mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-27 13:33:40 +00:00
ed5df0852f
Currently in pmecc_get_sigma(), the code tries to clear the memory pointed by smu with wrong size 'sizeof(int16_t) * ARRAY_SIZE(smu)'. Since smu is actually a pointer, not an array, so ARRAY_SIZE(smu) does not generate correct size to be cleared. In fact, GCC 8.1.0 reports a warning against it: error: division 'sizeof (int16_t * {aka short int *}) / sizeof (int16_t {aka short int})' does not compute the number of array elements [-Werror=sizeof-pointer-div] Fix it by using the correct size. Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
1511 lines
38 KiB
C
1511 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2007-2008
|
|
* Stelian Pop <stelian@popies.net>
|
|
* Lead Tech Design <www.leadtechdesign.com>
|
|
*
|
|
* (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
|
|
*
|
|
* Add Programmable Multibit ECC support for various AT91 SoC
|
|
* (C) Copyright 2012 ATMEL, Hong Xu
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/gpio.h>
|
|
#include <asm/arch/gpio.h>
|
|
|
|
#include <malloc.h>
|
|
#include <nand.h>
|
|
#include <watchdog.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
#ifdef CONFIG_ATMEL_NAND_HWECC
|
|
|
|
/* Register access macros */
|
|
#define ecc_readl(add, reg) \
|
|
readl(add + ATMEL_ECC_##reg)
|
|
#define ecc_writel(add, reg, value) \
|
|
writel((value), add + ATMEL_ECC_##reg)
|
|
|
|
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
|
|
|
|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
#undef CONFIG_SYS_NAND_ONFI_DETECTION
|
|
#endif
|
|
|
|
struct atmel_nand_host {
|
|
struct pmecc_regs __iomem *pmecc;
|
|
struct pmecc_errloc_regs __iomem *pmerrloc;
|
|
void __iomem *pmecc_rom_base;
|
|
|
|
u8 pmecc_corr_cap;
|
|
u16 pmecc_sector_size;
|
|
u32 pmecc_index_table_offset;
|
|
u32 pmecc_version;
|
|
|
|
int pmecc_bytes_per_sector;
|
|
int pmecc_sector_number;
|
|
int pmecc_degree; /* Degree of remainders */
|
|
int pmecc_cw_len; /* Length of codeword */
|
|
|
|
/* lookup table for alpha_to and index_of */
|
|
void __iomem *pmecc_alpha_to;
|
|
void __iomem *pmecc_index_of;
|
|
|
|
/* data for pmecc computation */
|
|
int16_t *pmecc_smu;
|
|
int16_t *pmecc_partial_syn;
|
|
int16_t *pmecc_si;
|
|
int16_t *pmecc_lmu; /* polynomal order */
|
|
int *pmecc_mu;
|
|
int *pmecc_dmu;
|
|
int *pmecc_delta;
|
|
};
|
|
|
|
static struct atmel_nand_host pmecc_host;
|
|
static struct nand_ecclayout atmel_pmecc_oobinfo;
|
|
|
|
/*
|
|
* Return number of ecc bytes per sector according to sector size and
|
|
* correction capability
|
|
*
|
|
* Following table shows what at91 PMECC supported:
|
|
* Correction Capability Sector_512_bytes Sector_1024_bytes
|
|
* ===================== ================ =================
|
|
* 2-bits 4-bytes 4-bytes
|
|
* 4-bits 7-bytes 7-bytes
|
|
* 8-bits 13-bytes 14-bytes
|
|
* 12-bits 20-bytes 21-bytes
|
|
* 24-bits 39-bytes 42-bytes
|
|
* 32-bits 52-bytes 56-bytes
|
|
*/
|
|
static int pmecc_get_ecc_bytes(int cap, int sector_size)
|
|
{
|
|
int m = 12 + sector_size / 512;
|
|
return (m * cap + 7) / 8;
|
|
}
|
|
|
|
static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
|
|
int oobsize, int ecc_len)
|
|
{
|
|
int i;
|
|
|
|
layout->eccbytes = ecc_len;
|
|
|
|
/* ECC will occupy the last ecc_len bytes continuously */
|
|
for (i = 0; i < ecc_len; i++)
|
|
layout->eccpos[i] = oobsize - ecc_len + i;
|
|
|
|
layout->oobfree[0].offset = 2;
|
|
layout->oobfree[0].length =
|
|
oobsize - ecc_len - layout->oobfree[0].offset;
|
|
}
|
|
|
|
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
|
|
{
|
|
int table_size;
|
|
|
|
table_size = host->pmecc_sector_size == 512 ?
