u-boot/arch/mips/mach-octeon/cvmx-helper-board.c
Aaron Williams c006675f95 mips: octeon: Add cvmx-helper-board.c
Import cvmx-helper-board.c from 2013 U-Boot. It will be used by the later
added drivers to support networking on the MIPS Octeon II / III
platforms.

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
2022-05-04 03:38:21 +02:00

1824 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2022 Marvell International Ltd.
*
* Helper functions to abstract board specific data about
* network ports from the rest of the cvmx-helper files.
*/
#include <i2c.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <linux/delay.h>
#include <mach/cvmx-regs.h>
#include <mach/cvmx-csr.h>
#include <mach/cvmx-bootmem.h>
#include <mach/octeon-model.h>
#include <mach/octeon_fdt.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-board.h>
#include <mach/cvmx-helper-cfg.h>
#include <mach/cvmx-helper-fdt.h>
#include <mach/cvmx-helper-gpio.h>
#include <mach/cvmx-smix-defs.h>
#include <mach/cvmx-mdio.h>
#include <mach/cvmx-qlm.h>
DECLARE_GLOBAL_DATA_PTR;
static bool sfp_parsed;
static int __cvmx_helper_78xx_parse_phy(struct cvmx_phy_info *phy_info,
int ipd_port);
static int __get_phy_info_from_dt(cvmx_phy_info_t *phy_info, int ipd_port);
/**
* Writes to a Microsemi VSC7224 16-bit register
*
* @param[in] i2c_bus i2c bus data structure (must be enabled)
* @param addr Address of VSC7224 on the i2c bus
* @param reg 8-bit register number to write to
* @param val 16-bit value to write
*
* @return 0 for success
*/
static int cvmx_write_vsc7224_reg(const struct cvmx_fdt_i2c_bus_info *i2c_bus,
u8 addr, u8 reg, u16 val)
{
struct udevice *dev;
u8 buffer[2];
int ret;
ret = i2c_get_chip(i2c_bus->i2c_bus, addr, 1, &dev);
if (ret) {
debug("Cannot find I2C device: %d\n", ret);
return -1;
}
ret = dm_i2c_write(dev, reg, buffer, 2);
if (ret) {
debug("Cannot write I2C device: %d\n", ret);
return -1;
}
return 0;
}
/**
* Writes to a Microsemi VSC7224 16-bit register
*
* @param[in] i2c_bus i2c bus data structure (must be enabled)
* @param addr Address of VSC7224 on the i2c bus
* @param reg 8-bit register number to write to
*
* @return 16-bit value or error if < 0
*/
static int cvmx_read_vsc7224_reg(const struct cvmx_fdt_i2c_bus_info *i2c_bus,
u8 addr, u8 reg)
{
struct udevice *dev;
u8 buffer[2];
int ret;
ret = i2c_get_chip(i2c_bus->i2c_bus, addr, 1, &dev);
if (ret) {
debug("Cannot find I2C device: %d\n", ret);
return -1;
}
ret = dm_i2c_read(dev, reg, buffer, 2);
if (ret) {
debug("Cannot read I2C device: %d\n", ret);
return -1;
}
return (buffer[0] << 8) | buffer[1];
}
/**
* Function called whenever mod_abs/mod_prs has changed for Microsemi VSC7224
*
* @param sfp pointer to SFP data structure
* @param val 1 if absent, 0 if present, otherwise not set
* @param data user-defined data
*
* @return 0 for success, -1 on error
*/
int cvmx_sfp_vsc7224_mod_abs_changed(struct cvmx_fdt_sfp_info *sfp, int val,
void *data)
{
int err;
struct cvmx_sfp_mod_info *mod_info;
int length;
struct cvmx_vsc7224 *vsc7224;
struct cvmx_vsc7224_chan *vsc7224_chan;
struct cvmx_vsc7224_tap *taps, *match = NULL;
int i;
debug("%s(%s, %d, %p): Module %s\n", __func__, sfp->name, val, data,
val ? "absent" : "present");
if (val)
return 0;
/* We're here if we detect that the module is now present */
err = cvmx_sfp_read_i2c_eeprom(sfp);
if (err) {
debug("%s: Error reading the SFP module eeprom for %s\n",
__func__, sfp->name);
return err;
}
mod_info = &sfp->sfp_info;
if (!mod_info->valid || !sfp->valid) {
debug("%s: Module data is invalid\n", __func__);
return -1;
}
vsc7224_chan = sfp->vsc7224_chan;
while (vsc7224_chan) {
/* We don't do any rx tuning */
if (!vsc7224_chan->is_tx) {
vsc7224_chan = vsc7224_chan->next;
continue;
}
/* Walk through all the channels */
taps = vsc7224_chan->taps;
if (mod_info->limiting)
length = 0;
else
length = mod_info->max_copper_cable_len;
debug("%s: limiting: %d, length: %d\n", __func__,
mod_info->limiting, length);
/* Find a matching length in the taps table */
for (i = 0; i < vsc7224_chan->num_taps; i++) {
if (length >= taps->len)
match = taps;
taps++;
}
if (!match) {
debug("%s(%s, %d, %p): Error: no matching tap for length %d\n",
__func__, sfp->name, val, data, length);
return -1;
}
debug("%s(%s): Applying %cx taps to vsc7224 %s:%d for cable length %d+\n",
__func__, sfp->name, vsc7224_chan->is_tx ? 't' : 'r',
vsc7224_chan->vsc7224->name, vsc7224_chan->lane,
match->len);
/* Program the taps */
vsc7224 = vsc7224_chan->vsc7224;
cvmx_write_vsc7224_reg(vsc7224->i2c_bus, vsc7224->i2c_addr,
0x7f, vsc7224_chan->lane);
if (!vsc7224_chan->maintap_disable)
cvmx_write_vsc7224_reg(vsc7224->i2c_bus,
vsc7224->i2c_addr, 0x99,
match->main_tap);
if (!vsc7224_chan->pretap_disable)
cvmx_write_vsc7224_reg(vsc7224->i2c_bus,
vsc7224->i2c_addr, 0x9a,
match->pre_tap);
if (!vsc7224_chan->posttap_disable)
cvmx_write_vsc7224_reg(vsc7224->i2c_bus,
vsc7224->i2c_addr, 0x9b,
match->post_tap);
/* Re-use val and disable taps if needed */
if (vsc7224_chan->maintap_disable ||
vsc7224_chan->pretap_disable ||
vsc7224_chan->posttap_disable) {
val = cvmx_read_vsc7224_reg(vsc7224->i2c_bus,
vsc7224->i2c_addr, 0x97);
if (vsc7224_chan->maintap_disable)
val |= 0x800;
if (vsc7224_chan->pretap_disable)
val |= 0x1000;
if (vsc7224_chan->posttap_disable)
val |= 0x400;
cvmx_write_vsc7224_reg(vsc7224->i2c_bus,
vsc7224->i2c_addr, 0x97, val);
}
vsc7224_chan = vsc7224_chan->next;
}
return err;
}
/**
* Update the mod_abs and error LED
*
* @param ipd_port ipd port number
* @param link link information
*/
static void __cvmx_helper_update_sfp(int ipd_port,
struct cvmx_fdt_sfp_info *sfp_info,
cvmx_helper_link_info_t link)
{
debug("%s(%d): checking mod_abs\n", __func__, ipd_port);
cvmx_sfp_check_mod_abs(sfp_info, sfp_info->mod_abs_data);
}
static void cvmx_sfp_update_link(struct cvmx_fdt_sfp_info *sfp,
cvmx_helper_link_info_t link)
{
while (sfp) {
debug("%s(%s): checking mod_abs\n", __func__, sfp->name);
if (link.s.link_up && sfp->last_mod_abs)
cvmx_sfp_check_mod_abs(sfp, sfp->mod_abs_data);
sfp = sfp->next_iface_sfp;
}
}
/**
* @INTERNAL
* This function is used ethernet ports link speed. This functions uses the
* device tree information to determine the phy address and type of PHY.
* The only supproted PHYs are Marvell and Broadcom.
