x3FF;
padc->ADCCON |= ADC_STDBM; /* select standby mode */
debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__,
(padc->ADCCON >> 3) & 0x7, result);
/*
* Wait for ADC to be ready for next conversion. This delay value was
* estimated, because the datasheet does not specify a value.
*/
udelay (1000);
return (result);
}
static void adc_init (void)
{
struct s3c2400_adc *padc;
padc = s3c2400_get_base_adc();
padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */
padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */
/*
* Wait some time to avoid problem with very first call of
* adc_read(). Without this delay, sometimes the first read
* adc value is 0. Perhaps because the adjustment of prescaler
* takes some clock cycles?
*/
udelay (1000);
return;
}
static void led_set (unsigned int state)
{
struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio();
led_init ();
switch (state) {
case 0: /* turn LED off */
gpio->PADAT |= (1 << 12);
break;
case 1: /* turn LED on */
gpio->PADAT &= ~(1 << 12);
break;
default:
break;
}
}
static void led_blink (void)
{
led_init ();
/* blink LED. This function does not return! */
while (1) {
reset_timer_masked ();
led_set (1);
udelay (1000000 / LED_BLINK_FREQ / 2);
led_set (0);
udelay (1000000 / LED_BLINK_FREQ / 2);
}
}
static void led_init (void)
{
struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio();
/* configure GPA12 as output and set to High -> LED off */
gpio->PACON &= ~(1 << 12);
gpio->PADAT |= (1 << 12);
}
static void sdelay (unsigned long seconds)
{
unsigned long i;
for (i = 0; i < seconds; i++) {
udelay (1000000);
}
}
static int global_vars_write_to_eeprom (void)
{
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
1, (unsigned char*) first_error_name,
sizeof(first_error_name))) {
return (1);
}
return (0);
}
static void global_vars_init (void)
{
status = 1; /* error */
pass_cycles = 0;
first_error_cycle = 0;
first_error_num = 0;
first_error_name[0] = '\0';
act_cycle = 0;
max_cycles = 0;
}
static void test_function_table_init (void)
{
int i;
for (i = 0; i < BIF_MAX; i++)
test_function[i].pf = dummy;
/*
* the length of "name" must not exceed 16, including the '\0'
* termination. See also the EEPROM address map.
*/
test_function[0].pf = test_dip;
test_function[0].name = "dip";
test_function[1].pf = test_vcc5v;
test_function[1].name = "vcc5v";
test_function[2].pf = test_rotary_switch;
test_function[2].name = "rotary_switch";
test_function[3].pf = test_sram;
test_function[3].name = "sram";
test_function[4].pf = test_eeprom;
test_function[4].name = "eeprom";
test_function[5].pf = test_contact_temp;
test_function[5].name = "contact_temp";
}
static int read_max_cycles (void)
{
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1,
(unsigned char *) &max_cycles, 2) != 0) {
return (1);
}
return (0);
}
static int dummy(void)
{
return (0);
}
int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int contact_temp;
int delay = 0;
#if defined(CONFIG_CMD_DATE)
struct rtc_time tm;
#endif
if (argc > 2) {
cmd_usage(cmdtp);
return 1;
}
if (argc > 1) {
delay = simple_strtoul(argv[1], NULL, 10);
}
tsc2000_spi_init ();
while (1) {
#if defined(CONFIG_CMD_DATE)
rtc_get (&tm);
printf ("%4d-%02d-%02d %2d:%02d:%02d - ",
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
#endif
contact_temp = tsc2000_contact_temp();
printf ("%d\n", contact_temp) ;
if (delay != 0)
/*
* reset timer to avoid timestamp overflow problem
* after about 68 minutes of udelay() time.
*/
reset_timer_masked ();
sdelay (delay);
}
return 0;
}
U_BOOT_CMD(
tlog, 2, 1, do_temp_log,
"log contact temperature [1/100 C] to console (endlessly)",
"delay\n"
" - contact temperature [1/100 C] is printed endlessly to console\n"
" <delay> specifies the seconds to wait between two measurements\n"
" For each measurment a timestamp is printeted"
);
#endif