|
|
PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
|
|
|
|
/* the ALPHA lookup table is right behind the INDEX lookup table. */
|
|
return host->pmecc_rom_base + host->pmecc_index_table_offset +
|
|
table_size * sizeof(int16_t);
|
|
}
|
|
|
|
static void pmecc_data_free(struct atmel_nand_host *host)
|
|
{
|
|
free(host->pmecc_partial_syn);
|
|
free(host->pmecc_si);
|
|
free(host->pmecc_lmu);
|
|
free(host->pmecc_smu);
|
|
free(host->pmecc_mu);
|
|
free(host->pmecc_dmu);
|
|
free(host->pmecc_delta);
|
|
}
|
|
|
|
static int pmecc_data_alloc(struct atmel_nand_host *host)
|
|
{
|
|
const int cap = host->pmecc_corr_cap;
|
|
int size;
|
|
|
|
size = (2 * cap + 1) * sizeof(int16_t);
|
|
host->pmecc_partial_syn = malloc(size);
|
|
host->pmecc_si = malloc(size);
|
|
host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
|
|
host->pmecc_smu = malloc((cap + 2) * size);
|
|
|
|
size = (cap + 1) * sizeof(int);
|
|
host->pmecc_mu = malloc(size);
|
|
host->pmecc_dmu = malloc(size);
|
|
host->pmecc_delta = malloc(size);
|
|
|
|
if (host->pmecc_partial_syn &&
|
|
host->pmecc_si &&
|
|
host->pmecc_lmu &&
|
|
host->pmecc_smu &&
|
|
host->pmecc_mu &&
|
|
host->pmecc_dmu &&
|
|
host->pmecc_delta)
|
|
return 0;
|
|
|
|
/* error happened */
|
|
pmecc_data_free(host);
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i;
|
|
uint32_t value;
|
|
|
|
/* Fill odd syndromes */
|
|
for (i = 0; i < host->pmecc_corr_cap; i++) {
|
|
value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
|
|
if (i & 1)
|
|
value >>= 16;
|
|
value &= 0xffff;
|
|
host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
|
|
}
|
|
}
|
|
|
|
static void pmecc_substitute(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
|
|
int16_t __iomem *index_of = host->pmecc_index_of;
|
|
int16_t *partial_syn = host->pmecc_partial_syn;
|
|
const int cap = host->pmecc_corr_cap;
|
|
int16_t *si;
|
|
int i, j;
|
|
|
|
/* si[] is a table that holds the current syndrome value,
|
|
* an element of that table belongs to the field
|
|
*/
|
|
si = host->pmecc_si;
|
|
|
|
memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
|
|
|
|
/* Computation 2t syndromes based on S(x) */
|
|
/* Odd syndromes */
|
|
for (i = 1; i < 2 * cap; i += 2) {
|
|
for (j = 0; j < host->pmecc_degree; j++) {
|
|
if (partial_syn[i] & (0x1 << j))
|
|
si[i] = readw(alpha_to + i * j) ^ si[i];
|
|
}
|
|
}
|
|
/* Even syndrome = (Odd syndrome) ** 2 */
|
|
for (i = 2, j = 1; j <= cap; i = ++j << 1) {
|
|
if (si[j] == 0) {
|
|
si[i] = 0;
|
|
} else {
|
|
int16_t tmp;
|
|
|
|
tmp = readw(index_of + si[j]);
|
|
tmp = (tmp * 2) % host->pmecc_cw_len;
|
|
si[i] = readw(alpha_to + tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function defines a Berlekamp iterative procedure for
|
|
* finding the value of the error location polynomial.
|
|
* The input is si[], initialize by pmecc_substitute().
|
|
* The output is smu[][].
|
|
*
|
|
* This function is written according to chip datasheet Chapter:
|
|
* Find the Error Location Polynomial Sigma(x) of Section:
|
|
* Programmable Multibit ECC Control (PMECC).
|
|
*/
|
|
static void pmecc_get_sigma(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
int16_t *lmu = host->pmecc_lmu;
|
|
int16_t *si = host->pmecc_si;
|
|
int *mu = host->pmecc_mu;
|
|
int *dmu = host->pmecc_dmu; /* Discrepancy */
|
|
int *delta = host->pmecc_delta; /* Delta order */
|
|
int cw_len = host->pmecc_cw_len;
|
|
const int16_t cap = host->pmecc_corr_cap;
|
|
const int num = 2 * cap + 1;
|
|
int16_t __iomem *index_of = host->pmecc_index_of;
|
|
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
|
|
int i, j, k;
|
|
uint32_t dmu_0_count, tmp;
|
|
int16_t *smu = host->pmecc_smu;
|
|
|
|
/* index of largest delta */
|
|
int ro;
|
|
int largest;
|
|
int diff;
|
|
|
|
/* Init the Sigma(x) */
|
|
memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
|
|
|
|
dmu_0_count = 0;
|
|
|
|
/* First Row */
|
|
|
|
/* Mu */
|
|
mu[0] = -1;
|
|
|
|
smu[0] = 1;
|
|
|
|
/* discrepancy set to 1 */
|
|
dmu[0] = 1;
|
|
/* polynom order set to 0 */
|
|
lmu[0] = 0;
|
|
/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
|
|
delta[0] = -1;
|
|
|
|
/* Second Row */
|
|
|
|
/* Mu */
|
|
mu[1] = 0;
|
|
/* Sigma(x) set to 1 */
|
|
smu[num] = 1;
|
|
|
|
/* discrepancy set to S1 */
|
|
dmu[1] = si[1];
|
|
|
|
/* polynom order set to 0 */
|
|
lmu[1] = 0;
|
|
|
|
/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
|
|
delta[1] = 0;
|
|
|
|
for (i = 1; i <= cap; i++) {
|
|
mu[i + 1] = i << 1;
|
|
/* Begin Computing Sigma (Mu+1) and L(mu) */
|
|
/* check if discrepancy is set to 0 */
|
|
if (dmu[i] == 0) {
|
|
dmu_0_count++;
|
|
|
|
tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
|
|
if ((cap - (lmu[i] >> 1) - 1) & 0x1)
|
|
tmp += 2;
|
|
else
|
|
tmp += 1;
|
|
|
|
if (dmu_0_count == tmp) {
|
|
for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
|
|
smu[(cap + 1) * num + j] =
|
|