*
* @param ipd_port IPD input port associated with the port we want to get link
* status for.
*
* @return The ports link status. If the link isn't fully resolved, this must
* return zero.
*/
cvmx_helper_link_info_t __cvmx_helper_board_link_get_from_dt(int ipd_port)
{
cvmx_helper_link_info_t result;
cvmx_phy_info_t *phy_info = NULL;
cvmx_phy_info_t local_phy_info;
int xiface = 0, index = 0;
bool use_inband = false;
struct cvmx_fdt_sfp_info *sfp_info;
const void *fdt_addr = CASTPTR(const void *, gd->fdt_blob);
result.u64 = 0;
if (ipd_port >= 0) {
int mode;
xiface = cvmx_helper_get_interface_num(ipd_port);
index = cvmx_helper_get_interface_index_num(ipd_port);
mode = cvmx_helper_interface_get_mode(xiface);
if (!cvmx_helper_get_port_autonegotiation(xiface, index)) {
result.s.link_up = 1;
result.s.full_duplex = 1;
switch (mode) {
case CVMX_HELPER_INTERFACE_MODE_RGMII:
case CVMX_HELPER_INTERFACE_MODE_GMII:
case CVMX_HELPER_INTERFACE_MODE_SGMII:
case CVMX_HELPER_INTERFACE_MODE_QSGMII:
case CVMX_HELPER_INTERFACE_MODE_AGL:
case CVMX_HELPER_INTERFACE_MODE_SPI:
if (OCTEON_IS_MODEL(OCTEON_CN70XX)) {
struct cvmx_xiface xi =
cvmx_helper_xiface_to_node_interface(
xiface);
u64 gbaud = cvmx_qlm_get_gbaud_mhz(0);
result.s.speed = gbaud * 8 / 10;
if (cvmx_qlm_get_dlm_mode(
0, xi.interface) ==
CVMX_QLM_MODE_SGMII)
result.s.speed >>= 1;
else
result.s.speed >>= 2;
} else {
result.s.speed = 1000;
}
break;
case CVMX_HELPER_INTERFACE_MODE_RXAUI:
case CVMX_HELPER_INTERFACE_MODE_XAUI:
case CVMX_HELPER_INTERFACE_MODE_10G_KR:
case CVMX_HELPER_INTERFACE_MODE_XFI:
result.s.speed = 10000;
break;
case CVMX_HELPER_INTERFACE_MODE_XLAUI:
case CVMX_HELPER_INTERFACE_MODE_40G_KR4:
result.s.speed = 40000;
break;
default:
break;
}
sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index);
/* Initialize the SFP info if it hasn't already been
* done.
*/
if (!sfp_info && !sfp_parsed) {
cvmx_sfp_parse_device_tree(fdt_addr);
sfp_parsed = true;
cvmx_sfp_read_all_modules();
sfp_info = cvmx_helper_cfg_get_sfp_info(xiface,
index);
}
/* If the link is down or the link is up but we still
* register the module as being absent, re-check
* mod_abs.
*/
cvmx_sfp_update_link(sfp_info, result);
cvmx_helper_update_link_led(xiface, index, result);
return result;
}
phy_info = cvmx_helper_get_port_phy_info(xiface, index);
if (!phy_info) {
debug("%s: phy info not saved in config, allocating for 0x%x:%d\n",
__func__, xiface, index);
phy_info = (cvmx_phy_info_t *)cvmx_bootmem_alloc(
sizeof(*phy_info), 0);
if (!phy_info) {
debug("%s: Out of memory\n", __func__);
return result;
}
memset(phy_info, 0, sizeof(*phy_info));
phy_info->phy_addr = -1;
debug("%s: Setting phy info for 0x%x:%d to %p\n",
__func__, xiface, index, phy_info);
cvmx_helper_set_port_phy_info(xiface, index, phy_info);
}
} else {
/* For management ports we don't store the PHY information
* so we use a local copy instead.
*/
phy_info = &local_phy_info;
memset(phy_info, 0, sizeof(*phy_info));
phy_info->phy_addr = -1;
}
if (phy_info->phy_addr == -1) {
if (octeon_has_feature(OCTEON_FEATURE_BGX)) {
if (__cvmx_helper_78xx_parse_phy(phy_info, ipd_port)) {
phy_info->phy_addr = -1;
use_inband = true;
}
} else if (__get_phy_info_from_dt(phy_info, ipd_port) < 0) {
phy_info->phy_addr = -1;
use_inband = true;
}
}
/* If we can't get the PHY info from the device tree then try
* the inband state.
*/
if (use_inband) {
result.s.full_duplex = 1;
result.s.link_up = 1;
result.s.speed = 1000;
return result;
}
if (phy_info->phy_addr < 0)
return result;
if (phy_info->link_function)
result = phy_info->link_function(phy_info);
else
result = cvmx_helper_link_get(ipd_port);
sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index);
while (sfp_info) {
/* If the link is down or the link is up but we still register
* the module as being absent, re-check mod_abs.
*/
if (!result.s.link_up ||
(result.s.link_up && sfp_info->last_mod_abs))
__cvmx_helper_update_sfp(ipd_port, sfp_info, result);
sfp_info = sfp_info->next_iface_sfp;
}
return result;
}
cvmx_helper_link_info_t __cvmx_helper_board_link_get(int ipd_port)
{
cvmx_helper_link_info_t result;
/* Unless we fix it later, all links are defaulted to down */
result.u64 = 0;
return __cvmx_helper_board_link_get_from_dt(ipd_port);
}
void cvmx_helper_update_link_led(int xiface, int index,
cvmx_helper_link_info_t result)
{
}
void cvmx_helper_leds_show_error(struct cvmx_phy_gpio_leds *leds, bool error)
{
}
int __cvmx_helper_board_interface_probe(int interface, int supported_ports)
{
return supported_ports;
}
/**
* Returns the Ethernet node offset in the device tree
*
* @param fdt_addr - pointer to flat device tree in memory
* @param aliases - offset of alias in device tree
* @param ipd_port - ipd port number to look up
*
* @returns offset of Ethernet node if >= 0, error if -1
*/
int __pip_eth_node(const void *fdt_addr, int aliases, int ipd_port)
{
char name_buffer[20];
const char *pip_path;
int pip, iface, eth;
int interface_num = cvmx_helper_get_interface_num(ipd_port);
int interface_index = cvmx_helper_get_interface_index_num(ipd_port);
cvmx_helper_interface_mode_t interface_mode =
cvmx_helper_interface_get_mode(interface_num);
/* The following are not found in the device tree */
switch (interface_mode) {
case CVMX_HELPER_INTERFACE_MODE_ILK:
case CVMX_HELPER_INTERFACE_MODE_LOOP:
case CVMX_HELPER_INTERFACE_MODE_SRIO:
debug("ERROR: No node expected for interface: %d, port: %d, mode: %s\n",