smu[i * num + j];
|
|
|
|
lmu[cap + 1] = lmu[i];
|
|
return;
|
|
}
|
|
|
|
/* copy polynom */
|
|
for (j = 0; j <= lmu[i] >> 1; j++)
|
|
smu[(i + 1) * num + j] = smu[i * num + j];
|
|
|
|
/* copy previous polynom order to the next */
|
|
lmu[i + 1] = lmu[i];
|
|
} else {
|
|
ro = 0;
|
|
largest = -1;
|
|
/* find largest delta with dmu != 0 */
|
|
for (j = 0; j < i; j++) {
|
|
if ((dmu[j]) && (delta[j] > largest)) {
|
|
largest = delta[j];
|
|
ro = j;
|
|
}
|
|
}
|
|
|
|
/* compute difference */
|
|
diff = (mu[i] - mu[ro]);
|
|
|
|
/* Compute degree of the new smu polynomial */
|
|
if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
|
|
lmu[i + 1] = lmu[i];
|
|
else
|
|
lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
|
|
|
|
/* Init smu[i+1] with 0 */
|
|
for (k = 0; k < num; k++)
|
|
smu[(i + 1) * num + k] = 0;
|
|
|
|
/* Compute smu[i+1] */
|
|
for (k = 0; k <= lmu[ro] >> 1; k++) {
|
|
int16_t a, b, c;
|
|
|
|
if (!(smu[ro * num + k] && dmu[i]))
|
|
continue;
|
|
a = readw(index_of + dmu[i]);
|
|
b = readw(index_of + dmu[ro]);
|
|
c = readw(index_of + smu[ro * num + k]);
|
|
tmp = a + (cw_len - b) + c;
|
|
a = readw(alpha_to + tmp % cw_len);
|
|
smu[(i + 1) * num + (k + diff)] = a;
|
|
}
|
|
|
|
for (k = 0; k <= lmu[i] >> 1; k++)
|
|
smu[(i + 1) * num + k] ^= smu[i * num + k];
|
|
}
|
|
|
|
/* End Computing Sigma (Mu+1) and L(mu) */
|
|
/* In either case compute delta */
|
|
delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
|
|
|
|
/* Do not compute discrepancy for the last iteration */
|
|
if (i >= cap)
|
|
continue;
|
|
|
|
for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
|
|
tmp = 2 * (i - 1);
|
|
if (k == 0) {
|
|
dmu[i + 1] = si[tmp + 3];
|
|
} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
|
|
int16_t a, b, c;
|
|
a = readw(index_of +
|
|
smu[(i + 1) * num + k]);
|
|
b = si[2 * (i - 1) + 3 - k];
|
|
c = readw(index_of + b);
|
|
tmp = a + c;
|
|
tmp %= cw_len;
|
|
dmu[i + 1] = readw(alpha_to + tmp) ^
|
|
dmu[i + 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pmecc_err_location(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
const int cap = host->pmecc_corr_cap;
|
|
const int num = 2 * cap + 1;
|
|
int sector_size = host->pmecc_sector_size;
|
|
int err_nbr = 0; /* number of error */
|
|
int roots_nbr; /* number of roots */
|
|
int i;
|
|
uint32_t val;
|
|
int16_t *smu = host->pmecc_smu;
|
|
int timeout = PMECC_MAX_TIMEOUT_US;
|
|
|
|
pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
|
|
|
|
for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
|
|
pmecc_writel(host->pmerrloc, sigma[i],
|
|
smu[(cap + 1) * num + i]);
|
|
err_nbr++;
|
|
}
|
|
|
|
val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
|
|
if (sector_size == 1024)
|
|
val |= PMERRLOC_ELCFG_SECTOR_1024;
|
|
|
|
pmecc_writel(host->pmerrloc, elcfg, val);
|
|
pmecc_writel(host->pmerrloc, elen,
|
|
sector_size * 8 + host->pmecc_degree * cap);
|
|
|
|
while (--timeout) {
|
|
if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
|
|
break;
|
|
WATCHDOG_RESET();
|
|
udelay(1);
|
|
}
|
|
|
|
if (!timeout) {
|
|
dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
|
|
return -1;
|
|
}
|
|
|
|
roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
|
|
>> 8;
|
|
/* Number of roots == degree of smu hence <= cap */
|
|
if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
|
|
return err_nbr - 1;
|
|
|
|
/* Number of roots does not match the degree of smu
|
|
* unable to correct error */
|
|
return -1;
|
|
}
|
|
|
|
static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
|
|
int sector_num, int extra_bytes, int err_nbr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i = 0;
|
|
int byte_pos, bit_pos, sector_size, pos;
|
|
uint32_t tmp;
|
|
uint8_t err_byte;
|
|
|
|
sector_size = host->pmecc_sector_size;
|
|
|
|
while (err_nbr) {
|
|
tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
|
|
byte_pos = tmp / 8;
|
|
bit_pos = tmp % 8;
|
|
|
|
if (byte_pos >= (sector_size + extra_bytes))
|
|
BUG(); /* should never happen */
|
|
|
|
if (byte_pos < sector_size) {
|
|
err_byte = *(buf + byte_pos);
|
|
*(buf + byte_pos) ^= (1 << bit_pos);
|
|
|
|
pos = sector_num * host->pmecc_sector_size + byte_pos;
|
|
dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
|
|
pos, bit_pos, err_byte, *(buf + byte_pos));
|
|
} else {
|
|
/* Bit flip in OOB area */
|
|
tmp = sector_num * host->pmecc_bytes_per_sector
|
|
+ (byte_pos - sector_size);
|
|
err_byte = ecc[tmp];
|
|
ecc[tmp] ^= (1 << bit_pos);
|
|
|
|
pos = tmp + nand_chip->ecc.layout->eccpos[0];
|
|
dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
|
|
pos, bit_pos, err_byte, ecc[tmp]);
|
|
}
|
|
|
|
i++;
|
|
err_nbr--;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
|
|
u8 *ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i, err_nbr, eccbytes;
|
|
uint8_t *buf_pos;
|
|
|
|
/* SAMA5D4 PMECC IP can correct errors for all 0xff page */
|
|
if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
|
|
goto normal_check;
|
|
|
|
eccbytes = nand_chip->ecc.bytes;
|
|
for (i = 0; i < eccbytes; i++)
|
|
if (ecc[i] != 0xff)
|
|
goto normal_check;
|
|
/* Erased page, return OK */
|
|
return 0;
|
|
|
|
normal_check:
|
|
for (i = 0; i < host->pmecc_sector_number; i++) {
|
|
err_nbr = 0;
|
|
if (pmecc_stat & 0x1) {
|
|
buf_pos = buf + i * host->pmecc_sector_size;
|
|
|
|
pmecc_gen_syndrome(mtd, i);
|
|
pmecc_substitute(mtd);
|
|
pmecc_get_sigma(mtd);
|
|
|
|
err_nbr = pmecc_err_location(mtd);
|
|
if (err_nbr == -1) {
|
|
dev_err(host->dev, "PMECC: Too many errors\n");
|
|
mtd->ecc_stats.failed++;
|
|
return -EBADMSG;
|
|
} else {
|
|
pmecc_correct_data(mtd, buf_pos, ecc, i,
|
|
host->pmecc_bytes_per_sector, err_nbr);
|
|
mtd->ecc_stats.corrected += err_nbr;
|
|
}
|
|
}
|
|
pmecc_stat >>= 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
int eccsize = chip->ecc.size;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint32_t stat;
|
|
int timeout = PMECC_MAX_TIMEOUT_US;
|
|
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
|
|
pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
|
|
& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
|
|
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
|
|
|
|
chip->read_buf(mtd, buf, eccsize);
|
|
chip->read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
while (--timeout) {
|
|
if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
|
|
break;
|
|
WATCHDOG_RESET();
|
|
udelay(1);
|
|
}
|
|
|
|
if (!timeout) {
|
|
dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
|
|
return -1;
|
|
}
|
|
|
|
stat = pmecc_readl(host->pmecc, isr);
|
|
if (stat != 0)
|
|
if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
|
|
return -EBADMSG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
int i, j;
|
|
int timeout = PMECC_MAX_TIMEOUT_US;
|
|
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
|
|
|
|
pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
|
|
PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
|
|
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
|
|
|
|
chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
|
|
|
|
while (--timeout) {
|
|
if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
|
|
break;
|
|
WATCHDOG_RESET();
|
|
udelay(1);
|
|
}
|
|
|
|
if (!timeout) {
|
|
dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < host->pmecc_sector_number; i++) {
|
|
for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
|
|
int pos;
|
|
|
|
pos = i * host->pmecc_bytes_per_sector + j;
|
|
chip->oob_poi[eccpos[pos]] =
|
|
pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
|
|
}
|
|
}
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
static void atmel_pmecc_core_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint32_t val = 0;
|
|
struct nand_ecclayout *ecc_layout;
|
|
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
|
|
|
|
switch (host->pmecc_corr_cap) {
|
|
case 2:
|
|
val = PMECC_CFG_BCH_ERR2;
|
|
break;
|
|
case 4:
|
|
val = PMECC_CFG_BCH_ERR4;
|
|
break;
|
|
case 8:
|
|
val = PMECC_CFG_BCH_ERR8;
|
|
break;
|
|
case 12:
|
|
val = PMECC_CFG_BCH_ERR12;
|
|
break;
|
|
case 24:
|
|
val = PMECC_CFG_BCH_ERR24;
|
|
break;
|
|
case 32:
|
|
val = PMECC_CFG_BCH_ERR32;
|
|
break;
|
|
}
|
|
|
|
if (host->pmecc_sector_size == 512)
|
|
val |= PMECC_CFG_SECTOR512;
|
|
else if (host->pmecc_sector_size == 1024)
|
|
val |= PMECC_CFG_SECTOR1024;
|
|
|
|
switch (host->pmecc_sector_number) {
|
|
case 1:
|
|
val |= PMECC_CFG_PAGE_1SECTOR;
|
|
break;
|
|
case 2:
|
|
val |= PMECC_CFG_PAGE_2SECTORS;
|
|
break;
|
|
case 4:
|
|
val |= PMECC_CFG_PAGE_4SECTORS;
|
|
break;
|
|
case 8:
|
|
val |= PMECC_CFG_PAGE_8SECTORS;
|
|
break;
|
|
}
|
|
|
|
val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
|
|
| PMECC_CFG_AUTO_DISABLE);
|
|
pmecc_writel(host->pmecc, cfg, val);
|
|
|
|
ecc_layout = nand_chip->ecc.layout;
|
|
pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
|
|
pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
|
|
pmecc_writel(host->pmecc, eaddr,
|
|
ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
|
|
/* See datasheet about PMECC Clock Control Register */
|
|
pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
|
|
pmecc_writel(host->pmecc, idr, 0xff);
|
|
pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
|
|
/*
|
|
* pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
|
|
* pmecc_corr_cap or pmecc_sector_size is 0, then set it as
|
|
* ONFI ECC parameters.
|
|
* @host: point to an atmel_nand_host structure.
|
|
* if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
|
|
* if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
|
|
* @chip: point to an nand_chip structure.
|
|
* @cap: store the ONFI ECC correct bits capbility
|
|
* @sector_size: in how many bytes that ONFI require to correct @ecc_bits
|
|
*
|
|
* Return 0 if success. otherwise return the error code.