interface_index, ipd_port,
cvmx_helper_interface_mode_to_string(interface_mode));
return -1;
default:
break;
}
pip_path = (const char *)fdt_getprop(fdt_addr, aliases, "pip", NULL);
if (!pip_path) {
debug("ERROR: pip path not found in device tree\n");
return -1;
}
pip = fdt_path_offset(fdt_addr, pip_path);
debug("ipdd_port=%d pip_path=%s pip=%d ", ipd_port, pip_path, pip);
if (pip < 0) {
debug("ERROR: pip not found in device tree\n");
return -1;
}
snprintf(name_buffer, sizeof(name_buffer), "interface@%d",
interface_num);
iface = fdt_subnode_offset(fdt_addr, pip, name_buffer);
debug("iface=%d ", iface);
if (iface < 0) {
debug("ERROR : pip intf %d not found in device tree\n",
interface_num);
return -1;
}
snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x",
interface_index);
eth = fdt_subnode_offset(fdt_addr, iface, name_buffer);
debug("eth=%d\n", eth);
if (eth < 0) {
debug("ERROR : pip interface@%d ethernet@%d not found in device tree\n",
interface_num, interface_index);
return -1;
}
return eth;
}
int __mix_eth_node(const void *fdt_addr, int aliases, int interface_index)
{
char name_buffer[20];
const char *mix_path;
int mix;
snprintf(name_buffer, sizeof(name_buffer), "mix%d", interface_index);
mix_path =
(const char *)fdt_getprop(fdt_addr, aliases, name_buffer, NULL);
if (!mix_path) {
debug("ERROR: mix%d path not found in device tree\n",
interface_index);
}
mix = fdt_path_offset(fdt_addr, mix_path);
if (mix < 0) {
debug("ERROR: %s not found in device tree\n", mix_path);
return -1;
}
return mix;
}
static int __mdiobus_addr_to_unit(u32 addr)
{
int unit = (addr >> 7) & 3;
if (!OCTEON_IS_MODEL(OCTEON_CN68XX) && !OCTEON_IS_MODEL(OCTEON_CN78XX))
unit >>= 1;
return unit;
}
/**
* Parse the muxed MDIO interface information from the device tree
*
* @param phy_info - pointer to phy info data structure to update
* @param mdio_offset - offset of MDIO bus
* @param mux_offset - offset of MUX, parent of mdio_offset
*
* @return 0 for success or -1
*/
static int __get_muxed_mdio_info_from_dt(cvmx_phy_info_t *phy_info,
int mdio_offset, int mux_offset)
{
const void *fdt_addr = CASTPTR(const void *, gd->fdt_blob);
int phandle;
int smi_offset;
int gpio_offset;
u64 smi_addr = 0;
int len;
u32 *pgpio_handle;
int gpio_count = 0;
u32 *prop_val;
int offset;
const char *prop_name;
debug("%s(%p, 0x%x, 0x%x)\n", __func__, phy_info, mdio_offset,
mux_offset);
/* Get register value to put onto the GPIO lines to select */
phy_info->gpio_value =
cvmx_fdt_get_int(fdt_addr, mdio_offset, "reg", -1);
if (phy_info->gpio_value < 0) {
debug("Could not get register value for muxed MDIO bus from DT\n");
return -1;
}
smi_offset = cvmx_fdt_lookup_phandle(fdt_addr, mux_offset,
"mdio-parent-bus");
if (smi_offset < 0) {
debug("Invalid SMI offset for muxed MDIO interface in device tree\n");
return -1;
}
smi_addr = cvmx_fdt_get_uint64(fdt_addr, smi_offset, "reg", 0);
/* Convert SMI address to a MDIO interface */
switch (smi_addr) {
case 0x1180000001800:
case 0x1180000003800: /* 68XX address */
phy_info->mdio_unit = 0;
break;
case 0x1180000001900:
case 0x1180000003880:
phy_info->mdio_unit = 1;
break;
case 0x1180000003900:
phy_info->mdio_unit = 2;
break;
case 0x1180000003980:
phy_info->mdio_unit = 3;
break;
default:
phy_info->mdio_unit = 1;
break;
}
/* Find the GPIO MUX controller */
pgpio_handle =
(u32 *)fdt_getprop(fdt_addr, mux_offset, "gpios", &len);
if (!pgpio_handle || len < 12 || (len % 12) != 0 ||
len > CVMX_PHY_MUX_MAX_GPIO * 12) {
debug("Invalid GPIO for muxed MDIO controller in DT\n");
return -1;
}
for (gpio_count = 0; gpio_count < len / 12; gpio_count++) {
phandle = fdt32_to_cpu(pgpio_handle[gpio_count * 3]);
phy_info->gpio[gpio_count] =
fdt32_to_cpu(pgpio_handle[gpio_count * 3 + 1]);
gpio_offset = fdt_node_offset_by_phandle(fdt_addr, phandle);
if (gpio_offset < 0) {
debug("Cannot access parent GPIO node in DT\n");
return -1;
}
if (!fdt_node_check_compatible(fdt_addr, gpio_offset,
"cavium,octeon-3860-gpio")) {
phy_info->gpio_type[gpio_count] = GPIO_OCTEON;
} else if (!fdt_node_check_compatible(fdt_addr, gpio_offset,
"nxp,pca8574")) {
/* GPIO is a TWSI GPIO unit which might sit behind
* another mux.
*/
phy_info->gpio_type[gpio_count] = GPIO_PCA8574;
prop_val = (u32 *)fdt_getprop(
fdt_addr, gpio_offset, "reg", NULL);
if (!prop_val) {
debug("Could not find TWSI address of npx pca8574 GPIO from DT\n");
return -1;
}
/* Get the TWSI address of the GPIO unit */
phy_info->cvmx_gpio_twsi[gpio_count] =
fdt32_to_cpu(*prop_val);
/* Get the selector on the GPIO mux if present */
offset = fdt_parent_offset(fdt_addr, gpio_offset);
prop_val = (u32 *)fdt_getprop(fdt_addr, offset,
"reg", NULL);
if (prop_val) {
phy_info->gpio_parent_mux_select =
fdt32_to_cpu(*prop_val);
/* Go up another level */
offset = fdt_parent_offset(fdt_addr, offset);
if (!fdt_node_check_compatible(fdt_addr, offset,
"nxp,pca9548")) {
prop_val = (u32 *)fdt_getprop(
fdt_addr, offset, "reg", NULL);
if (!prop_val) {
debug("Could not read MUX TWSI address from DT\n");
return -1;
}
phy_info->gpio_parent_mux_twsi =
fdt32_to_cpu(*prop_val);
}
}
} else {
prop_name = (char *)fdt_getprop(fdt_addr, gpio_offset,
"compatible", NULL);
debug("Unknown GPIO type %s\n", prop_name);
return -1;
}
}
return 0;
}
/**
* @INTERNAL
* Converts a BGX address to the node, interface and port number
*
* @param bgx_addr Address of CSR register
*
* @return node, interface and port number, will be -1 for invalid address.