|
|
*/
|
|
static int pmecc_choose_ecc(struct atmel_nand_host *host,
|
|
struct nand_chip *chip,
|
|
int *cap, int *sector_size)
|
|
{
|
|
/* Get ECC requirement from ONFI parameters */
|
|
*cap = *sector_size = 0;
|
|
if (chip->onfi_version) {
|
|
*cap = chip->ecc_strength_ds;
|
|
*sector_size = chip->ecc_step_ds;
|
|
pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
|
|
*cap, *sector_size);
|
|
}
|
|
|
|
if (*cap == 0 && *sector_size == 0) {
|
|
/* Non-ONFI compliant */
|
|
dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
|
|
*cap = 2;
|
|
*sector_size = 512;
|
|
}
|
|
|
|
/* If head file doesn't specify then use the one in ONFI parameters */
|
|
if (host->pmecc_corr_cap == 0) {
|
|
/* use the most fitable ecc bits (the near bigger one ) */
|
|
if (*cap <= 2)
|
|
host->pmecc_corr_cap = 2;
|
|
else if (*cap <= 4)
|
|
host->pmecc_corr_cap = 4;
|
|
else if (*cap <= 8)
|
|
host->pmecc_corr_cap = 8;
|
|
else if (*cap <= 12)
|
|
host->pmecc_corr_cap = 12;
|
|
else if (*cap <= 24)
|
|
host->pmecc_corr_cap = 24;
|
|
else
|
|
#ifdef CONFIG_SAMA5D2
|
|
host->pmecc_corr_cap = 32;
|
|
#else
|
|
host->pmecc_corr_cap = 24;
|
|
#endif
|
|
}
|
|
if (host->pmecc_sector_size == 0) {
|
|
/* use the most fitable sector size (the near smaller one ) */
|
|
if (*sector_size >= 1024)
|
|
host->pmecc_sector_size = 1024;
|
|
else if (*sector_size >= 512)
|
|
host->pmecc_sector_size = 512;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(NO_GALOIS_TABLE_IN_ROM)
|
|
static uint16_t *pmecc_galois_table;
|
|
static inline int deg(unsigned int poly)
|
|
{
|
|
/* polynomial degree is the most-significant bit index */
|
|
return fls(poly) - 1;
|
|
}
|
|
|
|
static int build_gf_tables(int mm, unsigned int poly,
|
|
int16_t *index_of, int16_t *alpha_to)
|
|
{
|
|
unsigned int i, x = 1;
|
|
const unsigned int k = 1 << deg(poly);
|
|
unsigned int nn = (1 << mm) - 1;
|
|
|
|
/* primitive polynomial must be of degree m */
|
|
if (k != (1u << mm))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nn; i++) {
|
|
alpha_to[i] = x;
|
|
index_of[x] = i;
|
|
if (i && (x == 1))
|
|
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
|
|
return -EINVAL;
|
|
x <<= 1;
|
|
if (x & k)
|
|
x ^= poly;
|
|
}
|
|
|
|
alpha_to[nn] = 1;
|
|
index_of[0] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t *create_lookup_table(int sector_size)
|
|
{
|
|
int degree = (sector_size == 512) ?
|
|
PMECC_GF_DIMENSION_13 :
|
|
PMECC_GF_DIMENSION_14;
|
|
unsigned int poly = (sector_size == 512) ?
|
|
PMECC_GF_13_PRIMITIVE_POLY :
|
|
PMECC_GF_14_PRIMITIVE_POLY;
|
|
int table_size = (sector_size == 512) ?
|
|
PMECC_INDEX_TABLE_SIZE_512 :
|
|
PMECC_INDEX_TABLE_SIZE_1024;
|
|
|
|
int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
|
|
if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
|
|
return NULL;
|
|
|
|
return (uint16_t *)addr;
|
|
}
|
|
#endif
|
|
|
|
static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
|
|
struct mtd_info *mtd)
|
|
{
|
|
struct atmel_nand_host *host;
|
|
int cap, sector_size;
|
|
|
|
host = &pmecc_host;
|
|
nand_set_controller_data(nand, host);
|
|
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.calculate = NULL;
|
|
nand->ecc.correct = NULL;
|
|
nand->ecc.hwctl = NULL;
|
|
|
|
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
|
|
host->pmecc_corr_cap = host->pmecc_sector_size = 0;
|
|
|
|
#ifdef CONFIG_PMECC_CAP
|
|
host->pmecc_corr_cap = CONFIG_PMECC_CAP;
|
|
#endif
|
|
#ifdef CONFIG_PMECC_SECTOR_SIZE
|
|
host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
|
|
#endif
|
|
/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
|
|
* CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
|
|
* from ONFI.
|
|
*/
|
|
if (pmecc_choose_ecc(host, nand, &cap, §or_size)) {
|
|
dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
|
|
cap, sector_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cap > host->pmecc_corr_cap)
|
|
dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
|
|
host->pmecc_corr_cap, cap);
|
|
if (sector_size < host->pmecc_sector_size)
|
|
dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
|
|
host->pmecc_sector_size, sector_size);
|
|
#else /* CONFIG_SYS_NAND_ONFI_DETECTION */
|
|
host->pmecc_corr_cap = CONFIG_PMECC_CAP;
|
|
host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
|
|
#endif
|
|
|
|
cap = host->pmecc_corr_cap;
|
|
sector_size = host->pmecc_sector_size;
|
|
|
|
/* TODO: need check whether cap & sector_size is validate */
|
|
#if defined(NO_GALOIS_TABLE_IN_ROM)
|
|
/*
|
|
* As pmecc_rom_base is the begin of the gallois field table, So the
|
|
* index offset just set as 0.
|
|
*/
|
|
host->pmecc_index_table_offset = 0;
|
|
#else
|
|
if (host->pmecc_sector_size == 512)
|
|
host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
|
|
else
|
|
host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
|
|
#endif
|
|
|
|
pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
|
|
cap, sector_size);
|
|
|
|
host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
|
|
host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
|
|
ATMEL_BASE_PMERRLOC;
|
|
#if defined(NO_GALOIS_TABLE_IN_ROM)
|
|
pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
|
|
if (!pmecc_galois_table) {
|
|
dev_err(host->dev, "out of memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
|
|
#else
|
|
host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
|
|
#endif
|
|
|
|
/* ECC is calculated for the whole page (1 step) */
|
|
nand->ecc.size = mtd->writesize;
|
|
|
|
/* set ECC page size and oob layout */
|
|
switch (mtd->writesize) {
|
|
case 2048:
|
|
case 4096:
|
|
case 8192:
|
|
host->pmecc_degree = (sector_size == 512) ?
|
|
PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
|
|
host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
|
|
host->pmecc_sector_number = mtd->writesize / sector_size;
|
|
host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
|
|
cap, sector_size);
|
|
host->pmecc_alpha_to = pmecc_get_alpha_to(host);
|
|
host->pmecc_index_of = host->pmecc_rom_base +
|
|
host->pmecc_index_table_offset;
|
|
|
|
nand->ecc.steps = 1;
|
|
nand->ecc.bytes = host->pmecc_bytes_per_sector *
|
|
host->pmecc_sector_number;
|
|
|
|
if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
|
|
dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
|
|
MTD_MAX_ECCPOS_ENTRIES_LARGE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
|
|
dev_err(host->dev, "No room for ECC bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
|
|
mtd->oobsize,
|
|
nand->ecc.bytes);
|
|
nand->ecc.layout = &atmel_pmecc_oobinfo;
|
|
break;
|
|
case 512:
|
|
case 1024:
|
|
/* TODO */
|
|
dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
|
|
default:
|
|
/* page size not handled by HW ECC */
|
|
/* switching back to soft ECC */
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
nand->ecc.read_page = NULL;
|
|
nand->ecc.postpad = 0;
|
|
nand->ecc.prepad = 0;
|
|
nand->ecc.bytes = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate data for PMECC computation */
|
|
if (pmecc_data_alloc(host)) {
|
|
dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nand->options |= NAND_NO_SUBPAGE_WRITE;
|
|
nand->ecc.read_page = atmel_nand_pmecc_read_page;
|
|
nand->ecc.write_page = atmel_nand_pmecc_write_page;
|
|
nand->ecc.strength = cap;
|
|
|
|
/* Check the PMECC ip version */
|
|
host->pmecc_version = pmecc_readl(host->pmerrloc, version);
|
|
dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
|
|
|
|
atmel_pmecc_core_init(mtd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/* oob layout for large page size
|
|
* bad block info is on bytes 0 and 1
|
|
* the bytes have to be consecutives to avoid
|
|
* several NAND_CMD_RNDOUT during read
|
|
*/
|
|
static struct nand_ecclayout atmel_oobinfo_large = {
|
|
.eccbytes = 4,
|
|
.eccpos = {60, 61, 62, 63},
|
|
.oobfree = {
|
|
{2, 58}
|
|
},
|
|
};
|
|
|
|
/* oob layout for small page size
|
|
* bad block info is on bytes 4 and 5
|
|
* the bytes have to be consecutives to avoid
|
|
* several NAND_CMD_RNDOUT during read
|
|
*/
|
|
static struct nand_ecclayout atmel_oobinfo_small = {
|
|
.eccbytes = 4,
|
|
.eccpos = {0, 1, 2, 3},
|
|
.oobfree = {
|
|
{6, 10}
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Calculate HW ECC
|
|
*
|
|
* function called after a write
|
|
*
|
|
* mtd: MTD block structure
|
|
* dat: raw data (unused)
|
|
* ecc_code: buffer for ECC
|
|
*/
|
|
static int atmel_nand_calculate(struct mtd_info *mtd,
|
|
const u_char *dat, unsigned char *ecc_code)
|
|
{
|
|
unsigned int ecc_value;
|
|
|
|
/* get the first 2 ECC bytes */
|
|
ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
|
|
|
|
ecc_code[0] = ecc_value & 0xFF;
|
|
ecc_code[1] = (ecc_value >> 8) & 0xFF;
|
|
|
|
/* get the last 2 ECC bytes */
|
|
ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
|
|
|
|
ecc_code[2] = ecc_value & 0xFF;
|
|
ecc_code[3] = (ecc_value >> 8) & 0xFF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HW ECC read page function
|
|
*
|
|
* mtd: mtd info structure
|
|
* chip: nand chip info structure
|
|
* buf: buffer to store read data
|
|
* oob_required: caller expects OOB data read to chip->oob_poi
|
|
*/
|
|
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint8_t *ecc_pos;
|
|
int stat;
|
|
|
|
/* read the page */
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
/* move to ECC position if needed */
|
|
if (eccpos[0] != 0) {
|
|
/* This only works on large pages
|
|
* because the ECC controller waits for
|
|
* NAND_CMD_RNDOUTSTART after the
|
|
* NAND_CMD_RNDOUT.