*/
static struct cvmx_xiface __cvmx_bgx_reg_addr_to_xiface(u64 bgx_addr)
{
struct cvmx_xiface xi = { -1, -1 };
xi.node = cvmx_csr_addr_to_node(bgx_addr);
bgx_addr = cvmx_csr_addr_strip_node(bgx_addr);
if ((bgx_addr & 0xFFFFFFFFF0000000) != 0x00011800E0000000) {
debug("%s: Invalid BGX address 0x%llx\n", __func__,
(unsigned long long)bgx_addr);
xi.node = -1;
return xi;
}
xi.interface = (bgx_addr >> 24) & 0x0F;
return xi;
}
static cvmx_helper_link_info_t
__get_marvell_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
int phy_status;
u32 phy_addr = phy_info->phy_addr;
result.u64 = 0;
/* Set to page 0 */
cvmx_mdio_write(phy_addr >> 8, phy_addr & 0xff, 22, 0);
/* All the speed information can be read from register 17 in one go. */
phy_status = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 17);
/* If the resolve bit 11 isn't set, see if autoneg is turned off
* (bit 12, reg 0). The resolve bit doesn't get set properly when
* autoneg is off, so force it
*/
if ((phy_status & (1 << 11)) == 0) {
int auto_status =
cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0);
if ((auto_status & (1 << 12)) == 0)
phy_status |= 1 << 11;
}
/* Link is up = Speed/Duplex Resolved + RT-Link Up + G-Link Up. */
if ((phy_status & 0x0c08) == 0x0c08) {
result.s.link_up = 1;
result.s.full_duplex = ((phy_status >> 13) & 1);
switch ((phy_status >> 14) & 3) {
case 0: /* 10 Mbps */
result.s.speed = 10;
break;
case 1: /* 100 Mbps */
result.s.speed = 100;
break;
case 2: /* 1 Gbps */
result.s.speed = 1000;
break;
case 3: /* Illegal */
result.u64 = 0;
break;
}
}
return result;
}
/**
* @INTERNAL
* Get link state of broadcom PHY
*
* @param phy_info PHY information
*/
static cvmx_helper_link_info_t
__get_broadcom_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
u32 phy_addr = phy_info->phy_addr;
int phy_status;
result.u64 = 0;
/* Below we are going to read SMI/MDIO register 0x19 which works
* on Broadcom parts
*/
phy_status = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0x19);
switch ((phy_status >> 8) & 0x7) {
case 0:
result.u64 = 0;
break;
case 1:
result.s.link_up = 1;
result.s.full_duplex = 0;
result.s.speed = 10;
break;
case 2:
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 10;
break;
case 3:
result.s.link_up = 1;
result.s.full_duplex = 0;
result.s.speed = 100;
break;
case 4:
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 100;
break;
case 5:
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 100;
break;
case 6:
result.s.link_up = 1;
result.s.full_duplex = 0;
result.s.speed = 1000;
break;
case 7:
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 1000;
break;
}
return result;
}
/**
* @INTERNAL
* Get link state of generic gigabit PHY
*
* @param phy_info - information about the PHY
*
* @returns link status of the PHY
*/
static cvmx_helper_link_info_t
__cvmx_get_generic_8023_c22_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
u32 phy_addr = phy_info->phy_addr;
int phy_basic_control; /* Register 0x0 */
int phy_basic_status; /* Register 0x1 */
int phy_anog_adv; /* Register 0x4 */
int phy_link_part_avail; /* Register 0x5 */
int phy_control; /* Register 0x9 */
int phy_status; /* Register 0xA */
result.u64 = 0;
phy_basic_status = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 1);
if (!(phy_basic_status & 0x4)) /* Check if link is up */
return result; /* Link is down, return link down */
result.s.link_up = 1;
phy_basic_control = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0);
/* Check if autonegotiation is enabled and completed */
if ((phy_basic_control & (1 << 12)) && (phy_basic_status & (1 << 5))) {
phy_status =
cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0xA);
phy_control =
cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0x9);
phy_status &= phy_control << 2;
phy_link_part_avail =
cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0x5);
phy_anog_adv =
cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0x4);
phy_link_part_avail &= phy_anog_adv;
if (phy_status & 0xC00) { /* Gigabit full or half */
result.s.speed = 1000;
result.s.full_duplex = !!(phy_status & 0x800);
} else if (phy_link_part_avail &
0x0180) { /* 100 full or half */
result.s.speed = 100;
result.s.full_duplex = !!(phy_link_part_avail & 0x100);
} else if (phy_link_part_avail & 0x0060) {
result.s.speed = 10;
result.s.full_duplex = !!(phy_link_part_avail & 0x0040);
}
} else {
/* Not autonegotiated */
result.s.full_duplex = !!(phy_basic_control & (1 << 8));
if (phy_basic_control & (1 << 6))
result.s.speed = 1000;
else if (phy_basic_control & (1 << 13))
result.s.speed = 100;
else
result.s.speed = 10;
}
return result;
}
static cvmx_helper_link_info_t
__cvmx_get_qualcomm_s17_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
u32 phy_addr = phy_info->phy_addr;
int phy_status;
int auto_status;
result.u64 = 0;
phy_status = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 17);
/* If bit 11 isn't set see if autonegotiation is turned off
* (bit 12, reg 0). The resolved bit doesn't get set properly when
* autonegotiation is off, so force it.
*/
if ((phy_status & (1 << 11)) == 0) {
auto_status = cvmx_mdio_read(phy_addr >> 8, phy_addr & 0xff, 0);
if ((auto_status & (1 << 12)) == 0)
phy_status |= 1 << 11;
}
/* Only return a link if the PHY has finished autonegotiation and set
* the resolved bit (bit 11).
*/
if (phy_status & (1 << 11)) {
result.s.link_up = 1;
result.s.full_duplex = !!(phy_status & (1 << 13));
switch ((phy_status >> 14) & 3) {
case 0: /* 10Mbps */
result.s.speed = 10;
break;
case 1: /* 100Mbps */
result.s.speed = 100;
break;
case 2: /* 1Gbps */
result.s.speed = 1000;
break;
default: /* Illegal */
result.u64 = 0;
break;
}
}
debug(" link: %s, duplex: %s, speed: %lu\n",
result.s.link_up ? "up" : "down",
result.s.full_duplex ? "full" : "half",
(unsigned long)result.s.speed);
return result;
}
static cvmx_helper_link_info_t
__get_generic_8023_c45_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
int phy_status;
int pma_ctrl1;
u32 phy_addr = phy_info->phy_addr;
result.u64 = 0;
pma_ctrl1 = cvmx_mdio_45_read(phy_addr >> 8, phy_addr & 0xff, 1, 0);
if ((pma_ctrl1 & 0x207c) == 0x2040)
result.s.speed = 10000;
/* PMA Status 1 (1x0001) */
phy_status = cvmx_mdio_45_read(phy_addr >> 8, phy_addr & 0xff, 1, 0xa);
if (phy_status < 0)
return result;
result.s.full_duplex = 1;
if ((phy_status & 1) == 0)
return result;
phy_status = cvmx_mdio_45_read(phy_addr >> 8, phy_addr & 0xff, 4, 0x18);
if (phy_status < 0)
return result;
result.s.link_up = (phy_status & 0x1000) ? 1 : 0;
return result;
}
static cvmx_helper_link_info_t
__cvmx_get_cortina_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 1000;
return result;
}
static cvmx_helper_link_info_t
__get_vitesse_vsc8490_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 1000;
return result;
}
static cvmx_helper_link_info_t
__get_aquantia_phy_link_state(cvmx_phy_info_t *phy_info)
{
cvmx_helper_link_info_t result;
result.s.link_up = 1;
result.s.full_duplex = 1;
result.s.speed = 1000;
return result;
}
static int __cvmx_helper_78xx_parse_phy(struct cvmx_phy_info *phy_info,
int ipd_port)
{
const void *fdt_addr = CASTPTR(const void *, gd->fdt_blob);
const char *compat;
int phy;
int parent;
u64 mdio_base;
int node, bus;
int phy_addr;
int index = cvmx_helper_get_interface_index_num(ipd_port);
int xiface = cvmx_helper_get_interface_num(ipd_port);
int compat_len = 0;
debug("%s(0x%p, %d) ENTER\n", __func__, phy_info, ipd_port);
phy = cvmx_helper_get_phy_fdt_node_offset(xiface, index);
debug("%s: xiface: 0x%x, index: %d, ipd_port: %d, phy fdt offset: %d\n",
__func__, xiface, index, ipd_port, phy);
if (phy < 0) {
/* If this is the first time through we need to first parse the
* device tree to get the node offsets.