|
|
* anyway, for small pages, the eccpos[0] == 0
|
|
*/
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
|
|
mtd->writesize + eccpos[0], -1);
|
|
}
|
|
|
|
/* the ECC controller needs to read the ECC just after the data */
|
|
ecc_pos = oob + eccpos[0];
|
|
chip->read_buf(mtd, ecc_pos, eccbytes);
|
|
|
|
/* check if there's an error */
|
|
stat = chip->ecc.correct(mtd, p, oob, NULL);
|
|
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
|
|
/* get back to oob start (end of page) */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
|
|
|
|
/* read the oob */
|
|
chip->read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HW ECC Correction
|
|
*
|
|
* function called after a read
|
|
*
|
|
* mtd: MTD block structure
|
|
* dat: raw data read from the chip
|
|
* read_ecc: ECC from the chip (unused)
|
|
* isnull: unused
|
|
*
|
|
* Detect and correct a 1 bit error for a page
|
|
*/
|
|
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *isnull)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
unsigned int ecc_status;
|
|
unsigned int ecc_word, ecc_bit;
|
|
|
|
/* get the status from the Status Register */
|
|
ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
|
|
|
|
/* if there's no error */
|
|
if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
|
|
return 0;
|
|
|
|
/* get error bit offset (4 bits) */
|
|
ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
|
|
/* get word address (12 bits) */
|
|
ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
|
|
ecc_word >>= 4;
|
|
|
|
/* if there are multiple errors */
|
|
if (ecc_status & ATMEL_ECC_MULERR) {
|
|
/* check if it is a freshly erased block
|
|
* (filled with 0xff) */
|
|
if ((ecc_bit == ATMEL_ECC_BITADDR)
|
|
&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
|
|
/* the block has just been erased, return OK */
|
|
return 0;
|
|
}
|
|
/* it doesn't seems to be a freshly
|
|
* erased block.
|
|
* We can't correct so many errors */
|
|
dev_warn(host->dev, "atmel_nand : multiple errors detected."
|
|
" Unable to correct.\n");
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/* if there's a single bit error : we can correct it */
|
|
if (ecc_status & ATMEL_ECC_ECCERR) {
|
|
/* there's nothing much to do here.
|
|
* the bit error is on the ECC itself.
|
|
*/
|
|
dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
|
|
" Nothing to correct\n");
|
|
return 0;
|
|
}
|
|
|
|
dev_warn(host->dev, "atmel_nand : one bit error on data."
|
|
" (word offset in the page :"
|
|
" 0x%x bit offset : 0x%x)\n",
|
|
ecc_word, ecc_bit);
|
|
/* correct the error */
|
|
if (nand_chip->options & NAND_BUSWIDTH_16) {
|
|
/* 16 bits words */
|
|
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
|
|
} else {
|
|
/* 8 bits words */
|
|
dat[ecc_word] ^= (1 << ecc_bit);
|
|
}
|
|
dev_warn(host->dev, "atmel_nand : error corrected\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Enable HW ECC : unused on most chips
|
|
*/
|
|
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
|
|
{
|
|
}
|
|
|
|
int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
|
|
{
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.calculate = atmel_nand_calculate;
|
|
nand->ecc.correct = atmel_nand_correct;
|
|
nand->ecc.hwctl = atmel_nand_hwctl;
|
|
nand->ecc.read_page = atmel_nand_read_page;
|
|
nand->ecc.bytes = 4;
|
|
nand->ecc.strength = 4;
|
|
|
|
if (nand->ecc.mode == NAND_ECC_HW) {
|
|
/* ECC is calculated for the whole page (1 step) */
|
|
nand->ecc.size = mtd->writesize;
|
|
|
|
/* set ECC page size and oob layout */
|
|
switch (mtd->writesize) {
|
|
case 512:
|
|
nand->ecc.layout = &atmel_oobinfo_small;
|
|
ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
|
|
ATMEL_ECC_PAGESIZE_528);
|
|
break;
|
|
case 1024:
|
|
nand->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
|
|
ATMEL_ECC_PAGESIZE_1056);
|
|
break;
|
|
case 2048:
|
|
nand->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
|
|
ATMEL_ECC_PAGESIZE_2112);
|
|
break;
|
|
case 4096:
|
|
nand->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
|
|
ATMEL_ECC_PAGESIZE_4224);
|
|
break;
|
|
default:
|
|
/* page size not handled by HW ECC */
|
|
/* switching back to soft ECC */
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
nand->ecc.calculate = NULL;
|
|
nand->ecc.correct = NULL;
|
|
nand->ecc.hwctl = NULL;
|
|
nand->ecc.read_page = NULL;
|
|
nand->ecc.postpad = 0;
|
|
nand->ecc.prepad = 0;
|
|
nand->ecc.bytes = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
|
|
|
|
#endif /* CONFIG_ATMEL_NAND_HWECC */
|
|
|
|
static void at91_nand_hwcontrol(struct mtd_info *mtd,
|
|
int cmd, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
|
|
IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
|
|
| CONFIG_SYS_NAND_MASK_CLE);
|
|
|
|
if (ctrl & NAND_CLE)
|
|
IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
|
|
if (ctrl & NAND_ALE)
|
|
IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
|
|
|
|
#ifdef CONFIG_SYS_NAND_ENABLE_PIN
|
|
at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
|
|
!(ctrl & NAND_NCE));
|
|
#endif
|
|
this->IO_ADDR_W = (void *) IO_ADDR_W;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_NAND_READY_PIN
|
|
static int at91_nand_ready(struct mtd_info *mtd)
|
|
{
|
|
return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
/* The following code is for SPL */
|
|
static struct mtd_info *mtd;
|
|
static struct nand_chip nand_chip;
|
|
|
|
static int nand_command(int block, int page, uint32_t offs, u8 cmd)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
|
|
void (*hwctrl)(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl) = this->cmd_ctrl;
|
|
|
|
while (!this->dev_ready(mtd))
|
|
;
|
|
|
|
if (cmd == NAND_CMD_READOOB) {
|
|
offs += CONFIG_SYS_NAND_PAGE_SIZE;
|
|
cmd = NAND_CMD_READ0;
|
|
}
|
|
|
|
hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
|
|
if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
|
|
offs >>= 1;
|
|
|
|
hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
|
|
hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
|
|
hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
|
|
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