*/
debug("No config present, calling __cvmx_helper_parse_bgx_dt\n");
if (__cvmx_helper_parse_bgx_dt(fdt_addr)) {
printf("Error: could not parse BGX device tree\n");
return -1;
}
if (__cvmx_fdt_parse_vsc7224(fdt_addr)) {
debug("Error: could not parse Microsemi VSC7224 in DT\n");
return -1;
}
if (octeon_has_feature(OCTEON_FEATURE_BGX_XCV) &&
__cvmx_helper_parse_bgx_rgmii_dt(fdt_addr)) {
printf("Error: could not parse BGX XCV device tree\n");
return -1;
}
phy = cvmx_helper_get_phy_fdt_node_offset(xiface, index);
if (phy < 0) {
debug("%s: Could not get PHY node offset for IPD port 0x%x, xiface: 0x%x, index: %d\n",
__func__, ipd_port, xiface, index);
return -1;
}
debug("%s: phy: %d (%s)\n", __func__, phy,
fdt_get_name(fdt_addr, phy, NULL));
}
compat = (const char *)fdt_getprop(fdt_addr, phy, "compatible",
&compat_len);
if (!compat) {
printf("ERROR: %d:%d:no compatible prop in phy\n", xiface,
index);
return -1;
}
debug(" compatible: %s\n", compat);
phy_info->fdt_offset = phy;
phy_addr = cvmx_fdt_get_int(fdt_addr, phy, "reg", -1);
if (phy_addr == -1) {
printf("Error: %d:%d:could not get PHY address\n", xiface,
index);
return -1;
}
debug(" PHY address: %d, compat: %s\n", phy_addr, compat);
if (!memcmp("marvell", compat, strlen("marvell"))) {
phy_info->phy_type = MARVELL_GENERIC_PHY;
phy_info->link_function = __get_marvell_phy_link_state;
} else if (!memcmp("broadcom", compat, strlen("broadcom"))) {
phy_info->phy_type = BROADCOM_GENERIC_PHY;
phy_info->link_function = __get_broadcom_phy_link_state;
} else if (!memcmp("cortina", compat, strlen("cortina"))) {
phy_info->phy_type = CORTINA_PHY;
phy_info->link_function = __cvmx_get_cortina_phy_link_state;
} else if (!strcmp("vitesse,vsc8490", compat)) {
phy_info->phy_type = VITESSE_VSC8490_PHY;
phy_info->link_function = __get_vitesse_vsc8490_phy_link_state;
} else if (fdt_stringlist_contains(compat, compat_len,
"ethernet-phy-ieee802.3-c22")) {
phy_info->phy_type = GENERIC_8023_C22_PHY;
phy_info->link_function =
__cvmx_get_generic_8023_c22_phy_link_state;
} else if (fdt_stringlist_contains(compat, compat_len,
"ethernet-phy-ieee802.3-c45")) {
phy_info->phy_type = GENERIC_8023_C22_PHY;
phy_info->link_function = __get_generic_8023_c45_phy_link_state;
}
phy_info->ipd_port = ipd_port;
phy_info->phy_sub_addr = 0;
phy_info->direct_connect = 1;
parent = fdt_parent_offset(fdt_addr, phy);
if (!fdt_node_check_compatible(fdt_addr, parent,
"ethernet-phy-nexus")) {
debug(" nexus PHY found\n");
if (phy_info->phy_type == CORTINA_PHY) {
/* The Cortina CS422X uses the same PHY device for
* multiple ports for XFI. In this case we use a
* nexus and each PHY address is the slice or
* sub-address and the actual PHY address is the
* nexus address.
*/
phy_info->phy_sub_addr = phy_addr;
phy_addr =
cvmx_fdt_get_int(fdt_addr, parent, "reg", -1);
debug(" Cortina PHY real address: 0x%x\n", phy_addr);
}
parent = fdt_parent_offset(fdt_addr, parent);
}
debug(" Parent: %s\n", fdt_get_name(fdt_addr, parent, NULL));
if (!fdt_node_check_compatible(fdt_addr, parent,
"cavium,octeon-3860-mdio")) {
debug(" Found Octeon MDIO\n");
mdio_base = cvmx_fdt_get_uint64(fdt_addr, parent, "reg",
FDT_ADDR_T_NONE);
debug(" MDIO address: 0x%llx\n",
(unsigned long long)mdio_base);
mdio_base = cvmx_fdt_translate_address(fdt_addr, parent,
(u32 *)&mdio_base);
debug(" Translated: 0x%llx\n", (unsigned long long)mdio_base);
if (mdio_base == FDT_ADDR_T_NONE) {
printf("Could not get MDIO base address from reg field\n");
return -1;
}
__cvmx_mdio_addr_to_node_bus(mdio_base, &node, &bus);
if (bus < 0) {
printf("Invalid MDIO address 0x%llx, could not detect bus and node\n",
(unsigned long long)mdio_base);
return -1;
}
debug(" MDIO node: %d, bus: %d\n", node, bus);
phy_info->mdio_unit = (node << 2) | (bus & 3);
phy_info->phy_addr = phy_addr | (phy_info->mdio_unit << 8);
} else {
printf("%s: Error: incompatible MDIO bus %s for IPD port %d\n",
__func__,
(const char *)fdt_get_name(fdt_addr, parent, NULL),
ipd_port);
return -1;
}
debug("%s: EXIT 0\n", __func__);
return 0;
}
/**
* Return the MII PHY address associated with the given IPD
* port. The phy address is obtained from the device tree.
*
* @param[out] phy_info - PHY information data structure updated
* @param ipd_port Octeon IPD port to get the MII address for.
*
* @return MII PHY address and bus number, -1 on error, -2 if PHY info missing (OK).
*/
static int __get_phy_info_from_dt(cvmx_phy_info_t *phy_info, int ipd_port)
{
const void *fdt_addr = CASTPTR(const void *, gd->fdt_blob);
int aliases, eth, phy, phy_parent, ret, i;
int mdio_parent;
const char *phy_compatible_str;
const char *host_mode_str = NULL;
int interface;
int phy_addr_offset = 0;
debug("%s(%p, %d)\n", __func__, phy_info, ipd_port);
if (octeon_has_feature(OCTEON_FEATURE_BGX))
return __cvmx_helper_78xx_parse_phy(phy_info, ipd_port);
phy_info->phy_addr = -1;
phy_info->phy_sub_addr = 0;
phy_info->ipd_port = ipd_port;
phy_info->direct_connect = -1;
phy_info->phy_type = (cvmx_phy_type_t)-1;
for (i = 0; i < CVMX_PHY_MUX_MAX_GPIO; i++)
phy_info->gpio[i] = -1;
phy_info->mdio_unit = -1;
phy_info->gpio_value = -1;
phy_info->gpio_parent_mux_twsi = -1;
phy_info->gpio_parent_mux_select = -1;
phy_info->link_function = NULL;
phy_info->fdt_offset = -1;
if (!fdt_addr) {
debug("No device tree found.\n");
return -1;
}
aliases = fdt_path_offset(fdt_addr, "/aliases");
if (aliases < 0) {
debug("Error: No /aliases node in device tree.\n");
return -1;
}
if (ipd_port < 0) {
int interface_index =
ipd_port - CVMX_HELPER_BOARD_MGMT_IPD_PORT;
eth = __mix_eth_node(fdt_addr, aliases, interface_index);
} else {
eth = __pip_eth_node(fdt_addr, aliases, ipd_port);
}
if (eth < 0) {
debug("ERROR : cannot find interface for ipd_port=%d\n",
ipd_port);
return -1;
}
interface = cvmx_helper_get_interface_num(ipd_port);
/* Get handle to phy */
phy = cvmx_fdt_lookup_phandle(fdt_addr, eth, "phy-handle");
if (phy < 0) {
cvmx_helper_interface_mode_t if_mode;
/* Note that it's OK for RXAUI and ILK to not have a PHY
* connected (i.e. EBB boards in loopback).
*/
debug("Cannot get phy-handle for ipd_port: %d\n", ipd_port);
if_mode = cvmx_helper_interface_get_mode(interface);
if (if_mode != CVMX_HELPER_INTERFACE_MODE_RXAUI &&
if_mode != CVMX_HELPER_INTERFACE_MODE_ILK) {
debug("ERROR : phy handle not found in device tree ipd_port=%d\n",
ipd_port);
return -1;
} else {
return -2;
}
}
phy_compatible_str =
(const char *)fdt_getprop(fdt_addr, phy, "compatible", NULL);
if (!phy_compatible_str) {
debug("ERROR: no compatible prop in phy\n");
return -1;
}
debug("Checking compatible string \"%s\" for ipd port %d\n",
phy_compatible_str, ipd_port);
phy_info->fdt_offset = phy;
if (!memcmp("marvell", phy_compatible_str, strlen("marvell"))) {
debug("Marvell PHY detected for ipd_port %d\n", ipd_port);
phy_info->phy_type = MARVELL_GENERIC_PHY;
phy_info->link_function = __get_marvell_phy_link_state;
} else if (!memcmp("broadcom", phy_compatible_str,
strlen("broadcom"))) {
phy_info->phy_type = BROADCOM_GENERIC_PHY;
phy_info->link_function = __get_broadcom_phy_link_state;
debug("Broadcom PHY detected for ipd_port %d\n", ipd_port);
} else if (!memcmp("vitesse", phy_compatible_str, strlen("vitesse"))) {
debug("Vitesse PHY detected for ipd_port %d\n", ipd_port);
if (!fdt_node_check_compatible(fdt_addr, phy,
"vitesse,vsc8490")) {
phy_info->phy_type = VITESSE_VSC8490_PHY;
debug("Vitesse VSC8490 detected\n");
phy_info->link_function =
__get_vitesse_vsc8490_phy_link_state;
} else if (!fdt_node_check_compatible(
fdt_addr, phy,
"ethernet-phy-ieee802.3-c22")) {
phy_info->phy_type = GENERIC_8023_C22_PHY;
phy_info->link_function =
__cvmx_get_generic_8023_c22_phy_link_state;
debug("Vitesse 802.3 c22 detected\n");
} else {
phy_info->phy_type = GENERIC_8023_C45_PHY;
phy_info->link_function =
__get_generic_8023_c45_phy_link_state;
debug("Vitesse 802.3 c45 detected\n");
}
} else if (!memcmp("aquantia", phy_compatible_str,
strlen("aquantia"))) {
phy_info->phy_type = AQUANTIA_PHY;
phy_info->link_function = __get_aquantia_phy_link_state;
debug("Aquantia c45 PHY detected\n");
} else if (!memcmp("cortina", phy_compatible_str, strlen("cortina"))) {
phy_info->phy_type = CORTINA_PHY;
phy_info->link_function = __cvmx_get_cortina_phy_link_state;
host_mode_str = (const char *)fdt_getprop(
fdt_addr, phy, "cortina,host-mode", NULL);
debug("Cortina PHY detected for ipd_port %d\n", ipd_port);
} else if (!memcmp("ti", phy_compatible_str, strlen("ti"))) {
phy_info->phy_type = GENERIC_8023_C45_PHY;
phy_info->link_function = __get_generic_8023_c45_phy_link_state;
debug("TI PHY detected for ipd_port %d\n", ipd_port);
} else if (!fdt_node_check_compatible(fdt_addr, phy,
"atheros,ar8334") ||
!fdt_node_check_compatible(fdt_addr, phy,
"qualcomm,qca8334") ||
!fdt_node_check_compatible(fdt_addr, phy,
"atheros,ar8337") ||
!fdt_node_check_compatible(fdt_addr, phy,
"qualcomm,qca8337")) {
phy_info->phy_type = QUALCOMM_S17;
phy_info->link_function =
__cvmx_get_qualcomm_s17_phy_link_state;
debug("Qualcomm QCA833X switch detected\n");
} else if (!fdt_node_check_compatible(fdt_addr, phy,
"ethernet-phy-ieee802.3-c22")) {
phy_info->phy_type = GENERIC_8023_C22_PHY;
phy_info->link_function =
__cvmx_get_generic_8023_c22_phy_link_state;
debug("Generic 802.3 c22 PHY detected\n");
} else if (!fdt_node_check_compatible(fdt_addr, phy,
"ethernet-phy-ieee802.3-c45")) {
phy_info->phy_type = GENERIC_8023_C45_PHY;
phy_info->link_function = __get_generic_8023_c45_phy_link_state;
debug("Generic 802.3 c45 PHY detected\n");
} else {
debug("Unknown PHY compatibility\n");
phy_info->phy_type = (cvmx_phy_type_t)-1;
phy_info->link_function = NULL;
}
phy_info->host_mode = CVMX_PHY_HOST_MODE_UNKNOWN;
if (host_mode_str) {
if (strcmp(host_mode_str, "rxaui") == 0)
phy_info->host_mode = CVMX_PHY_HOST_MODE_RXAUI;
else if (strcmp(host_mode_str, "xaui") == 0)
phy_info->host_mode = CVMX_PHY_HOST_MODE_XAUI;
else if (strcmp(host_mode_str, "sgmii") == 0)
phy_info->host_mode = CVMX_PHY_HOST_MODE_SGMII;
else if (strcmp(host_mode_str, "qsgmii") == 0)
phy_info->host_mode = CVMX_PHY_HOST_MODE_QSGMII;
else
debug("Unknown PHY host mode\n");
}
/* Check if PHY parent is the octeon MDIO bus. Some boards are connected
* though a MUX and for them direct_connect_to_phy will be 0
*/
phy_parent = fdt_parent_offset(fdt_addr, phy);
if (phy_parent < 0) {
debug("ERROR : cannot find phy parent for ipd_port=%d ret=%d\n",
ipd_port, phy_parent);
return -1;
}
/* For multi-phy devices and devices on a MUX, go to the parent */
ret = fdt_node_check_compatible(fdt_addr, phy_parent,
"ethernet-phy-nexus");
if (ret == 0) {
/* It's a nexus so check the grandparent. */
phy_addr_offset =
cvmx_fdt_get_int(fdt_addr, phy_parent, "reg", 0);
phy_parent = fdt_parent_offset(fdt_addr, phy_parent);
}
/* Check for a muxed MDIO interface */
mdio_parent = fdt_parent_offset(fdt_addr, phy_parent);
ret = fdt_node_check_compatible(fdt_addr, mdio_parent,
"cavium,mdio-mux");
if (ret == 0) {
ret = __get_muxed_mdio_info_from_dt(phy_info, phy_parent,
mdio_parent);
if (ret) {
printf("Error reading mdio mux information for ipd port %d\n",
ipd_port);
return -1;
}
}
ret = fdt_node_check_compatible(fdt_addr, phy_parent,
"cavium,octeon-3860-mdio");
if (ret == 0) {
u32 *mdio_reg_base =
(u32 *)fdt_getprop(fdt_addr, phy_parent, "reg", 0);
phy_info->direct_connect = 1;
if (mdio_reg_base == 0) {
debug("ERROR : unable to get reg property in phy mdio\n");
return -1;
}
phy_info->mdio_unit =
__mdiobus_addr_to_unit(fdt32_to_cpu(mdio_reg_base[1]));
debug("phy parent=%s reg_base=%08x mdio_unit=%d\n",
fdt_get_name(fdt_addr, phy_parent, NULL),
(int)mdio_reg_base[1], phy_info->mdio_unit);
} else {
phy_info->direct_connect = 0;
/* The PHY is not directly connected to the Octeon MDIO bus.
* SE doesn't have abstractions for MDIO MUX or MDIO MUX
* drivers and hence for the non direct cases code will be
* needed which is board specific.
* For now the MDIO Unit is defaulted to 1.
*/
debug("%s PHY at address: %d is not directly connected\n",
__func__, phy_info->phy_addr);
}
phy_info->phy_addr = cvmx_fdt_get_int(fdt_addr, phy, "reg", -1);
if (phy_info->phy_addr < 0) {
debug("ERROR: Could not read phy address from reg in DT\n");
return -1;
}
phy_info->phy_addr += phy_addr_offset;
phy_info->phy_addr |= phy_info->mdio_unit << 8;
debug("%s(%p, %d) => 0x%x\n", __func__, phy_info, ipd_port,
phy_info->phy_addr);
return phy_info->phy_addr;
}
/**
* @INTERNAL
* Parse the device tree and set whether a port is valid or not.
*
* @param fdt_addr Pointer to device tree
*
* @return 0 for success, -1 on error.