|
|
hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
|
|
#endif
|
|
hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
while (!this->dev_ready(mtd))
|
|
;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_is_bad_block(int block)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
|
|
|
|
if (this->options & NAND_BUSWIDTH_16) {
|
|
if (readw(this->IO_ADDR_R) != 0xffff)
|
|
return 1;
|
|
} else {
|
|
if (readb(this->IO_ADDR_R) != 0xff)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SPL_NAND_ECC
|
|
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
|
|
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
|
|
CONFIG_SYS_NAND_ECCSIZE)
|
|
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
|
|
|
|
static int nand_read_page(int block, int page, void *dst)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
u_char ecc_calc[ECCTOTAL];
|
|
u_char ecc_code[ECCTOTAL];
|
|
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
|
|
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
|
|
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
int eccsteps = ECCSTEPS;
|
|
int i;
|
|
uint8_t *p = dst;
|
|
nand_command(block, page, 0, NAND_CMD_READ0);
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
if (this->ecc.mode != NAND_ECC_SOFT)
|
|
this->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
this->read_buf(mtd, p, eccsize);
|
|
this->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
}
|
|
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
|
|
|
|
for (i = 0; i < ECCTOTAL; i++)
|
|
ecc_code[i] = oob_data[nand_ecc_pos[i]];
|
|
|
|
eccsteps = ECCSTEPS;
|
|
p = dst;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
|
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spl_nand_erase_one(int block, int page)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
void (*hwctrl)(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl) = this->cmd_ctrl;
|
|
int page_addr;
|
|
|
|
if (nand_chip.select_chip)
|
|
nand_chip.select_chip(mtd, 0);
|
|
|
|
page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
|
|
hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
/* Row address */
|
|
hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
hwctrl(mtd, ((page_addr >> 8) & 0xff),
|
|
NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
|
|
/* One more address cycle for devices > 128MiB */
|
|
hwctrl(mtd, (page_addr >> 16) & 0x0f,
|
|
NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
#endif
|
|
hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
|
|
while (!this->dev_ready(mtd))
|
|
;
|
|
|
|
nand_deselect();
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int nand_read_page(int block, int page, void *dst)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
nand_command(block, page, 0, NAND_CMD_READ0);
|
|
atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SPL_NAND_ECC */
|
|
|
|
int at91_nand_wait_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
udelay(this->chip_delay);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
int ret = 0;
|
|
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
#ifdef CONFIG_SYS_NAND_DBW_16
|
|
nand->options = NAND_BUSWIDTH_16;
|
|
nand->read_buf = nand_read_buf16;
|
|
#else
|
|
nand->read_buf = nand_read_buf;
|
|
#endif
|
|
nand->cmd_ctrl = at91_nand_hwcontrol;
|
|
#ifdef CONFIG_SYS_NAND_READY_PIN
|
|
nand->dev_ready = at91_nand_ready;
|
|
#else
|
|
nand->dev_ready = at91_nand_wait_ready;
|
|
#endif
|
|
nand->chip_delay = 20;
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
nand->bbt_options |= NAND_BBT_USE_FLASH;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ATMEL_NAND_HWECC
|
|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
|
|
ret = atmel_pmecc_nand_init_params(nand, mtd);
|
|
#endif
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
void nand_init(void)
|
|
{
|
|
mtd = nand_to_mtd(&nand_chip);
|
|
mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
|
|
mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
|
|
nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
|
|
nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
|
|
board_nand_init(&nand_chip);
|
|
|
|
#ifdef CONFIG_SPL_NAND_ECC
|
|
if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
|
|
nand_chip.ecc.calculate = nand_calculate_ecc;
|
|
nand_chip.ecc.correct = nand_correct_data;
|
|
}
|
|
#endif
|
|
|
|
if (nand_chip.select_chip)
|
|
nand_chip.select_chip(mtd, 0);
|
|
}
|
|
|
|
void nand_deselect(void)
|
|
{
|
|
if (nand_chip.select_chip)
|
|
nand_chip.select_chip(mtd, -1);
|
|
}
|
|
|
|
#include "nand_spl_loaders.c"
|
|
|
|
#else
|
|
|
|
#ifndef CONFIG_SYS_NAND_BASE_LIST
|
|
#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
|
|
#endif
|
|
static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
|
|
static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
|
|
|
|
int atmel_nand_chip_init(int devnum, ulong base_addr)
|
|
{
|
|
int ret;
|
|
struct nand_chip *nand = &nand_chip[devnum];
|
|
struct mtd_info *mtd = nand_to_mtd(nand);
|
|
|
|
nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
|
|
|
|
#ifdef CONFIG_NAND_ECC_BCH
|
|
nand->ecc.mode = NAND_ECC_SOFT_BCH;
|
|
#else
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_DBW_16
|
|
nand->options = NAND_BUSWIDTH_16;
|
|
#endif
|
|
nand->cmd_ctrl = at91_nand_hwcontrol;
|
|
#ifdef CONFIG_SYS_NAND_READY_PIN
|
|
nand->dev_ready = at91_nand_ready;
|
|
#endif
|
|
nand->chip_delay = 75;
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
nand->bbt_options |= NAND_BBT_USE_FLASH;
|
|
#endif
|
|
|
|
ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#ifdef CONFIG_ATMEL_NAND_HWECC
|
|
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
|
|
ret = atmel_pmecc_nand_init_params(nand, mtd);
|
|
#else
|
|
ret = atmel_hwecc_nand_init_param(nand, mtd);
|
|
#endif
|
|
if (ret)
|
|
return ret;
|
|
#endif
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (!ret)
|
|
nand_register(devnum, mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
|
|
if (atmel_nand_chip_init(i, base_addr[i]))
|
|
dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
|
|
i);
|
|
}
|
|
#endif /* CONFIG_SPL_BUILD */
|