*/
int __cvmx_helper_parse_bgx_dt(const void *fdt_addr)
{
int port_index;
struct cvmx_xiface xi;
int fdt_port_node = -1;
int fdt_interface_node;
int fdt_phy_node;
u64 reg_addr;
int xiface;
struct cvmx_phy_info *phy_info;
static bool parsed;
int err;
int ipd_port;
if (parsed) {
debug("%s: Already parsed\n", __func__);
return 0;
}
while ((fdt_port_node = fdt_node_offset_by_compatible(
fdt_addr, fdt_port_node,
"cavium,octeon-7890-bgx-port")) >= 0) {
/* Get the port number */
port_index =
cvmx_fdt_get_int(fdt_addr, fdt_port_node, "reg", -1);
if (port_index < 0) {
debug("Error: missing reg field for bgx port in device tree\n");
return -1;
}
debug("%s: Parsing BGX port %d\n", __func__, port_index);
/* Get the interface number */
fdt_interface_node = fdt_parent_offset(fdt_addr, fdt_port_node);
if (fdt_interface_node < 0) {
debug("Error: device tree corrupt!\n");
return -1;
}
if (fdt_node_check_compatible(fdt_addr, fdt_interface_node,
"cavium,octeon-7890-bgx")) {
debug("Error: incompatible Ethernet MAC Nexus in device tree!\n");
return -1;
}
reg_addr =
cvmx_fdt_get_addr(fdt_addr, fdt_interface_node, "reg");
debug("%s: BGX interface address: 0x%llx\n", __func__,
(unsigned long long)reg_addr);
if (reg_addr == FDT_ADDR_T_NONE) {
debug("Device tree BGX node has invalid address 0x%llx\n",
(unsigned long long)reg_addr);
return -1;
}
reg_addr = cvmx_fdt_translate_address(fdt_addr,
fdt_interface_node,
(u32 *)&reg_addr);
xi = __cvmx_bgx_reg_addr_to_xiface(reg_addr);
if (xi.node < 0) {
debug("Device tree BGX node has invalid address 0x%llx\n",
(unsigned long long)reg_addr);
return -1;
}
debug("%s: Found BGX node %d, interface %d\n", __func__,
xi.node, xi.interface);
xiface = cvmx_helper_node_interface_to_xiface(xi.node,
xi.interface);
cvmx_helper_set_port_fdt_node_offset(xiface, port_index,
fdt_port_node);
cvmx_helper_set_port_valid(xiface, port_index, true);
cvmx_helper_set_port_fdt_node_offset(xiface, port_index,
fdt_port_node);
if (fdt_getprop(fdt_addr, fdt_port_node,
"cavium,sgmii-mac-phy-mode", NULL))
cvmx_helper_set_mac_phy_mode(xiface, port_index, true);
else
cvmx_helper_set_mac_phy_mode(xiface, port_index, false);
if (fdt_getprop(fdt_addr, fdt_port_node, "cavium,force-link-up",
NULL))
cvmx_helper_set_port_force_link_up(xiface, port_index,
true);
else
cvmx_helper_set_port_force_link_up(xiface, port_index,
false);
if (fdt_getprop(fdt_addr, fdt_port_node,
"cavium,sgmii-mac-1000x-mode", NULL))
cvmx_helper_set_1000x_mode(xiface, port_index, true);
else
cvmx_helper_set_1000x_mode(xiface, port_index, false);
if (fdt_getprop(fdt_addr, fdt_port_node,
"cavium,disable-autonegotiation", NULL))
cvmx_helper_set_port_autonegotiation(xiface, port_index,
false);
else
cvmx_helper_set_port_autonegotiation(xiface, port_index,
true);
fdt_phy_node = cvmx_fdt_lookup_phandle(fdt_addr, fdt_port_node,
"phy-handle");
if (fdt_phy_node >= 0) {
cvmx_helper_set_phy_fdt_node_offset(xiface, port_index,
fdt_phy_node);
debug("%s: Setting PHY fdt node offset for interface 0x%x, port %d to %d\n",
__func__, xiface, port_index, fdt_phy_node);
debug("%s: PHY node name: %s\n", __func__,
fdt_get_name(fdt_addr, fdt_phy_node, NULL));
cvmx_helper_set_port_phy_present(xiface, port_index,
true);
ipd_port = cvmx_helper_get_ipd_port(xiface, port_index);
if (ipd_port >= 0) {
debug("%s: Allocating phy info for 0x%x:%d\n",
__func__, xiface, port_index);
phy_info =
(cvmx_phy_info_t *)cvmx_bootmem_alloc(
sizeof(*phy_info), 0);
if (!phy_info) {
debug("%s: Out of memory\n", __func__);
return -1;
}
memset(phy_info, 0, sizeof(*phy_info));
phy_info->phy_addr = -1;
err = __get_phy_info_from_dt(phy_info,
ipd_port);
if (err) {
debug("%s: Error parsing phy info for ipd port %d\n",
__func__, ipd_port);
return -1;
}
cvmx_helper_set_port_phy_info(
xiface, port_index, phy_info);
debug("%s: Saved phy info\n", __func__);
}
} else {
cvmx_helper_set_phy_fdt_node_offset(xiface, port_index,
-1);
debug("%s: No PHY fdt node offset for interface 0x%x, port %d to %d\n",
__func__, xiface, port_index, fdt_phy_node);
cvmx_helper_set_port_phy_present(xiface, port_index,
false);
}
}
if (!sfp_parsed)
if (cvmx_sfp_parse_device_tree(fdt_addr))
debug("%s: Error parsing SFP device tree\n", __func__);
parsed = true;
return 0;
}
int __cvmx_helper_parse_bgx_rgmii_dt(const void *fdt_addr)
{
u64 reg_addr;
struct cvmx_xiface xi;
int fdt_port_node = -1;
int fdt_interface_node;
int fdt_phy_node;
int port_index;
int xiface;
/* There's only one xcv (RGMII) interface, so just search for the one
* that's part of a BGX entry.
*/
while ((fdt_port_node = fdt_node_offset_by_compatible(
fdt_addr, fdt_port_node, "cavium,octeon-7360-xcv")) >=
0) {
fdt_interface_node = fdt_parent_offset(fdt_addr, fdt_port_node);
if (fdt_interface_node < 0) {
printf("Error: device tree corrupt!\n");
return -1;
}
debug("%s: XCV parent node compatible: %s\n", __func__,
(char *)fdt_getprop(fdt_addr, fdt_interface_node,
"compatible", NULL));
if (!fdt_node_check_compatible(fdt_addr, fdt_interface_node,
"cavium,octeon-7890-bgx"))
break;
}
if (fdt_port_node == -FDT_ERR_NOTFOUND) {
debug("No XCV/RGMII interface found in device tree\n");
return 0;
} else if (fdt_port_node < 0) {
debug("%s: Error %d parsing device tree\n", __func__,
fdt_port_node);
return -1;
}
port_index = cvmx_fdt_get_int(fdt_addr, fdt_port_node, "reg", -1);
if (port_index != 0) {
printf("%s: Error: port index (reg) must be 0, not %d.\n",
__func__, port_index);
return -1;
}
reg_addr = cvmx_fdt_get_addr(fdt_addr, fdt_interface_node, "reg");
if (reg_addr == FDT_ADDR_T_NONE) {
printf("%s: Error: could not get BGX interface address\n",
__func__);
return -1;
}
/* We don't have to bother translating since only 78xx supports OCX and
* doesn't support RGMII.
*/
xi = __cvmx_bgx_reg_addr_to_xiface(reg_addr);
debug("%s: xi.node: %d, xi.interface: 0x%x, addr: 0x%llx\n", __func__,
xi.node, xi.interface, (unsigned long long)reg_addr);
if (xi.node < 0) {
printf("%s: Device tree BGX node has invalid address 0x%llx\n",
__func__, (unsigned long long)reg_addr);
return -1;
}
debug("%s: Found XCV (RGMII) interface on interface %d\n", __func__,
xi.interface);
debug(" phy handle: 0x%x\n",
cvmx_fdt_get_int(fdt_addr, fdt_port_node, "phy-handle", -1));
fdt_phy_node =
cvmx_fdt_lookup_phandle(fdt_addr, fdt_port_node, "phy-handle");
debug("%s: phy-handle node: 0x%x\n", __func__, fdt_phy_node);
xiface = cvmx_helper_node_interface_to_xiface(xi.node, xi.interface);
cvmx_helper_set_port_fdt_node_offset(xiface, port_index, fdt_port_node);
if (fdt_phy_node >= 0) {
debug("%s: Setting PHY fdt node offset for interface 0x%x, port %d to %d\n",
__func__, xiface, port_index, fdt_phy_node);
debug("%s: PHY node name: %s\n", __func__,
fdt_get_name(fdt_addr, fdt_phy_node, NULL));
cvmx_helper_set_phy_fdt_node_offset(xiface, port_index,
fdt_phy_node);
cvmx_helper_set_port_phy_present(xiface, port_index, true);
} else {
cvmx_helper_set_phy_fdt_node_offset(xiface, port_index, -1);
debug("%s: No PHY fdt node offset for interface 0x%x, port %d to %d\n",
__func__, xiface, port_index, fdt_phy_node);
cvmx_helper_set_port_phy_present(xiface, port_index, false);
}
return 0;
}
/**
* Returns if a port is present on an interface
*
* @param fdt_addr - address fo flat device tree
* @param ipd_port - IPD port number
*
* @return 1 if port is present, 0 if not present, -1 if error
*/
int __cvmx_helper_board_get_port_from_dt(void *fdt_addr, int ipd_port)
{
int port_index;
int aliases;
const char *pip_path;
char name_buffer[24];
int pip, iface, eth;
cvmx_helper_interface_mode_t mode;
int xiface = cvmx_helper_get_interface_num(ipd_port);
struct cvmx_xiface xi = cvmx_helper_xiface_to_node_interface(xiface);
u32 val;
int phy_node_offset;
int parse_bgx_dt_err;
int parse_vsc7224_err;
debug("%s(%p, %d)\n", __func__, fdt_addr, ipd_port);
if (octeon_has_feature(OCTEON_FEATURE_BGX)) {
static int fdt_ports_initialized;
port_index = cvmx_helper_get_interface_index_num(ipd_port);
if (!fdt_ports_initialized) {
if (octeon_has_feature(OCTEON_FEATURE_BGX_XCV)) {
if (!__cvmx_helper_parse_bgx_rgmii_dt(fdt_addr))
fdt_ports_initialized = 1;
parse_bgx_dt_err =
__cvmx_helper_parse_bgx_dt(fdt_addr);
parse_vsc7224_err =
__cvmx_fdt_parse_vsc7224(fdt_addr);
if (!parse_bgx_dt_err && !parse_vsc7224_err)
fdt_ports_initialized = 1;
} else {
debug("%s: Error parsing FDT\n", __func__);
return -1;
}
}
return cvmx_helper_is_port_valid(xiface, port_index);
}
mode = cvmx_helper_interface_get_mode(xiface);
switch (mode) {
/* Device tree has information about the following mode types. */
case CVMX_HELPER_INTERFACE_MODE_RGMII:
case CVMX_HELPER_INTERFACE_MODE_GMII:
case CVMX_HELPER_INTERFACE_MODE_SPI:
case CVMX_HELPER_INTERFACE_MODE_XAUI:
case CVMX_HELPER_INTERFACE_MODE_SGMII:
case CVMX_HELPER_INTERFACE_MODE_QSGMII:
case CVMX_HELPER_INTERFACE_MODE_RXAUI:
case CVMX_HELPER_INTERFACE_MODE_AGL:
case CVMX_HELPER_INTERFACE_MODE_XLAUI:
case CVMX_HELPER_INTERFACE_MODE_XFI:
aliases = 1;
break;
default:
aliases = 0;
break;
}
/* The device tree information is present on interfaces that have phy */
if (!aliases)
return 1;
port_index = cvmx_helper_get_interface_index_num(ipd_port);
aliases = fdt_path_offset(fdt_addr, "/aliases");
if (aliases < 0) {
debug("%s: ERROR: /aliases not found in device tree fdt_addr=%p\n",
__func__, fdt_addr);
return -1;
}
pip_path = (const char *)fdt_getprop(fdt_addr, aliases, "pip", NULL);
if (!pip_path) {
debug("%s: ERROR: interface %x pip path not found in device tree\n",
__func__, xiface);
return -1;
}
pip = fdt_path_offset(fdt_addr, pip_path);
if (pip < 0) {
debug("%s: ERROR: interface %x pip not found in device tree\n",
__func__, xiface);
return -1;
}
snprintf(name_buffer, sizeof(name_buffer), "interface@%d",
xi.interface);
iface = fdt_subnode_offset(fdt_addr, pip, name_buffer);
if (iface < 0)
return 0;
snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", port_index);
eth = fdt_subnode_offset(fdt_addr, iface, name_buffer);
debug("%s: eth subnode offset %d from %s\n", __func__, eth,
name_buffer);
if (eth < 0)
return -1;
cvmx_helper_set_port_fdt_node_offset(xiface, port_index, eth);
phy_node_offset = cvmx_fdt_get_int(fdt_addr, eth, "phy", -1);
cvmx_helper_set_phy_fdt_node_offset(xiface, port_index,
phy_node_offset);
if (fdt_getprop(fdt_addr, eth, "cavium,sgmii-mac-phy-mode", NULL))
cvmx_helper_set_mac_phy_mode(xiface, port_index, true);
else
cvmx_helper_set_mac_phy_mode(xiface, port_index, false);
if (fdt_getprop(fdt_addr, eth, "cavium,force-link-up", NULL))
cvmx_helper_set_port_force_link_up(xiface, port_index, true);
else
cvmx_helper_set_port_force_link_up(xiface, port_index, false);
if (fdt_getprop(fdt_addr, eth, "cavium,sgmii-mac-1000x-mode", NULL))
cvmx_helper_set_1000x_mode(xiface, port_index, true);
else
cvmx_helper_set_1000x_mode(xiface, port_index, false);
if (fdt_getprop(fdt_addr, eth, "cavium,disable-autonegotiation", NULL))
cvmx_helper_set_port_autonegotiation(xiface, port_index, false);
else
cvmx_helper_set_port_autonegotiation(xiface, port_index, true);
if (mode == CVMX_HELPER_INTERFACE_MODE_AGL) {
bool tx_bypass = false;
if (fdt_getprop(fdt_addr, eth, "cavium,rx-clk-delay-bypass",
NULL))
cvmx_helper_set_agl_rx_clock_delay_bypass(
xiface, port_index, true);
else
cvmx_helper_set_agl_rx_clock_delay_bypass(
xiface, port_index, false);
val = cvmx_fdt_get_int(fdt_addr, eth, "cavium,rx-clk-skew", 0);
cvmx_helper_set_agl_rx_clock_skew(xiface, port_index, val);
if (fdt_getprop(fdt_addr, eth, "cavium,tx-clk-delay-bypass",
NULL))
tx_bypass = true;
val = cvmx_fdt_get_int(fdt_addr, eth, "tx-clk-delay", 0);
cvmx_helper_cfg_set_rgmii_tx_clk_delay(xiface, port_index,
tx_bypass, val);
val = cvmx_fdt_get_int(fdt_addr, eth, "cavium,refclk-sel", 0);
cvmx_helper_set_agl_refclk_sel(xiface, port_index, val);
}
return (eth >= 0);
}
/**
* Given the address of the MDIO registers, output the CPU node and MDIO bus
*
* @param addr 64-bit address of MDIO registers (from device tree)
* @param[out] node CPU node number (78xx)
* @param[out] bus MDIO bus number
*/
void __cvmx_mdio_addr_to_node_bus(u64 addr, int *node, int *bus)
{
if (OCTEON_IS_MODEL(OCTEON_CN78XX)) {
if (node)
*node = cvmx_csr_addr_to_node(addr);
addr = cvmx_csr_addr_strip_node(addr);
} else {
if (node)
*node = 0;
}
if (OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CN78XX)) {
switch (addr) {
case 0x0001180000003800:
*bus = 0;
break;
case 0x0001180000003880:
*bus = 1;
break;
case 0x0001180000003900:
*bus = 2;
break;
case 0x0001180000003980:
*bus = 3;
break;
default:
*bus = -1;
printf("%s: Invalid SMI bus address 0x%llx\n", __func__,
(unsigned long long)addr);
break;
}
} else if (OCTEON_IS_MODEL(OCTEON_CN73XX) ||
OCTEON_IS_MODEL(OCTEON_CNF75XX)) {
switch (addr) {
case 0x0001180000003800:
*bus = 0;
break;
case 0x0001180000003880:
*bus = 1;
break;
default:
*bus = -1;
printf("%s: Invalid SMI bus address 0x%llx\n", __func__,
(unsigned long long)addr);
break;
}
} else {
switch (addr) {
case 0x0001180000001800:
*bus = 0;
break;
case 0x0001180000001900:
*bus = 1;
break;
default:
*bus = -1;
printf("%s: Invalid SMI bus address 0x%llx\n", __func__,
(unsigned long long)addr);
break;
}
}
}